SUPPLEMENTARY INFORMATION

Molecular Structure and Thermal Stability of Oxide-Supported Phosphotungstic Wells-Dawson Heteropolyacid

Silvana R. Matkovica Sebastián E. Collinsb, Adrián L. Bonivardib, Miguel A. Bañaresc, Laura E. Brianda,

a Centro de Investigación y Desarrollo en Ciencias Aplicadas –Dr Jorge J. Ronco CINDECA-CCT La Plata-CONICET. Calle 47 No 257, B1900AJK, La Plata, Buenos Aires, Argentina.

b Instituto de Desarrollo Tecnológico para la Industria Química (UNL-CONICET). Güemes 3450, S3000GLN, Santa Fe, Argentina.

c Catalytic Spectroscopy Laboratory, ICP-CSIC. Marie Curie 2, E-28049 Madrid, Spain.
X-ray Diffraction Analysis

The X-ray diffraction spectra of the bulk phosphotungstic heteropolyacid \(\text{H}_6\text{P}_2\text{W}_{18}\text{O}_{62}.x\text{H}_2\text{O} \), the oxide supports and the samples \(11\text{aq WDTi}, 11\text{aq WDZr}, 12\text{aq WDAI} \) and \(11\text{aq WDSi} \) (calcined at 573 K for 4 h) were performed at RT with a D5000 diffractometer (Siemens, Germany) with Ni filter, Cu K\(\alpha \) (\(\lambda = 1.540589 \) Å) radiation working at 40 kV and 20 mA. The diffraction patterns were obtained within 2\(\theta \) = 5° and 60° at a scan rate of 2° min\(^{-1}\) and steps of 0.1°. The following figure shows the X-ray spectra of the bulk HPA, the bare oxide supports and the supported HPA synthesized in aqueous media.

Figure 1S. X-Ray diffraction spectra of bulk phosphotungstic Wells-Dawson heteropolyacid \(\text{H}_6\text{P}_2\text{W}_{18}\text{O}_{62}.24\text{H}_2\text{O} \); bare oxide supports (\(\text{SiO}_2 \), \(\text{TiO}_2 \), \(\text{Al}_2\text{O}_3 \) and \(\text{ZrO}_2 \)) and oxide-supported HPA (\(11\text{aq WDTi}, 11\text{aq WDSi}, 12\text{aq WDAI} \) and \(11\text{aq WDZr} \))
Temperature Programmed Raman Spectra of Transition Metal Oxide Supports

Figure 2S. *In situ* TP-Raman spectra upon heating from R.T. towards 773 K of bulk phosphotungstic Wells-Dawson heteropolyacid $H_6P_2W_{18}O_{62}\cdot xH_2O$

Figure 3S. *In situ* TP-Raman spectra upon heating from R.T. towards 773 K of titanium dioxide TiO_2 anatase (Aeroxide® P-18 Evonik Ind., 46.8 ± 0.1 m2/g)
Figure 4S. *In situ* TP-Raman spectra upon heating from R.T. towards 773 K of zirconium dioxide ZrO$_2$ (fumed Evonik Ind., 31.5 ± 0.4 m2/g)

Figure 5S. *In situ* TP-Raman spectra upon heating from R.T. towards 773 K of alumina Al$_2$O$_3$ (Engelhard, 95.8 ± 0.2 m2/g)
Figure 6S. *In situ* TP-Raman spectra upon heating from R.T. towards 773 K of silica SiO$_2$ (Cab-O-Sil, 328.9 ± 0.8 m2/g)

Temperature Programmed Raman Spectra of Oxide-supported Wells-Dawson Heteropolyacid Synthesized in Organic Media

Figure 7S. *In situ* TP-Raman spectra upon heating from R.T. towards 773 K of 11org WDTi
Figure 8S. *In situ* TP-Raman spectra upon heating from R.T. towards 773 K of 11org WDZr

Figure 9S. *In situ* TP-Raman spectra upon heating from R.T. towards 773 K of 12org WDAI
Temperature Programmed Infrared Spectra of Transition Metal Oxide Supports

Figure 10S. In situ TP-IR spectra upon heating from R.T. towards 773 K of titanium dioxide TiO$_2$ anatase (Aeroxide® P-18 Evonik Ind., 46.8 ± 0.1 m2/g).

Figure 11S. In situ TP-IR spectra upon heating from R.T. towards 773 K of zirconium dioxide ZrO$_2$ (fumed Evonik Ind., 31.5 ± 0.4 m2/g).
Figure 12S. *In situ* TP-IR spectra upon heating from R.T. towards 773 K of alumina Al_2O_3 (Engelhard, 95.8 ± 0.2 m2/g).

Figure 13S. *In situ* TP-IR spectra upon heating from R.T. towards 773 K of silica SiO_2 (Cab-O-Sil, 328.9 ± 0.8 m2/g).
Evolution of the Raman Signals of the Wells-Dawson Heteropolyacid Dispersed Over TiO$_2$ at Various Loadings

Figure 14S. Evolution of the Raman signals of the Wells-Dawson heteropolyacid dispersed over TiO$_2$ at various loadings ranging from 1.7 towards 22.5 W$_{\text{atoms}}$/nm2 in aqueous media and calcined *in situ* at 573 K. Open squares □ indicate Raman signals in the 999-1008 cm$^{-1}$ range and filled squares ■ indicate Raman signals in the 1018-1021 cm$^{-1}$ range.