Carbon Nanoscroll from C$_4$H/C$_4$F-type Graphene Superlattice: MD and MM Simulation Insights

Zilong Liu,ab Qingzhong Xue,*abc Yehan Tao,b Xiaofang Li,b Tiantian Wu,b

Yakang Jinb and Zhongyang Zhangb

a State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, Shandong, P. R. China

b College of Science, China University of Petroleum, Qingdao 266580, Shandong, P. R. China

c Shengli-highland Limited Company, Dongying 257062, Shandong, P. R. China
Fig.S1 The decrease in energy as a function of simulation time. (a) non-bonding energy and van der Waals (vdW) energy in C₄H scrolls of Fig.2a. (b) non-bonding energy and electrostatic energy in C₄F scrolls of Fig.2b.
Fig. S2 Functionalized directions: X-direction (a), Y-direction (b), and Diagonal direction (c) in C₄H/C₄F-type graphene superlattices. Grey, white, and blue balls represent C, H, and F atoms, respectively.
Fig.S3 Snapshots of CNS structures formed by various edge length (68.83, 144.73, 218.63 Å) of equilateral triangle of C_4H (a1-c1) and C_4F (a2-c2).