Supporting Information

Three Centered Hydrogen Bond of the type C=O···H(N)···X-C in diphenyloxamide derivatives involving halogens and a rotating CF$_3$ group: NMR, QTAIM, NCI and NBO Studies

A. Lakshmipriyaa,b, Sachin Rama Chaudharia,b, AbhishekShahic, E. Arunanc, N. Suryaprakasha,b

aNMR Research Centre, bSolid State and Structural Chemistry Unit, cInorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India

E:mail: nsp@sif.iisc.ernet.in, Tel: +918022933300, Fax: +918023601550

INDEX
S1: 2D Coupled 1H-15N HSQC spectrum showing scalar coupling 1J_{NH} for molecule 1 recorded on a 400 MHz NMR spectrometer.

S2::2D Coupled 1H-15N HSQC spectrum showing scalar coupling 1J_{NH} for molecule 2 recorded on a 400 MHz NMR spectrometer.

S3:2D Coupled 1H-15N HSQC spectrum showing scalar coupling 1J_{NH} for molecule 3 recorded on a 400 MHz NMR spectrometer.

S4:2D Coupled 1H-15N HSQC spectrum showing scalar coupling 1J_{NH} for molecule 4 recorded on a 400 MHz NMR spectrometer.

S5:2D Coupled 1H-15N HSQC spectrum showing scalar coupling 1J_{NH} for molecule 5 recorded on a 400 MHz NMR spectrometer.

S6:2D Coupled 1H-15N HSQC spectrum showing scalar coupling 1J_{NH} for molecule 6 recorded on a 400 MHz NMR spectrometer.

S7: Stack plot of selected regions of 1H spectrum of molecules 1-6 with assignments.

S8: Experimental Parameters

S9: Table of 1J_{NH}and chemicalshifts in diphenyloxamide (1) and its derivatives (2-6).

S10: General Procedure for Synthesis of compounds
S11: Reference
2D Coupled 1H-15N HSQC spectrum showing scalar coupling $^1J_{NH}$ for the molecule 1.
2D Coupled 1H-15N HSQC spectrum showing scalar coupling $^1J_{NH}$ for the molecule 2.
2D Coupled $^1\text{H}	ext{-}^{15}\text{N}$ HSQC spectrum showing scalar coupling $^1J_{\text{NH}}$ for the molecule 3.
2D Coupled 1H-15N HSQC spectrum showing scalar coupling $^1J_{\text{NH}}$ for the molecule 4.
2D Coupled $^1\text{H}-^{15}\text{N}$ HSQC spectrum showing scalar coupling $^1J_{\text{NH}}$ for the molecule 5.
2D Coupled 1H-15N HSQC spectrum showing scalar coupling $^{1}J_{\text{NH}}$ for the molecule 6.
2D 1H-15N HSQC experimental parameters

<table>
<thead>
<tr>
<th>parameter</th>
<th>F$_1$ (15N)</th>
<th>F$_2$ (1H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of data points</td>
<td>256</td>
<td>2048</td>
</tr>
<tr>
<td>Spectral width (Hz)</td>
<td>40.559</td>
<td>400.128</td>
</tr>
<tr>
<td>Window function used</td>
<td>QSINE</td>
<td>QSINE</td>
</tr>
</tbody>
</table>

Pulse sequence used: hsqcetgp

Pulse width: 14.30μs

2D 1H-19F HOESY experimental parameters

<table>
<thead>
<tr>
<th>parameter</th>
<th>F$_1$ (19F)</th>
<th>F$_2$ (1H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of data points</td>
<td>256</td>
<td>880</td>
</tr>
<tr>
<td>Spectral width (Hz)</td>
<td>240.108</td>
<td>3765.437</td>
</tr>
<tr>
<td>Window function used</td>
<td>SINE</td>
<td>SINE</td>
</tr>
</tbody>
</table>

S8
Table: $^{1}J_{\text{NH}}$ and 15N chemical shift values measured from 1H-15N HSQC Spectra.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>$^{1}J_{\text{NH}}$ (CDCl$_3$)</th>
<th>15N chemical shift of amide proton (in ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-91.3</td>
<td>123.5</td>
</tr>
<tr>
<td>2</td>
<td>-92.9</td>
<td>110.4</td>
</tr>
<tr>
<td>3</td>
<td>-92.0</td>
<td>118.9</td>
</tr>
<tr>
<td>4</td>
<td>-91.8</td>
<td>123.7</td>
</tr>
<tr>
<td>5</td>
<td>-90.8</td>
<td>132.1</td>
</tr>
<tr>
<td>6</td>
<td>-93.1</td>
<td>115.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupling values</th>
<th>Molecule 2</th>
<th>Molecule 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CDCl$_3$(Hz)</td>
<td>DMSO(Hz)</td>
</tr>
<tr>
<td>J_{FH}</td>
<td>-2.9</td>
<td>+0.85</td>
</tr>
<tr>
<td>J_{NF}</td>
<td>-0.4</td>
<td>-1.25</td>
</tr>
</tbody>
</table>
Experimental:

All the reagents were purchased from Aldrich and used without further purification. The investigated molecules were synthesized according to the following procedure. The spectra were recorded using Bruker 400 and 500 MHz NMR spectrometers. The Eurotherm temperature control unit was utilized to set the temperature to an accuracy of ±1.0 K. The 1H chemical shifts were referenced relative to TMS. 15N spectra are referenced to external nitromethane, 19F spectra are referenced to trifluoroacetic acid.

Synthesis Procedure:

All the investigated molecules 1-8 were synthesizes using the following procedure.

The substituted aniline (4mM, 2 eq) was dissolved in chloroform (4ml) and it was added drop by drop to Oxalyl chloride (2mM, 1 eq) at 0°C. After stirring for nearly 10 min the white solid formed was washed with distilled water, and the compound was recrystallized from chloroform.
G09 Reference: