ARTICLE TYPE

The Nature of Excess Electrons in Anatase and Rutile from hybrid DFT and RPA

Supplementary Information

Clelia Spreafico,^a and Joost VandeVondele *a

^a Nanoscale Simulations, Department of Materials, ETH Zürich, Wolfgang-Pauli-Str. 27, CH-8093 Zürich, Switzerland. E-mail: Joost. Vande Vondele@mat.ethz.ch

S	1 Cell	parameters and	inter atomic	distances fo	or rutile and	anatase,	adopting F	PBE, HSE)6 and tr-PBI	E0 functionals.
								,		

		Anatase	
	a/Å	c/Å	Ti-O distance/Å
Experimental ¹	3.782	9.502	1.9322 ; 1.9788
PBE	3.804(+0.5%)	9.620(+1.2%)	1.944(+0.6%); 2.011(+1.7%
HSE06	3.783(+0.0%)	9.469(-0.3%)	1.931(-0.1%); 1.975(-0.2%)
tr-PBE0 (20%hfx)	3.775(-0.2%)	9.581(+0.8%)	1.931(-0.1%); 1.989(+0.5%)
tr-PBE0 (25%hfx)	3.769(-0.3%)	9.561(+0.6%)	1.928(-0.2%); 1.983(+0.2%
		Rutile	
	a/Å	c/Å	Ti-O distance/Å
Experimental ¹	4.587	2.954	1.946 ; 1.976
PBE	4.642(+1.2%)	2.971(+0.6%)	1.961(+0.7%); 2.010(+1.5%)
HSE06	4.591(+0.1%)	2.955(+0.0%)	1.945(-0.1%); 1.982(+0.3%)
tr-PBE0 (20%hfx)	4.596(+0.2%)	2.954(+0.0%)	1.944(-0.1%); 1.985(+0.4%
DDE0 (050(1.0.)	1 595(10 007)	2.051(0.10)	1 0 41 (0 207) . 1 0 20 (0 207

S 2 Band Gap of anatase and rutile, for different functionals and increasing amounts of %hfx. Black: PBE0. Blue: HSE06. Red, cross : PBE. Red, circle : RPA-PBE. Dotted lines enclose the band gap values reported in literature for hybrid DFT and GW calculations (taken from ref. [3]). The anatase DFT-RPA band gap is calculated according to the formula² : $E_{gap} = E(N+1) + E(N-1) - 2E(N)$, where E(N) is the total energy of the *N*-electron system. The DFT-RPA band gap value is close to the 4.29 eV value reported for G_0W_0 calculations³.

S 3 Blue curves: NEB profiles for the delocalized-localized transition in anatase and rutile with one excess electron, obtained with the truncated PBE0 functional and different amounts of %hfx. Black curves: Energetic cost of the corresponding lattice deformation as obtained for the neutral system.

R.C. = $d(Ti_c - O_{eq})_{Nth \ replica} - d(Ti_c - O_{eq})_{perfect \ lattice}$.

S 4 Polaron trapping energy (E_{pol}) for the anatase $6 \times 6 \times 2$ system, treated with the HSE functional and varying amounts of exact exchange. $\omega = 0.11a_0$

S 5 Energy difference between a polaronic and delocalized geometry in presence of an excess electron ($\Delta E = E_{loc} - E_{deloc}$), for a provided polaron geometry. Employed is a small anatase $3 \times 3 \times 1$ system, to facilitate benchmarking and comparing different functionals, basis sets and codes. Negative values indicate stable polaron geometries, positive values indicate metastable polaron geometries. Relevant parameters for the QUANTUM ESPRESSO calculations are also given. Due to the computational cost, convergence of the QUANTUM ESPRESSO data is at the $10^{-3}E_H$ level. Details for the CP2K calculations are given in Section 2 of the manuscript and additional parameters can be found in **S** 12. All employed Gaussian basis sets for Ti and O are reported in **S** 13.

CP2K ⁴	4	
BASIS_SET	FUNCTIONAL	$\Delta E/eV$
	tr-PBE0(40% hfx)	-0.49
CC-12	tr-PBE0(25% hfx)	0.23
	B3LYP(20% hfx)	1.20
ADMM as TZ	tr-PBE0(40% hfx)	-0.49
ADMIM CC-1Z	tr-PBE0(25% hfx)	0.22
	B3LYP(20% hfx)	1.21
Ti 86 411(421)C and O 8 411415.6	tr-PBE0(25% hfx)	0.25
11_00-411(a51)G and O_8-411a1	B3LYP(20% hfx)	0.84

QUANT exxdiv_treatment	UM ESPRESSO ⁷ FUNCTIONAL	$\Delta E/eV$
'vcut_spherical' 'gygi-baldereschi' 'vcut_spherical' 'gygi-baldereschi'	PBE0(25% hfx) PBE0(25% hfx) B3LYP(20% hfx) B3LYP(20% hfx)	0.29 0.27 0.92 0.87
Simul	ation Parameters	
ecutwfc ecutfock		150 400
conv_thr mixing_beta		1d-6 0.3

		Polaron Geometr	ry in the anatase 3 >	$< 3 \times 1$ system	stem. a=11.346 Å;	c=9.502Å.	
Ti	0.0025580316	0.0026559143	-0.0002149987	0	-1.8910562807	-0.0027072522	-0.4068640396
Ti	-1.8910161929	0.0015610421	-2.3746142108	0	-0.0009518779	0.0002961501	-1.9729439413
0	-1.8909875514	-0.0025021967	-4.3505404797	0	-1.8910416278	1.8837526566	-2.7884960589
Ti	-1.8910334392	1.8895215922	-4.7550348487	Ō	-0.0069896011	1.8845646264	0.4038764064
Ti	0.0019311757	1.8970224802	2.3717499162	0	0.0003113760	-0.0009116129	1.9725571793
0	-0.0018841752	1.8892814108	-5.1572484519	0	-1.8910287658	1.8905906597	2.7758025265
Ti	-3.7848574170	0.0026367202	-0.0001881534	Ō	-5.6666009105	-0.0069763764	-0.4039017774
Ti	-5.6790426317	0.0019492948	-2.3718589956	Ő	-3.7811409057	0.0002820560	-1.9728859211
0	-5.6713174719	-0.0018542444	-4.3448381777	Ō	-5.6700597532	1.8877883976	-2.7811315187
Ti	-5.6781676902	1.8960493123	-4.7512420700	Ő	-3.7750833967	1.8845229770	0.4037965885
Ti	-3.7839610156	1 8970347517	2.3717028577	Ő	-3.7823221399	-0.0008872548	1.9725838955
0	-3.7801578087	1 8892704776	-5.1573037736	Ő	-5 6698577863	1.8880692758	2.7806653123
Ti	3.7818542920	0.0050807951	0.0260017606	Ő	1.8845489924	-0.0069636732	-0.4039010805
Ti	1 8971103221	0.0020217673	-2 3718795568	Ő	3 7819875638	0.0009715541	-1 9681514320
0	1 8893052443	-0.0018970290	-4.3448270300	ŏ	1.8880698897	1.8878391909	-2.7811105769
Ti	1 8961230958	1 8960569063	-4 7512304117	ŏ	3 7819957469	1.8076391909	0 4458783777
Ti	3.7819969547	1 8952277202	2.3649087240	Ő	3 7819049825	-0.0174814468	2.0041894463
0	3.7819927160	1 8862044145	-5.1433151355	Ő	1.8878649938	1 8880242605	2,7806552400
Ti	0.0053411056	3 7819305704	-0.0264424090	Ő	-1 8910153123	3 7819830258	-0.4282066298
Ti	-1.8910306328	3.7820205324	-2.3873005650	ŏ	-0.0173389942	3,7820223707	-2.0047909846
0	-1.8910338632	3.7820114904	-4.3601090754	ŏ	-1 8910222058	-5 6657533019	-2.7885183890
Ti	-1.8910366767	-5 6716517281	-4.7550678345	ŏ	-0.0069599986	-5 6666200185	0.4038772164
Ti	0.0019203782	-5 6791089288	2 3717281247	Ő	0.0009927040	3 7819559123	1 9677181358
0	-0.0019012861	-5 6713003804	-5 1572887630	ŏ	-1 8910215926	-5 6727084817	2 7757859237
Ti	-3 7873317943	3 7819256123	-0.0263928400	ŏ	-5 6047249969	3 7820713519	-0.4461815221
Ti	-5 6772508681	3 7820705380	-2 3652673668	ŏ	-3 7646830838	3 7820001167	-2 0047625153
0	-5 6681518057	3 7819790767	-4 3588301878	Ő	-5 6700618523	-5 6698549249	-2 7811672753
Ti	-5 6782062862	-5 6782267597	-4 7512537750	ŏ	-3 7750836494	-5 6666246561	0.4038219520
Ti	-3.7839683604	-5 6791007234	2.3716926817	Ő	-3.7829612545	3 7819690907	1.9677503249
0	-3.7801540751	-5 6713073363	-5.1573382449	Ő	-5 6699060915	-5 6701424604	2.7806423633
Ti	3 7820108000	3 7816545651	-0.0003223424	Ő	1 8227197827	3 7819639643	-0 4461763688
Ti	1 8952301562	3 7820710980	-2 3652175758	ŏ	3 7819903694	3 7820172616	-2 0076247081
0	1 8861325543	3 7819571443	-4 3588314222	ŏ	1 8879621090	-5 6698309128	-2 7811711410
Ti	1 8961160442	-5 6782320190	-4 7512748296	ŏ	3 7820194855	-5 6048715046	0 4458212414
Ti	3 7819778116	-5 6773370780	2 3648928940	Ő	3 7820132088	3 7818522548	2 0068451024
0	3 7819717584	-5 6682082002	-5 1432662265	Ő	1 8878912096	-5 6701222040	2 7806111961
Ti	0.0026143006	-3 7847644157	-0.0002117501	Ő	-1 8910269616	-3 7793761113	-0.4068652455
Ti	-1 8910267823	-3 7835219198	-2 3745711963	Ő	-0.0009433189	-3 7823346571	-1 9729261465
0	-1 8910114982	-3 7794839131	-4 3505615493	ŏ	-1 8910338518	-1 8910087590	-2 7802928542
Ті	-1 8910814259	-1 8910736587	-4 7510894454	ő	-0.0026596379	-1 8910272713	0.4066968323
Ti	0.0014870805	-1 8910405846	2 3744560408	Ő	0.00020590579	-3 7811449127	1 9725553312
0	-0.0024939524	-1 8910092543	-5 1515312524	Ő	-1 8910114119	-1 8910611269	2 7800441586
Ti	-3 7847371081	-3 7847520400	-0.0001992387	Ő	-5 6665698406	-3 7750925296	-0 4040014844
Ti	-5 6790707703	-3 783806/05/	-2 3718000267		-3 7811/335/0	-3 7823/18100	-1 9729108720
0	-5 6713620530	-3 7801/06877	_4 3440012702		-5 6726080861	-1 8010/05778	-2 7761303085
ті	-5 6716696386	-1 8910672658	-4 7473959825		-3 7793633982	-1 8910345626	0 4066800280
Ti	-3 7834350375	-1 8910067904	2 3743676703		-3 7822784265	-3 7811379840	1 9725785800
0	-3 770/880766	-1 8010016011	-5 1515035633		-5 6657588777	-1 8010500233	2 78803/038/
Ti	3 78106/7770	-3.7876/31780	0.0258606104		1 88/536/27/	-3.7751288733	-0 /030102787
Ti	1 8070301658	-3.7838715646	-2 3718/00650		3 7810750027	-3.7830106515	-0.4039192787
0	1 8803206380	-3.780177/027	-2.3710499039 -4 3448301070		1 8006368455	-1 8010011250	-1.9062515075
Ti	1 8805851801	-1 8011770384	-1 7/7/088805		3 781050/0/0/2	-1 8010706020	0 / 2762/2171
Ti	3 7820/15/67	-1.8910058588	2 3868650305		3 7819776130	-3.7648206735	2 0040/85555
0	3 7820131777	-1.8900677180	-5 1421244002		1 883707/1520	-1.8011001/12	2.00404055555
0	5.7620151777	-1.07070//100	-J.1+21244992		1.003/9/4329	-1.0711001410	2.1019003021

	Delocalized Electron Geometry in the anatase $3 \times 3 \times 1$ system. $a=11.346$ Å; $c=9.502$ Å.							
Ti	-0.0000411545	0.0001037477	-0.0001222571	0	-1.8911035908	0.0000095698	-0.3959559709	
Ti	-1.8912780734	-0.0001428054	-2.3754422110	0	-0.0000334021	-0.0000036992	-1.9796463824	
0	-1.8909524165	-0.0000530705	-4.3552514036	0	-1.8909302860	1.8909998305	-2.7715030371	
Ti	-1.8908249516	1.8908268052	-4.7510648659	0	0.0000218230	1.8910256677	0.3956996306	
Ti	0.0000898155	1.8912686623	2.3752913551	0	-0.0000165494	0.0000574817	1.9795103805	
0	0.0000127013	1.8910915999	-5.1468965075	0	-1.8910204297	1.8910224139	2.7714076050	
Ti	-3.7819651497	0.0000840265	0.0005366027	0	-5.6728835598	0.0000601236	-0.3958732939	
Ti	-5.6727149945	-0.0001655343	-2.3753539347	0	-3.7820065917	0.0000455549	-1.9796652658	
0	-5.6730331328	-0.0000939516	-4.3551630243	0	-5.6730647784	1.8909927852	-2.7714929013	
Ti	-5.6730932255	1.8908350915	-4.7510684520	0	-3.7819810401	1.8910748256	0.3957479701	
Ti	-3.7819843276	1.8912643510	2.3756274175	0	-3.7819954684	0.0000150974	1.9797908911	
0	-3.7819773711	1.8909692338	-5.1470568220	0	-5.6730110826	1.8909943405	2.7714031682	
Ti	3.7820422817	0.0001004325	-0.0001172515	0	1.8910008826	0.0000089751	-0.3957775431	
Ti	1.8910038009	-0.0001327780	-2.3752569724	0	3.7819733704	0.0000765109	-1.9796789785	
0	1.8910544514	-0.0000262847	-4.3551421916	Ő	1.8910573750	1.8909249288	-2.7715632662	
Ti	1.8909952623	1.8907692428	-4.7509313163	Ő	3.7819843049	1.8910930365	0.3958183539	
Ti	3.7818876589	1.8912776068	2.3753564912	Ő	3.7820098144	-0.0000041151	1.9795208944	
0	3.7819686202	1.8910600892	-5.1468193468	Ő	1.8909631868	1.8912234071	2.7711872734	
Ti	-0.0000570761	3 7819579868	-0.0004081789	Ő	-1.8909999516	3 7820517273	-0.3962174791	
Ti	-1.8912704245	3.7820265343	-2.3760883414	Õ	-0.0000525137	3.7820209741	-1.9796681243	
0	-1.8909655822	3.7819823784	-4.3553801654	Ő	-1.8909395609	-5.6729499200	-2.7714453854	
Ti	-1.8908389053	-5.6728384786	-4.7509823086	Ő	-0.0000375768	-5.6730770918	0.3955473595	
Ti	0.0001043107	-5 6732005636	2.3751066169	Ő	0.0000996072	3,7819785300	1.9798664702	
0	0.0000112854	-5 6730908236	-5.1470849355	Ő	-1.8909805256	-5.6730213808	2,7715030939	
Ti	-3.7818676685	3.7820015121	0.0001072659	Ő	-5.6727953879	3,7819673103	-0.3961134354	
Ti	-5.6727060793	3.7820213838	-2.3759746474	Ő	-3.7819856709	3.7819468009	-1.9797388024	
0	-5 6731262478	3 7819918333	-4 3553036271	Ő	-5.6730998017	-5 6729481285	-2.7714824179	
Ti	-5.6730981813	-5.6728346077	-4.7510404967	Õ	-3.7819776319	-5.6730521866	0.3957400343	
Ti	-3.7819512572	-5.6732662713	2.3756035072	Ő	-3.7819679006	3.7819913126	1.9799423196	
0	-3.7819835469	-5.6729657885	-5.1470708789	Ő	-5.6730145736	-5.6729859491	2.7714159289	
Ti	3 7821360514	3 7819948472	-0.0006170755	Ő	1.8909815628	3 7820236802	-0.3960699410	
Ti	1.8909629293	3.7820009044	-2.3759135225	Ő	3.7819924327	3.7819853732	-1.9798598642	
0	1.8910512364	3.7819913386	-4.3552347532	Ő	1.8910985216	-5.6729191284	-2.7714779879	
Ti	1.8909967029	-5.6727738604	-4.7508295760	Ő	3.7819933200	-5.6730872724	0.3957925872	
Ti	3 7818761198	-5 6732461432	2.3753307982	Ő	3 7818996305	3 7819945137	1.9796990038	
0	3 7819692400	-5 6730565461	-5.1468426177	Ő	1.8909354932	-5.6732240389	2,7713238743	
Ti	-0.0000362683	-3.7820886953	-0.0000066284	Ő	-1.8910699132	-3.7820364316	-0.3959672456	
Ti	-1.8912767855	-3.7818004119	-2.3754514945	Ő	-0.0000397593	-3.7820171680	-1.9795471275	
0	-1.8909629687	-3.7819307600	-4.3552719767	Ő	-1.8909109519	-1.8909814689	-2.7713084358	
Ti	-1 8907994234	-1 8910019113	-4 7512789823	Ő	-0.0000069825	-1 8909944411	0 3958104157	
Ti	0.0000739638	-1 8909322898	2 3751245943	ŏ	-0.0000345436	-3 7819018763	1 9796784093	
0	-0.0000560035	-1 8910137457	-5.1468837106	ŏ	-1.8909633711	-1.8910024809	2.7714212395	
Ti	-3 7819543404	-3 7820482949	0.0005269688	ŏ	-5 6728802745	-3 7820542956	-0 3958667962	
Ti	-5 6727162792	-3 7817966628	-2 3753453548	ő	-3 7820050714	-3 7820344943	-1 9796675767	
0	-5 6730318301	-3 7819024891	-4 3551659798		-5 6729674670	-1 8909897377	-2 7713681789	
Ti	-5 6731808573	-1 8910138518	-4.7513866191	0	-3 7819832090	-1.8909919304	0.3958403586	
Ti	-3.7819564061	-1 8910066630	2.3755449592	o o	-3 7820041771	-3 7820215604	1.9797879601	
0	-3 7819991970	-1 8909976624	-5 1470776178	o o	-5 673020041771	-1 8910019819	2 7713098676	
Ті	3 7820301087	-3 7820724987	-0.0001277204		1 8909977177	-3 7819903153	-0 3958144735	
Ti	1 8909965987	-3 7818319536	-2 3752716992		3 7819656066	-3 7820657042	-1 9796780194	
0	1 8910674250	-3 7819320742	-4 3551804793		1 8910440560	-1 8909984516	-2 7715296067	
т	1 890972/017	-1 8010068013	-4 7512656230		3 782000/615	-1 8000078607	0 3958565640	
Ti	3 7819801330	-1 8910012857	2 3751013547		3 7820037845	-3 7819858400	1 9795307180	
0	3.7819659793	-1 8910116294	-5.1467846754	0	1.8910007589	-1.8910149368	2,7712574898	
0	5.101/05/175	1.0/101102/4	5.1407040754		1.0710007509	1.0710177500	2.1112317090	

S 6 Variation in the inter atomic distance (in Å) between the electron localization center, T_{i_c} , and its nearest neighbors, as a function of the amount of exact exchange in the tr-PBE0 functional.

		Anatase		
% hfx	$Ti_c - O$ eq	$Ti_c - O$ ax	$Ti_c - Ti$ eq	$Ti_c - Ti$ ax
25	6.22E-02	2.69E-02	-1.48E-02	-1.19E-02
26	6.25E-02	2.73E-02	-1.51E-02	-1.18E-02
27	6.91E-02	3.20E-02	-1.19E-02	-1.15E-02
28	6.57E-02	2.89E-02	-1.44E-02	-1.15E-02
29	7.25E-02	3.42E-02	-1.37E-02	-1.04E-02
30	7.27E-02	3.49E-02	-1.13E-02	-1.13E-02
31	7.45E-02	3.64E-02	-1.01E-02	-1.13E-02
32	7.60E-02	3.76E-02	-9.91E-03	-1.08E-02
34	7.76E-02	3.89E-02	-9.31E-03	-1.07E-02
35	7.77E-02	3.95E-02	-9.50E-03	-1.04E-02
		Rutile		
% hfx	$Ti_c - O$ eq	$Ti_c - O$ ax	$Ti_c - Ti$ eq	$Ti_c - Ti$ ax
20	9.02E-02	1.53E-02	-5.92E-03	-6.24E-02
e5	1.01E-01	1.97E-02	-2.48E-02	-3.23E-02
28	1.03E-01	2.48E-02	-2.85E-02	-2.60E-02
30	1.04E-01	2.57E-02	-2.88E-02	-2.54E-02
35	1.05E-01	2.97E-02	-3.07E-02	-2.02E-02

S 7 HF, MP2 and DH energy difference between $E_{loc,relax}$ = localized charge with a consistent lattice relaxation (polaron) and $E_{loc,perf}$ = localized charge with a perfect (non relaxed) lattice geometry.

The fully delocalized solution $E_{deloc,perf}$ can not be obtained with those methods, due to the high amount of %hfx introduced. Therefore $E_{pol} = E_{loc,relax} - E_{deloc,perf}$ can not be computed.

	Charge	Geometry
$E_{loc,relax}$ (polaron)	localized	relaxed (polaron distortion)
$E_{loc,perf}$	localized	delocalized (perfect lattice)
$E_{deloc,perf}$	delocalized	delocalized (perfect lattice)

	Anatase $E_{loc,relax} - E_{loc,perf}$ / eV	Rutile $E_{loc,relax} - E_{loc,perf}$ / eV	$\Delta E_{rutile-anatase}$ / eV
HF	-1.03	-1.22	0.19
MP2	-0.63	-0.84	0.21
DH	-0.41	-0.78	0.37

S 8 Polaron formation energies in anatase and rutile, with unit cells of 108 and 216 atoms respectively, computed with hybrid DFT and RPA for varying amounts of %hfx and different starting geometries. Blue= geometry obtained with 25%hfx. Red= geometry obtained with 28%hfx. Green= geometry obtained with 30%hfx. Black= geometry obtained with 35%hfx.

		Starting	i oraron c	Jeonneu y	
Method	20	25	28	30	35
PBE	0.35	0.40		0.43	0.46
trPBE0 (20% hfx)	-0.25	-0.24	-0.23	-0.23	-0.23
trPBE0 (25% hfx)	-0.55	-0.56	-0.56	-0.55	-0.56
RPA-PBE	-0.70	-0.64		-0.62	-0.57
RPA-trPBE0 (20% hfx)	-0.73	-0.70	-0.68	-0.66	-0.78
RPA-trPBE0 (25% hfx)	-0.71	-0.71	-0.70	-0.69	-0.70

S 9 Computation of the electronic mobilities. T = 300K

Adiabatic transfer:
$$k_{et} = v_n exp[\frac{-\Delta G_{ad}^*}{k_b T}]$$

Nonadiabatic transfer: $k_{et} = \frac{2\pi}{\hbar} |V_{ab}|^2 \frac{1}{\sqrt{4\pi\lambda k_b T}} exp[\frac{-(\lambda^2)}{4\lambda k_b T}]$

In the nonadiabatic limit: $\Delta G^* = \lambda/4$

$$D = R^2 n k_{el}$$

$$\mu = \frac{eD}{k_bT}$$

with: v_n = typical frequency for nuclear motion ⁸ .
V_{AB} = electron coupling element ⁸ .
R = distance between transfer sites
n = number of neighboring electronic accepting sites

Path	R / Å	n
Rutile[001] Rutile[111]	2.91 3.57	2 8
Anatase[100]	3.03	4
Anatase[201]	3.78	4

S 10 Comparison of the NEB profiles for the [001] electron hopping in rutile, computed with the truncated PBE0 functional and RPA, at different amounts of %hfx. Dashed lines indicate profiles affected by RPA overcorrelation.

S 11 NEB profiles for the [001] electron hopping in rutile, with the truncated PBE0 functional (35% hfx). Black: $3 \times 3 \times 4$ system, 216 atoms. Red: $3 \times 3 \times 4$ system, 1728 atoms.

S 12 .Example of CP2K input file for RPA-trPBE0(25% hfx) calculations, with all the relevant simulation parameters

```
&FORCE_EVAL
   METHOD Quickstep
  & DFT
    &MGRID
     CUTOFF 600
    &END MGRID
    &QS
     EPS_DEFAULT 1.0E-12
      EXTRAPOLATION_ORDER 3
    &END QS
    &SCF
      EPS_SCF 1.0E-8
      &OUTER_SCF
       EPS_SCF 1.0E-8
      & END
      «ОТ
        ENERGY_GAP 0.01
      &END OT
    &END SCF
    &XC
      &XC_FUNCTIONAL
        &PBE
          SCALE_X 0.75
           SCALE_C 1.0
         &END
         &PBE_HOLE_T_C_LR
          CUTOFF_RADIUS 4.5
           SCALE_X 0.25
         &END
      &END XC_FUNCTIONAL
      &HF
        &INTERACTION_POTENTIAL
          POTENTIAL_TYPE TRUNCATED
          CUTOFF_RADIUS 4.5
        &END
        FRACTION 0.25
```

```
&SCREENING
                                 1.0E-9
         EPS_SCHWARZ
        & END
     &END HF
     &WF_CORRELATION
       METHOD RI_RPA_GPW
       &RI_RPA
         RPA_NUM_QUAD_POINTS 100
         &HF
           FRACTION 1.0
            &SCREENING
             EPS_SCHWARZ
                                  1.0E-9
             SCREEN_ON_INITIAL_P TRUE
            &END SCREENING
            &INTERACTION_POTENTIAL
             POTENTIAL_TYPE TRUNCATED
             CUTOFF_RADIUS 4.5
           &END
          &END HF
       &END
      &END
     &END XC
 &END DFT
 &SUBSYS
  &KIND O
     BASIS_SET cc-TZ
     RI_AUX_BASIS_SET RI_TZ
     POTENTIAL GTH-PBE-q6
   &END KIND
   &KIND Ti
     BASIS_SET cc-TZ
     RI_AUX_BASIS_SET cc-TZ
     POTENTIAL GTH-PBE-q12
   &END KIND
 &END SUBSYS
&END FORCE_EVAL
```

S 13 CC, RI, ADMM and all electron Basis Sets for Ti and O

```
O cc-TZ
 6
 2
    0 1 3 1 1
      10.2674419938
                     0.0989598460 -0.0595856940
                     0.1041178339 -0.1875649045
       3.7480495696
       1.3308337704 -0.3808255700 -0.3700707718
 2
   0 1 1 1 1
       0.4556802254
                      1.0000000000
                                   1.0000000000
 2
    0
       1 1 1 1
                                    1.0000000000
       0.1462920596
                      1.0000000000
 3
    2 2 1 1
       2.3140000000
                      1.0000000000
    2 2 1 1
 3
       0.645000000
                      1.000000000
    3 3 1 1
 4
       1.4280000000
                      1.0000000000
#
TI cc-TZ
 10
20032
  3.7986698150634766E+00 -1.0531476885080338E-01 -6.8273013830184937E-01
  1.9114010334014893E+00 2.1265093982219696E-01 6.9480454921722412E-01
  7.5023883581161499E-01 -9.7143632173538208E-01 2.2611095011234283E-01
 2 \ 0 \ 1 \ 1 \ 1 \ 1
  0.3 1.0 1.0
 2 0 1 1 1 1
  0.2 1.0 1.0
 2 0 2 1 1 1 1
  0.13 1.0 1.0 1.0
 2 1 1 3 1
   9.4607772827148438E+00 -9.9228985607624054E-02
  1.8190858364105225E+00 6.7078214883804321E-01
   7.1252536773681641E-01 7.3498630523681641E-01
 22231
  5.8364233970642090E+00 2.9940614104270935E-01
   2.2766182422637939E+00 5.6059896945953369E-01
  9.0494173765182495E-01
                         7.7206534147262573E-01
 2 2 2 1 1
  3.6325827240943909E-01
                          1.0
 2 3 3 1 1
  1.2482999563217163E+00
                           1.0
 2 3 3 1 1
   2.8360000252723694E-01
                           1.0
 2 4 4 1 1
   7.2509998083114624E-01
                          1.0
```

#

```
#
0
   RI
 20
 1 0 0 1 1
      24.5595006061
                          1.0000000000
 1
    0 0 1 1
                          1.0000000000
       8.3254503805
 1
    0 0 1 1
       2.8895585562
                          1.0000000000
    0 0 1 1
 1
       1.3383587201
                          1.000000000
 1 0 0 1 1
       0.8797495165
                          1.000000000
    0 0 1 1
 1
                          1.0000000000
       0.2902204697
 1
   1 1 1 1
      15.0341204959
                          1.0000000000
 1
    1 1 1 1
       3.9838033442
                          1.000000000
    1 1 1 1
 1
                          1.0000000000
       2.2151496463
 1
    1 1 1 1
       0.8979637674
                          1.000000000
 1 1 1 1 1
       0.4128471304
                          1.0000000000
 1 2 2 1 1
      15.8683289847
                          1.0000000000
 1
    2 2 1 1
       5.3913486662
                          1.0000000000
 1\quad 2\quad 2\quad 1\quad 1
       2.5385447175
                          1.0000000000
 1
    2 2 1 1
       1.0911199995
                          1.000000000
    2 2 1 1
 1
       0.3766843343
                          1.0000000000
    3 3 1 1
 1
       4.6812603411
                          1.000000000
    3 3 1 1
 1
       2.1656106741
                          1.000000000
 1
    3 3 1 1
       1.0331835741
                          1.0000000000
 1
   4 4 1 1
       2.3079719899
                          1.0000000000
#
O ADMM
5
 1 0 0 1 1
 0.27061 1.0
 1 0 0 2 1
 0.88493 1.0
8.50409 -0.23485406547006335010
1 1 1 1 1
0.31040 1.0
 1 1 1 2 1
1.38256 1.0
 6.08264 0.34108818521609718388
1 2 2 1 1
1.00000000
                  1.00000000
#
```

Ti	RI	
34	1 0 0 1	1
	9.8703935249	1.0000000000
2	2 0 0 1	1
	5.3949/94100 3 0 0 1	1.0000000000
	2.7086611925	1.0000000000
4	4 0 0 1	1 000000000
ļ	5 0 0 1	1
,	1.0801564940	1.0000000000
	0.7584164945	1.0000000000
	7 0 0 1	1
8	8 0 0 1	1
	0.1330852528	1.0000000000
;	8.1808558939	1.0000000000
1(0 1 1 1	1
1:	4.5556521657	1
1 /	2.7521196163	1.0000000000
14	1.6446789196	1.0000000000
13	3 1 1 1	1
14	4 1 1 1	1
1 1	0.6028776093	1.0000000000
Τ.	0.3343917702	1.0000000000
10	6 1 1 1	1
1'	7 2 2 1	1
1 9	7.9133457786	1.0000000000
1.	3.4989438788	1.0000000000
19	9 2 2 1	1 000000000
20	0 2 2 1	1
2.	0.7728081912	1.0000000000
2.	0.4387679132	1.0000000000
22	2 2 2 1 0.2146775819	1
23	3 3 3 1	1
2.4	4.4157045752	1.0000000000
	1.8006904504	1.0000000000
2	5 3 3 1 1.1570683357	1 1.0000000000
2	6 3 3 1	1
2.	0.6099266869	1.0000000000
	0.3727449239	1.000000000
28	4.2120733320	1.0000000000
2	9 4 4 1	1
3(1.9995398809 0 4 4 1	1.0000000000
	0.9095934373	1.0000000000
3.	0.4436121782	1.000000000
32	2 5 5 1	1 000000000
33	3 5 5 1	1
3.	0.8502189480	1.0000000000
	1.1815873138	1.0000000000

```
TI ADMM
          11
           2
                     0
                                  0
                                             1
    4.0993528
                 0.99999994
          2
                  0
                                  0
                                             1
   1.3253083
                  0.99999994
           2
                    0
                                  0
                                             1
   0.54136300
                  0.99999994
          2
                    0
                                  0
                                             1
   0.10175999
                  0.99999994
          2
                  1
                                  1
                                             1
    8.9996204
                  0.99999994
           2
                   1
                                  1
                                             1
                  0.99999994
   1.6365473
           2
                     1
                                  1
                                             1
   0.54614919
                  0.99999994
           2
                     2
                                  2
                                             1
    3.6633232
                  0.99999994
          2
                    2
                                  2
                                             1
   0.88037348
                  0.99999994
                  2
         2
                                  2
                                             1
   0.23061574
                  0.99999994
                  3
                                             1
                                  3
      2
  0.49442869
                  0.99999994
#
#
# 0_8-411d1_cora_2005 : crystal
0 all
5
1 0 0 8 1
 8020.0 0.00108
 1338.0 0.00804
 255.4 0.05324
 69.22 0.1681
 23.90 0.3581
 9.264 0.3855
 3.851 0.1468
 1.212 0.0728
1 0 1 4 1 1
 49.43 -0.00883 0.00958
 10.47 -0.0915 0.0696
 3.235 -0.0402 0.2065
1.217 0.379 0.347
1 0 1 1 1 1
 0.500 1.0 1.0
1 0 1 1 1 1
0.191 1.0 1.0
1 2 2 1 1
 0.500 1.0
#
#
```

1

1

1

1

1

1

1

1

1

1

1

#

```
#
# Ti Ti_86-411(d31)G_darco_unpub : crystal
Ti all
7
1 0 0 8 1
225338.0 0.000228
 32315.0 0.001929
 6883.61 0.011100
 1802.14 0.05
 543.063 0.17010
187.549 0.369
 73.2133 0.4033
 30.3718 0.1445
1 0 1 6 1 1
 554.042 -0.0059 0.0085
132.525 -0.0683 0.0603
 43.6801 -0.1245 0.2124
17.2243 0.2532 0.3902
 7.2248 0.6261 0.4097
 2.4117 0.282 0.2181
1 0 1 4 1 1
24.4975 0.0175 -0.0207
11.4772 -0.2277 -0.0653
 4.4653 -0.7946 0.1919
1.8904 1.0107 1.3778
1 0 1 1 1 1
0.8099 1.0 1.0
1 0 1 1 1 1
 0.3242 1.0 1.0
1 2 2 3 1
7.6781 0.1127
1.8117 0.3927
0.463 0.5206
1\quad 2\quad 2\quad 1\quad 1
0.23 1.0
```

References

- 1 J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson and J. V. Smith, J. Am. Chem. Soc., 1987, 109, 3639-3646.
- 2 Y. M. Niquet and X. Gonze, Phys. Rev. B, 2004, 70, 245115.
- 3 L. Chiodo, J. M. García-Lastra, A. Iacomino, S. Ossicini, J. Zhao, H. Petek and A. Rubio, Phys. Rev. B, 2010, 82, 045207.
- 4 The CP2K developers group, www.cp2k.org.
- 5 T. Bredow, P. Heitjans and M. Wilkening, Phys. Rev. B, 2004, 70, 115111.
- 6 F. Corá, Molecular Physics, 2005, 103, 2483–2496.
- 7 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo et al., Journal of Physics: Condensed Matter, 2009, 21, 395502.
- 8 N. A. Deskins and M. Dupuis, Phys. Rev. B, 2007, 75, 195212.