Electronic Supplementary Information

Flexible Thermoelectric Fabrics Based on Self-assembled Tellurium Nanorods with a Large Power Factor

Chaochao Dun,* Corey A. Hewitt,* Huihui Huang,⁎ab David S. Montgomery,* Junwei Xu* and David L. Carroll*•

•Center for Nanotechnology and Molecular Materials, Department of Physics, Wake Forest University, Winston-Salem, NC 27109, U. S.

SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

⁎E-mail: huangh@wfu.edu; carroldl@wfu.edu

Fig. S1 Experimental setup for measuring thin film (S) σ and α. S is suspended between copper blocks Cu₁ and Cu₂ mounted to an insulating Teflon stage M. σ is measured by a 4-probe method using electrodes V⁺, V⁻, I⁺, I⁻. α is measured by heating copper block Cu₁ via heater H to create ΔT, and measuring V_TE across V⁺, V⁻. ΔT is measured by Si diode thermometers T_h and T_c. The whole assembly is inserted into a vacuum chamber via transfer rod R where T can be controlled from 20K to 290K.
Fig. S2. Temperature-dependent power factor of the self-assembled Te nanorod/PVDF based thermoelectric fabrics.