Supporting Information for

Improved Photoelectrochemical Water Oxidation Kinetics Using TiO$_2$ Nanorod Arrays Photoanode Decorated with Graphene Oxide in a Neutral pH Solution

Sang Youn Chaea,b, Pitchaimuthu Sudhagarc, Akira Fujishimac, Yun Jeong Hwanga,d,*, Oh-Shim Jooa,d

a Clean Energy Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgock Dong, Seoul 136-791, Republic of Korea

b Department of Chemistry, Korea University, Seoul 136-713, Republic of Korea

c Photocatalysis International Research Center (PIRC), Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

d Korea University of Science and Technology, 176 Gajung-dong, 217 Gajung-gu Yuseong-gu, Daejeon 305-350, Republic of Korea

* Corresponding author. Tel: +82-2-958-5227; Fax: 82-2-958-5809

E-mail address: yjhwang@kist.re.kr

Supplementary Figures

Figure S1. Raman spectrum of the prepared graphene oxide. D and G indicate D band and G band of graphene oxide.
Figure S2. TEM image of the synthesized graphene oxide.
Figure S3. XRD pattern of bare TiO$_2$, 2 wt% GO coated TiO$_2$, and 5 wt% GO coated TiO$_2$ nanorod on FTO glass.
Scheme S1. Proposed water oxidation mechanisms showing the involving chemical species (a) in a basic, and (b) in a neutral pH electrolyte adapted by the previous reports1,2.

Reference