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 Phloroglucinol Synthesis anno 1980 

Ca. 40kg of solid waste per kg phloroglucinol  

Atom Utilisation = 126/2282 = ca. 5 % 

           E Factor = ca. 40 

MW = 126 

HO OH 

O H 

product 

O2N  NO2 

CH3 

  NO2 

K2Cr2O7 

H2SO4 / SO3 

O2N  NO2 

COOH  

NO2 

Fe/HCl 

-   CO2 

H2N NH2 

NH2 

aq.HCl 

ΔT 

TNT 
phloroglucinol 

HO OH 

O H 

“ To measure is to know ”  Lord Kelvin 

byproducts 

+ Cr2 (SO4)3 + 2KHSO4 + 9FeCl2 + 3NH4Cl + CO2 + 8H2O 

       392           272        1143        160       44      144 

> 90 % yield 
Selective? 
Efficient? 

TNT 
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Reaction Stoichiometry and Atom Economy 
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Conclusion?   

From the traditional one of chemical yield 
 
to one that assigns value to waste  elimination 
and avoiding toxic/hazardous materials. 

A new paradigm  was needed for 
efficiency in organic synthesis. 
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1  . Chlorohydrin process  

H2C=CH2  + Cl2  +  H2O               ClCH2CH2OH  +  HCl 

Ca(OH)2 O 

H2C   CH2 +   CaCl2  +  H2O 

O 

H2C   CH2   +  H2O  H2C=CH2  + 0.5 O2  

2. Direct Oxidation 

Ag 
100 % atom utilisation 

25 % atom utilisation 

Atom Economy of Ethylene Oxide Manufacture 
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                            Tonnage         E Factor 

Oil Refining                             106-108                     <0.1 

Bulk Chemicals        104-106              <1 - 5  

Fine chemical Industry       102-104                5 - >50 

Pharmaceutical Industry       10-103           25 - >100 

R.A.Sheldon, Chem & Ind, 1992, 903 ; 1997, 12  

E Factor = kg waste/kg product  

“Another aspect of process development mentioned by all  
pharmaceutical process chemists who spoke with C&EN is  
the need for determining an E Factor”.  
 
          A. N. Thayer, C&EN, August 6, 2007, pp. 11-19 
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  The E factor 

• Is the actual amount of all waste formed in  the  
   process, including solvent losses and waste from   
   energy production 
   (c.f. atom utilisation is a theoretical nr.) 
 
• E = [kgs raw materials- kgs product]/[kgs product] 
 
• A good way to quickly show (e.g. to students) the      
   enormity of the waste problem  

(E)verything but the Product 

What about the process water? 
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Meeting the needs of the present 

generation without compromising  

the needs of future generations to 

meet their own needs 

Sustainability 

Brundtland Report, ‘Our Common Future’, 1987 
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The Great Law of the  
Iroquois Confederacy 

‘In our every deliberation, we 
must consider the impact of  
our decisions on the next seven 
generations.’ 

www.seventhgeneration.com 

http://www.iroquoisdemocracy.pdx.edu 
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The Twelve Principles of Green Chemistry  

1. Prevention instead of Remediation 

2. Atom Efficiency 

3. Less Hazardous Chemicals 

4. Design Safer Chemical Products 

5. Safer Solvents & Auxiliaries 

6. Energy Efficient by Design 

P.T.Anastas & J.C.Warner,Green Chemistry : Theory  
& Practice ,Oxford Univ. Press,New York,1998 
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The Twelve Principles of Green Chemistry  

7.   Renewable Raw Materials 

8.   Shorter Syntheses 

9.   Catalytic Methodologies 

10.  Design for Degradation 

11.  Analysis for Pollution Prevention 

12.  Inherently Safer Chemistry 

P.T.Anastas & J.C.Warner,Green Chemistry : Theory  
& Practice ,Oxford Univ. Press,New York,1998 
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P  – Prevent wastes 
R  – Renewable materials 
O – Omit derivatisation steps 
D  – Degradable chemical products 
U  – Use of safe synthetic methods 
C – Catalytic reagents 
T – Temperature, Pressure ambient 
 I  – In-Process monitoring 
V  – Very few auxiliary substrates 
E  – E-factor, maximise feed in product 
L  – Low toxicity of chemical products 
Y – Yes, it is safe 

A Mnenomic for the Spirit of Green Chemistry 

S. L. Y. Tang, R. L. Smith and M. Poliakoff, Green Chem., 2005, 7,761. 
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Green chemistry efficiently utilises  

(preferably renewable) raw materials, 

eliminates waste and avoids the use  

of toxic and/or hazardous solvents  

and reagents in the manufacture and  

application of chemical products. 

Green (Clean) Chemistry 

Sheldon, Arends and Hanefeld , Green Chemistry 

and Catalysis, Wiley, New York, 2007  

Anastas & Warner, Green Chemistry : Theory  

& Practice ,Oxford Univ. Press,New York,1998 
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E =   Total mass of waste 
Mass of final product 

AE (%)   = m.w of product x 100   
  Σ m.w. of  reactants 

Reaction mass efficiency (RME)  

Mass of product C x 100 
 Mass of A + Mass of B 

E factor Atom efficiency (AE) 

RME(%)  =  

Mass intensity (MI) 

MI =         Total mass in process 
          Mass of product 

CE(%)  = 

Carbon efficiency (CE) 

Carbon in product x 100 
Total carbon in reactants 

Effective mass yield (EMY) 

EMY(%)  =    Mass of product x 100 
Mass of hazardous reagents 

Mass Productivity (MP) 

        Mass of product 
    Total mass  in process 

MP = 

Metrics of Green Chemistry 
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The Environmental Impact  EQ 

EQ = E(kg waste) × Q  

 Q = Unfriendliness Multiplier 

e.g. NaCl : Q = 1 ( arbitrary) 

  Cr salts : Q = 1000? 

R.A.Sheldon, Chem & Ind, 1992, 903 ; 1997, 12  

There are many shades of green! 
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What about process water? 
Only counts if it needs to be treated? 

Major Sources of Waste 
•  Stoichiometric Reagents 

    - Acids & Bases (e.g H2SO4 and NaOH) 

    - Oxidants & reductants (e.g. K2Cr2O7  & Fe/HCl) 

•  Solvent losses ( 85% of non-aqueous mass)     

    - Air emissions & aqueous effluent 

•  Multistep syntheses 

The Solution : 

Atom & step economic catalytic processes 

in alternative reaction media (H2O, scCO2, ILs) 

(the best solvent is no solvent) 
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Atom Economy of Catalytic Processes 
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The Ideal Synthesis 

100% Yield 

One Step 

Simple & Safe 

Economical in Time & Waste  

Environmentally Acceptable 

- atom economy 

- step economy 

1. Ni cat. 

2. H2 / cat. 
+ N 

O 

13 steps 

Wilstӓtter 
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"The ideal chemical process is that 
which a one-armed operator can 
perform by pouring the reactants into 
a bath tub and collecting pure 
product from the drain hole" 

Sir John Cornforth (Nobel Prize 1975) 

The Ideal Process 
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Solvent Selection Guide 

Water 
Acetone  
Ethanol  
2-Propanol  
1-Propanol  
Heptane  
Ethyl Acetate  
Isopropyl acetate  
Methanol  
MEK  
1-Butanol  
t-Butanol  
 

Cyclohexane  
Toluene  
Methylcyclohexan
e  
TBME  
Isooctane 
Acetonitrile  
2-MeTHF  
THF  
Xylenes  
DMSO  
Acetic Acid 
Ethylene Glycol  

Pentane  
Hexane(s) 
Di-isopropyl ether  
Diethyl ether  
Dichloromethane  
Dichloroethane  
Chloroform 
NMP 
DMF  
Pyridine 
DMAc  
Dioxane  
Dimethoxyethane  
Benzene 
Carbon Tetrachloride  

P. Dunn et al, Green Chem. 2008, 10, 31-36 
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Cl

Cl

O

Cl

Cl

NCH3

Cl

Cl

NHCH3

Cl

Cl

NHCH3

Cl

Cl

NHCH3

HCl

+ H2O

CH3NH2

EtOH

H2

Pd/CaCO3

EtOH

D-Mandelic acid

EtOH

Ethylacetate     HCl

Sertraline   HCl

Three step process
Introduction of EtOH as solvent
Replacement of Pd/C with Pd/CaCO3 - higher yields

Elimination of titanium chloride, toluene, THF, CH2Cl2, and 
hexane

Reduction of solvents from 60,000 to 6,000 gal/ton

Elimination of 440 tons of titanium dioxide, 150 tons of 35% HCl, 
and 100 tons of 50% NaOH

New Sertraline Process (Pfizer’s Antidepressant) is Greener 
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 Catalysis 

Biocatalysis 

Heterogeneous Homogeneous 

Sheldon, Arends and Hanefeld , Green Chemistry 
And Catalysis, Wiley, New York, 2007  

Organocatalysis 

Catalysis & Green Chemistry 
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J. J. Berzelius 1779-1848 

Organic Chemistry (1807) Catalysis (1835) 

Urea synthesis           1828 
 ( Wöhler ) 
 
First synthetic dye      1856 
Aniline purple 
     (Perkin)  

Dyestuffs Industry 
(based on coal-tar) 

Fine Chemicals 

Catalysis in Organic Synthesis 

ca. 1900    Catalysis definition  
                      (Ostwald) 
                Catalytic Hydrogenation 
                      (Sabatier) 
ca. 1920    Petrochemicals 

1936      Catalytic cracking 
1949      Catalytic reforming 
1955      Ziegler-Natta catalysis 

Bulk Chemicals & Polymers 

Organic chemistry & Catalysis: Bridging the Gap 
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R 2 

R 1 
H 

OH 
+   0 . 5   O 2 R 2 

R 1 

O 

R 2 

R 1 

O 

c a t a l y s t 

+       2   ' H ' 
c a t a l y s t 

R 2 

R 1 

  OH 

  H 

Pivotal Reactions in Organic Synthesis 

Oxidation 

Reduction 
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Alcohol Oxidation 
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Classical Alcohol Oxidations 

I 
O 

O 

A c O O A c 
O A c 

+ 

H3C 
S 

 CH3 

Cl 

Dess-Martin Swern 

Atom Utilisation = 44%  
             E = > 3 

3 

   

OH 

     

2  CrO3     +     3    H2SO4   

    

- Cr2 (SO4)3          3 

O 

Other reagents favoured by organic chemists 

• Poor atom economy 
• Hazardous reagents 

“It’s hexavalent chromium, highly toxic, highly 

carcinogenic. Gets  into your DNA, so you  

pass the trouble along to your kids.” 

                     Julia Roberts in ‘Erin Brokovich’ 

(Jones reagent) 
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PIPO/NaOCl 

TEMPO/NaOCl 

  Cr(VI) 

PCC/PDC 

SCOPE SCALABILITY 

  GREENNESS 
SUSTAINABILITY 

IBX 

Dess-Martin 

DMSO/DCC 

   Moffat 

DMSO/(COCl)2 

        Swern 

Me2S/Cl2 

Air/TEMPO/H2O 

MnO2 

BaMnO4 

NiO2 

Air/Metal cat./H2O 

Air/Metal cat. 

Oxidation of Primary Alcohol to Aldehyde 

P. Dunn et al, Green Chem. 2008, 10, 31-36 

Venn and the Art of Green Chemistry 
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Water 
 
- Polar, inert and clean solvent 
 
- Facile product separation 
 
- Cheap and widely available 
 
- Non-flammable and non-toxic 
 
- Odourless and colourless 
 

Recycling of catalyst  

Catalytic Oxidations in Water 
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Pd2+ L water 

air 

R

OH

R

O

Green, Catalytic Alcohol Oxidations 

G.J. ten Brink, I.W.C.E. Arends and R.A. Sheldon,  

Science 287 (2000) 1636-9. 

• Air as oxidant 

• No organic solvent 

• Catalyst recycling via phase separation 

  (recycled 4 times without activity loss) 

N 

N 

P d ( O A c )2 

N a O3 S 

N a O3 S 

P d 2 + - b a t h o p h e n a n t h r o l i n e   ( L ) 
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Aerobic Oxidation of Alcohols with Pd(II) – Diamine Catalysts 

(1)    G.J. ten Brink, I.W.C.E. Arends and R.A. Sheldon, Science 287 (2000) 1636 
(2)    B. P. Buffin, N. L. Belitz, S. L. Verbeke, J. Mol. Catal. A: Chemical, 2008, 284, 149 
(3)     D. S. Bailie, G. M. A. Clendenning, L.McNamee and  M. J. Muldoon, Chem. Commun., 2010, 46, 7238 
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Steric Effects 

N 

N 

O 
H 

H 
O N 

N 

Pd Pd 

R R 

R R 

2 + 

N 

N O H 

Pd 

R 

R 

+ 

2 

R=Me 

Cup*Pd(OAc)2 

Structure in aq. solution Active catalyst 
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TOF (h-1)             50                                                    150                                       1800 

 OH 

+       0 . 5   O2 

P d ( O A c )2   
  /   L (0.1-0.5mol%)     

 O 

+   H2O 

  
  a i r   ( 3 0   b a r )   /   8 0oC /   4 h   

NaOAc (25mol%) 

L                 PhenS                                        BathocuproinS                          Cuproin 

N N 

SO3Na 

N N 

N N 

SO3Na NaO3S 

NaO3S 

Solvent         H2O                                    H2O                        H2O / DMSO (1:1) 

Steric Effects 
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L =PhenS       Cuproin 

C=C         C=O       acetylene  

 

OR            SR            SiR3 

 

(O)S=O     SO3R        NR2 

 

CN            CONH2        CO2R 

Alcohol (0.3M),0.5m% LPd(OAc)2 

25m % NaOAc in DMSO/H2O  

800C/30 bar air,4h 

 75 % 

     ~ 2 %            > 99% 

O 

OH 

O 

  8 % 

  O 

O 

O2   OH 

Cuproin/Pd(OAc)2 : Functional Group Tolerance 

N N 
L = 
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Pd-nanoparticles 

Pd(O2CCF3)2/neocuproin =1/1  
ethylene carbonate in H2O  

Pd(O2CCF3)2/neocuproin =1/1  
PEG3400 in H2O  

Particle size: 5 nm Particle size: 3 nm 

See also I. I. Moiseev et al, Chem. Commun. 1985, 937-8 
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Apo-Ferritin 

K2PdCl4 Purification H2 

Pd-Ferritin as an Oxidation Catalyst 

OH 

CH3O 

O Pd-Frt 

      O2 

H2O, 80oC 
CH3O 

Seda Aksu-Kanbak 

Chemomimetic biocatalysis 

Thermostable Fer from Pyrococcus furiosus 
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Catalytic Oxidation of Alcohols in Water with Pd-Ferritin 

O H 

1 9 7 

O H 

36 

O H 

1 0 1 

OH 

3 

O H 

3 7 

O H 

48 

O H 

1 38 

M e O 

O H 

1 9 

N 

O H 

3 

O 
O H 

12 

R1 

R2 

H 

OH 

+       0 . 5   O2 
P d - F e r     ( 0 . 4   m o l % ) 

H2O   /   8 0 o   C  

3 0   b a r     8 % O2 
  
/   N2 

R1 

R2 

O +       H2O 

TOF (h-1) 

TOF (h-1) 

N.B. Pd-Fer catalyzes the Suzuki coupling in aqua 
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Organocatalysis 
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O H 

H 

R1 

R2 R2 

R1 

O 

TEMPO (1 m%)  
NaBr (10 m%) 

 
CH2Cl2, H2O, 0°C 

+   NaOCl +  NaCl  +  H2O 

P.L.Anelli, C.Biffi, F.Montanari, S.Quici,JOC,52,2559 (1987) 

 . 

N 

 OH 

N 

  O   OH 

O H 

H 

R1 

R2 

R2 

R1 

O  +  H2O 

OCl 

Cl 
- 

- 

- 

   +  

Stable Nitroxyl Radicals: 
Versatile Catalysts for Alcohol Oxidations 

There are many shades of green! 
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OH H 

O 

+   0 . 5   O 
2 

TEMPO (5m%) 

Cu(II) / bipy (5m%) 

Base / MeCN / H2O 

Dioxygen (Air) as Oxidant 

RCH2OH O2 

H2O 

l a c c a s e 

l a c c a s e 
o x RCHO 

N 

     O    

   +  

N 

 OH 

Highly selective for 1e alcohols 

Laccase : a blue enzyme for green chemistry 

+ H2O 
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Oxidation of Benzylic Alcohols 

 

Substrate 

 

Product  

Conversion %  

after 4 hour 

3-Methoxybenzyl alcohol 3-Methoxybenzaldehyde 100 

Veratryl alcohol  3,4-Dimethoxybenzaldehyde 100 

4-Methoxybenzyl alcohol 4-Methoxybenzaldehyde 98 

3-Phenyl-2-propene-1-ol Cinnamaldehyde 72 

3-(Hydroxymethyl) 
pyridine 

Nicotinaldehyde 98 

Benzyl alcohol Benzaldehyde 90 

1.6 mmol substrate, Lacc/Subs: 62.5 U/mmol,  
TEMPO (9.4 mol%), 0.1 M phosphate buffer (pH 4) 

RCH2OH RCHO 
laccase/TEMPO 

O2 , 30° C 
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A Green Product: Carboxystarch 

• A biodegradable water super absorbent  

• To replace poorly biodegradable polyacrylates 

• Laccase immobiliized as a CLEA for improved performance 

Electronic Supplementary Material (ESI) for Chemical Society Reviews
This journal is © The Royal Society of Chemistry 2011



43 

Efficiency in C-C Bond Formation: Carbonylation 
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Biocatalysis 
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Biocatalysis is Green & Sustainable 
  
• Enzymes are derived from renewable resources         and  are biodegradable 
 
• Avoids use of (and product contamination by) 

scarce precious metals  
 
• Mild conditions: ambient T & P in water 

 
• High rates & highly specific : substrate,   
    chemo-, regio-, and  enantiospecific  
  
• Higher quality product 
 
• No special equipment needed  
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Biocatalysis : why now ? 

1. Genome sequencing (> 5000) 
     (more enzymes) 

2. Directed evolution technologies 

    (better enzymes) 
 
3. Immobilization technologies 
    (better formulation)  

4. Green & Sustainable 
    (small environmental footprint) 
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Two Types of Biotransformations 

• Free enzymes 
     - isolated (purified) 
     - whole cells (not growing) 
     - can be very high STY 
  
•   Fermentations (growing microbial cells) 
     - less expensive (no enzyme isolation needed) 
     - often dilute solution / low STY 
     - water footprint /energy intensive  
     - byproducts from enzyme impurities 
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E Factors of Fermentations  
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Asymmetric Ketone Reduction 

R 2 

R 1 

O +       2   ' H  ' 

c a t a l y s t 

R 2 

R 1 

OH 

  
H 
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 Production of Lipitor Intermediates 

NC 

OH     O 

OEt N C 

O O 

O R 

O 

     Lipitor (Pfizer) 

 Sales in 2009: $14 bio 

H N 

O 

N 
C O2 N a 

O H O H 

F 
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Existing Processes for Hydroxynitrile 

• Forcing conditions for cyanation result in base-catalyzed side reactions,  

• Purification requires problematic, high vacuum fractional distillation. 

 

NaCN 

Δ 

pH10 

carbohydrates 

malic acid 

diketene 

HBr 

EtOH 

asymmetric 

reduction 

O 
O 

HO 

Br 
O 

O OH 

Cl 
O 

O OH 

Cl 
O 

O O 

NC 
O 

O OH 

Understanding the problem is key (chem. and opt. purity >99%) 

Cyanation at neutral pH and RT (with an enzyme) 
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Enzymatic Synthesis of Lipitor Intermediate 

KRED   =   keto reductase ; GDH = glucose dehydrogenase 
HHDH  =   halohydrin dehalogenase (non-natural nucleophile) 

OEt 
Cl 

O O 

N A D P H N A D P 

OEt 
Cl 

OH O 

OEt 
Cl 

OH O 

HHDH 
OEt 

NC 

OH O 

KRED 

g l u c o s e g l u c o n a t e 

GDH 

a q .   N a C N , p H   7 

(99.8% ee)   

> 9 9 %   e e 

      R.J.Fox, S.C.Davis,R.A.Sheldon, G.W.Huisman, et al  
     Nature Biotechnology, 25 (2007) 338-344 

2006 
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• high enantioselectivity 

• mild (ambient) conditions  

• no metal catalysts required 

• no need for dedicated equipment 

• low productivities 

Directed Evolution for Improved Performance 

53 

Features of the Wild-Type Enzymes: 

Productivities of all three enzymes improved by  

directed evolution using gene shuffling technology 

W.P.C.Stemmer,Nature,370,389-391,1994  
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 Gene Shuffling : Evolution in the Fast Lane 

Novel Genes 

 gene A 

gene B 

gene C 

gene D 

Repeat 

     HTP  Screening 

 Genes 
From Nature 

 Library of  
Novel Genes 

DNA ShufflingTM 

W.P.C.Stemmer,Nature,370,389-391,1994  
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       Waste     Quantity  

( kg per kg HN) 

% contribution to E 

(excluding water) 

% contribution to E 

(including water) 

ECAA losses (8%)       0.08       <2%       <1% 

Triethanolamine       0.04       <1%       <1% 

NaCl and Na2SO4       1.29         22%      ca. 7% 

Na-Gluconate       1.43    ca. 25%      ca. 9% 

BuOAc 

(85%recycle) 

      0.46    ca. 8%      ca. .3% 

EtOAc 

(85%recycle) 

      2.50    ca. 43%      ca. 14% 

Enzymes       0.023      <1%        <1% 

NADP       0.005       0.1%        <0.1% 

Water      12.25        -         67% 

  E Factor      5.8 (18) 

E factor of the Codexis Three-Enzyme Process 

R. A. Sheldon, G. Huisman et al, Green Chem. 2010, 12, 81-86 

Presidential Green Chemistry Challenge Award 2006 
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Biocatalyst Engineering 
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The Cell Factory: 

  

Cascade approach in metabolic pathways 

by enzymatic catalysis in water without 

isolation of intermediates  

  
  

  
        

    

  
    

    

Multistep Syntheses: Nature’s Way 

    

          

  
D C A B 

Compartmentalisation for compatibility 

Step economy 
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Cross-Linked enzyme Aggregates 

 
• Low operational stability &  shelf-life 

• Cumbersome  recovery & re-use 

• Product contamination 

• Allergic reactions of proteins 

Limitations of enzymes Limitations of Enzymes 

The solution: immobilization 
an enabling technology 
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 CLEA classic 

 Aggregate Dissolved Enzyme 

X- linking 

aggregation 

Heterogeneous Catalysis with 
Cross-Linked Enzyme Aggregates 

  e.g. (NH4)2SO4 

or tert-butanol 

e.g. Glutaraldehyde, 

 dextran polyaldehyde 

• Simple and broadly applicable 

• Cost-effective (no need for pure enzyme) 

• Short time-to-market (low development costs) 

• Scalable protocols 

www.cleatechnologies.com 

Copolymerization 
e.g. with RSi(OR)3 

Silica-CLEA composite 
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   Advantages of CLEAs 

1.   Improved properties 

       - better storage and operational stability  

 - (to heat, organic solvents and autolysis) 

       - hypoallergenic 

       - no leaching of enzyme in aqueous media 

2.   Cost-effective  

       - no need for highly pure enzyme (crude enzyme extract sufficient) 

       - easy recovery and recycle (no product contamination) 

       - high activity recovery and productivity (kg product/kg enzyme) 

3.  Broad scope  &  short time to market 

      - combi CLEAs containing more than one enzyme   
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Conv. 96% / ee >99%   

O 

OH 

CN 

HCN /(S)-HnL 
OH 

COOH 

OH 

CONH2 

NLase  

Pen G 

amidase 

H2O 

-  Buffer : DIPE (10:90) 

-  pH 5.5 / RT /  < 5h  

-  HnL/ NLase / Pen.acylase 

   combi-CLEA 

Step Economy a Tri-enzymatic Cascade  

with a Triple-Decker CLEA 
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Catalytic Conversion of Renewable Raw Materials 
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Take Home Message 

Green chemistry & (bio)catalysis 

merge science  and technology with  

environment and economics on the  

road to a sustainable society. 

Green chemistry  is not only 
good for the environment it 
is good for business. 

63 

Electronic Supplementary Material (ESI) for Chemical Society Reviews
This journal is © The Royal Society of Chemistry 2011



and Sustainable 
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