Electronic Supplementary Information (ESI)

The Co-operative Performance of Hydrated Salt Assisted Sponge like P(VDF-HFP) Piezoelectric Generator: An Effective Piezoelectric Based Energy Harvester

Prakriti Adhikary, Samiran Garain, and Dipankar Mandal*

Organic Nano-Piezoelectric Device Laboratory, Department of Physics, Jadavpur University, Kolkata 700032, India

*Corresponding Author

E-mail: dipankar@phys.jdvu.ac.in; Fax: +91-33-2413-8917; Tel: +91-94333-73530
Fig. S1 FT-IR spectra of Mg0 film from 900-820 cm\(^{-1}\).

Fig. S2 Intensities of peak at 3377 cm\(^{-1}\) and 3221 cm\(^{-1}\) changes with increasing Mg-salt concentration. The corresponding intensity ratios are shown in the inset.
Fig. S3 Degree of β- and γ- crystallinity for different concentration of Mg-salt filler utilized P(VDF-HFP) films.

†The degree of β- crystallinity (χβ) and γ- crystallinity (χγ) are calculated by the following equations (eqn S1 and S2)

\[
\chi_\beta = \chi_c \times \left(\frac{A_\beta}{A_\beta + A_\gamma} \right) \times 100\%
\]

\[
\chi_\gamma = \chi_c \times \left(\frac{A_\gamma}{A_\beta + A_\gamma} \right) \times 100\%
\]

where, \(A_\beta\) and \(A_\gamma\) indicate the total integral area from β- and γ-crystalline phases peaks respectively.
Fig. S4 Time constant for the capacitors (*e.g.*, 1, 2.2, and 4.7 µF) for each FPG fabricated with different Mg# films.

Fig. S5 Capacitor charging performance (C = 4.7 µF) with FPG made with Mg# films (#: 0.1, 0.5 and 1.0).
Power stored in capacitor (C=4.7μF) from different FPGs, fabricated with different Mg# films. The calculation was performed based on the Fig. S5.

<table>
<thead>
<tr>
<th>FPG made with the following films</th>
<th>Stored Power (nW) in Capacitor (C=4.7 μF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg0.1</td>
<td>14.0</td>
</tr>
<tr>
<td>Mg0.5</td>
<td>58.8</td>
</tr>
<tr>
<td>Mg1.0</td>
<td>8.5</td>
</tr>
</tbody>
</table>