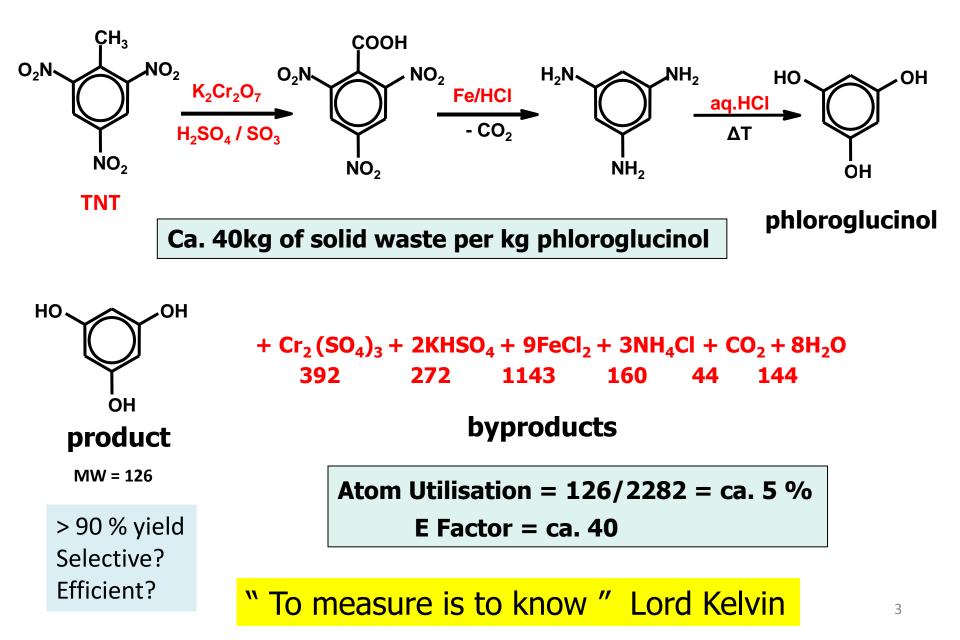
Fundamentals of Green Chemistry: Efficiency in Reaction Design

A Tutorial Review

Roger A. Sheldon Department of Biotechnology Delft University of Technology r.a.sheldon@tudelft.nl

<u>r.sheldon@clea.nl</u>


Fundamentals of Green Chemistry: Efficiency in Reaction Design

<u>Outline</u>

- 1. Introduction: Efficiency in Organic Synthesis
- 2. Alcohol Oxidation
- 3. Enantioselective Ketone Reduction
- 4. Biocatalysis
- 5. Enzyme Immobilization
- 6. Conclusions & Take Home Message

Phloroglucinol Synthesis anno 1980

Reaction Stoichiometry and Atom Economy

 $C_7H_5N_3O_6 + K_2Cr_2O_7 + 5H_2SO_4 + 9Fe + 21HCI$

 $C_6H_6O_3 + Cr_2(SO_4)_3 + 2 KHSO_4 + 9 FeCl_2 + 3 NH_4Cl + CO_2 + 8 H_2O$ 126 392 272 1143 161 44 144

Atom economy = 126/2282 = ca. 5 %

Conclusion?

A new paradigm was needed for efficiency in organic synthesis.

From the traditional one of chemical yield

to one that assigns value to waste elimination and avoiding toxic/hazardous materials.

Atom Economy of Ethylene Oxide Manufacture

<u>1 Chlorohydrin process</u>

 $H_2C=CH_2 + CI_2 + H_2O \longrightarrow CICH_2CH_2OH + HCI$

$$\begin{array}{c} Ca(OH)_2 \\ H_2C - CH_2 \\ H_2C - CH_2 \\ \end{array} + CaCl_2 + H_2O \\ \end{array} \qquad 25 \% atom utilisation$$

2. Direct Oxidation

$$H_2C=CH_2 + 0.5 O_2 \xrightarrow{Ag} H_2C \xrightarrow{O} CH_2 + H_2O 100 \%$$
 atom utilisation

E Factor = kg waste/kg product

	Tonnage	E Factor
Oil Refining	10 ⁶ -10 ⁸	<0.1
Bulk Chemicals	10⁴-10 ⁶	<1 - 5
Fine chemical Industry	10 ² -10 ⁴	5 - >50
Pharmaceutical Industry	10-10 ³	25 - >100

"Another aspect of process development mentioned by all pharmaceutical process chemists who spoke with C&EN is the need for determining an E Factor".

A. N. Thayer, C&EN, August 6, 2007, pp. 11-19

R.A.Sheldon, Chem & Ind, 1992, 903 ; 1997, 12

The E factor

(E)verything but the Product

- Is the actual amount of all waste formed in the process, including solvent losses and waste from energy production (c.f. atom utilisation is a theoretical nr.)
- E = [kgs raw materials- kgs product]/[kgs product]
- A good way to quickly show (e.g. to students) the enormity of the waste problem

What about the process water?

Sustainability

Meeting the needs of the present generation without compromising the needs of future generations to meet their own needs

Brundtland Report, 'Our Common Future', 1987

The Great Law of the Iroquois Confederacy

'In our every deliberation, we must consider the impact of our decisions on the next seven generations.'

http://www.iroquoisdemocracy.pdx.edu

www.seventhgeneration.com

The Twelve Principles of Green Chemistry

- 1. Prevention instead of Remediation
- 2. Atom Efficiency
- 3. Less Hazardous Chemicals
- 4. Design Safer Chemical Products
- 5. Safer Solvents & Auxiliaries
- 6. Energy Efficient by Design

P.T.Anastas & J.C.Warner, Green Chemistry : Theory & Practice , Oxford Univ. Press, New York, 1998

The Twelve Principles of Green Chemistry

- 7. Renewable Raw Materials
- 8. Shorter Syntheses
- 9. Catalytic Methodologies
- 10. Design for Degradation
- 11. Analysis for Pollution Prevention
- 12. Inherently Safer Chemistry

P.T.Anastas & J.C.Warner, Green Chemistry : Theory & Practice , Oxford Univ. Press, New York, 1998

Ρ

R

Ο

D

IJ

С

V

Ε

Y

A Mnenomic for the Spirit of Green Chemistry

- Prevent wastes
- Renewable materials
- Omit derivatisation steps
- Degradable chemical products
- Use of safe synthetic methods
 - Catalytic reagents
 - Temperature, Pressure ambient
 - In-Process monitoring
 - Very few auxiliary substrates
 - E-factor, maximise feed in product
 - Low toxicity of chemical products
 - Yes, it is safe

S. L. Y. Tang, R. L. Smith and M. Poliakoff, *Green Chem.*, 2005, 7,761.

Green (Clean) Chemistry

Green chemistry efficiently utilises (preferably renewable) raw materials, eliminates waste and avoids the use of toxic and/or hazardous solvents and reagents in the manufacture and application of chemical products.

> Anastas & Warner, Green Chemistry : Theory & Practice ,Oxford Univ. Press,New York,1998

Sheldon, Arends and Hanefeld, Green Chemistry and Catalysis, Wiley, New York, 2007

Metrics of Green Chemistry

	<u>E factor</u>	Atom efficiency (AE)	
E =	<u>Total mass of waste</u> Mass of final product	AE (%) =	<u>m.w of product x 100</u> Σ m.w. of reactants
	Mass intensity (MI)	Reaction mass efficiency (RME)	
MI =	<u>Total mass in process</u> Mass of product	RME(%) =	<u>_Mass of product C x 100</u> Mass of A + Mass of B
	Mass Productivity (MP)	<u>Carbon eff</u>	ficiency (CE)
MP =	<u>Mass of product</u> Total mass in process	CE(%) =	<u>Carbon in product x 100</u> Total carbon in reactants
E	ffective mass yield (EMY)		
	<u>Mass of product x 100</u> Mass of hazardous reagent	5	

The Environmental Impact EQ

EQ = E(kg waste) × Q

Q = Unfriendliness Multiplier

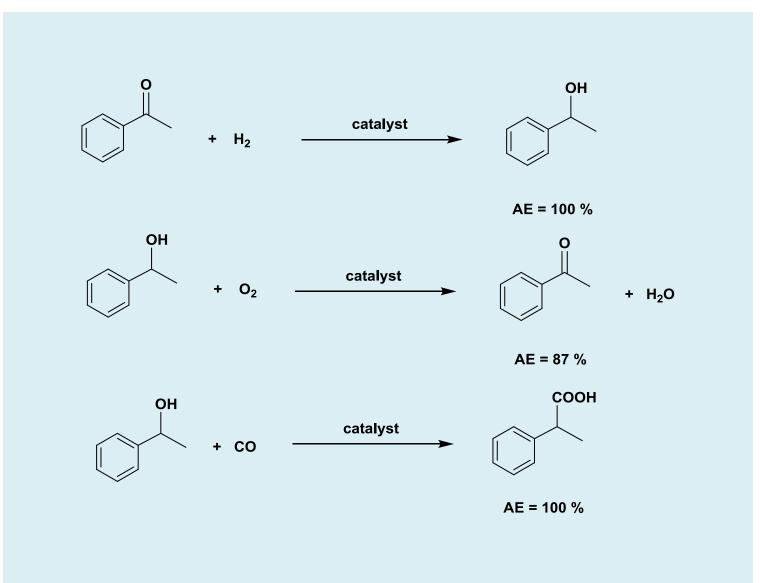
e.g. NaCl : Q = 1 (arbitrary)

Cr salts : Q = 1000?

There are many shades of green!

R.A.Sheldon, Chem & Ind, 1992, 903 ; 1997, 12

Electronic Supplementary Material (ESI) for Chemical Society Reviews

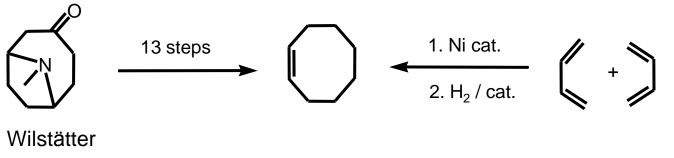

This journal is the Royal Society of Chemietry 2011 Major Sources of Waste

- Stoichiometric Reagents
 - Acids & Bases (e.g H₂SO₄ and NaOH)
 - Oxidants & reductants (e.g. K₂Cr₂O₇ & Fe/HCI)
- Solvent losses (85% of non-aqueous mass)
 - Air emissions & aqueous effluent
- Multistep syntheses

The Solution : Atom & step economic catalytic processes in alternative reaction media (H₂O, scCO₂, ILs) (the best solvent is no solvent)

What about process water? Only counts if it needs to be treated?

Electronic Supplementary Material (ESI) for Chemical Society Reviews This journal is The Royal Society of Chemistry 2011 Atom Economy of Catalytic Processes



The Ideal Synthesis

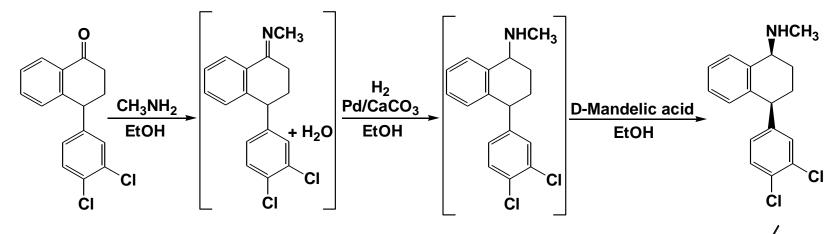
100% Yield- atOne Step- atSimple & Safe- steEconomical in Time & Waste- steEnvironmentally Acceptable- ste

- step economy

The Ideal Process

"The ideal chemical process is that which a one-armed operator can perform by pouring the reactants into a bath tub and collecting pure product from the drain hole"

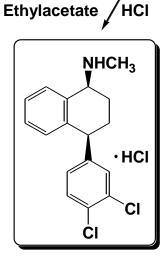
Sir John Cornforth (Nobel Prize 1975)


Solvent Selection Guide

Pentane Hexane(s) **Di-isopropyl ether Diethyl ether Dichloromethane** Dichloroethane Chloroform NMP DMF **Pyridine DMAc** Dioxane Dimethoxyethane Benzene **Carbon Tetrachloride**

Water Acetone **Ethanol** 2-Propanol **1-Propanol** Heptane **Ethyl Acetate Isopropyl** acetate **Methanol** MEK **1-Butanol** t-Butanol

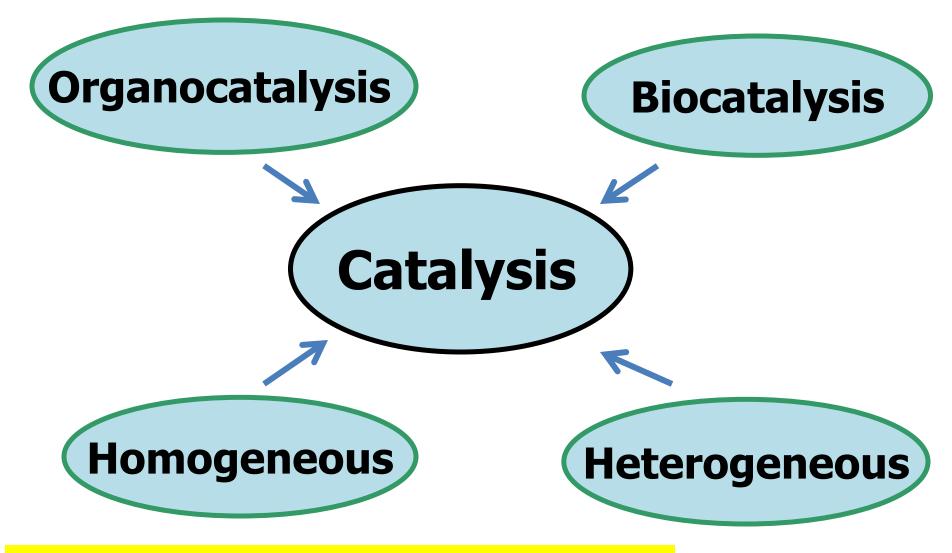
Electronic Supplementary Material (ESI) for Chemical Society Reviews This journal is © The Royal Society of Chemistry 2011 New Sertraline Process (Pfizer's Antidepressant) is Greener



Three step process Introduction of EtOH as solvent Replacement of Pd/C with Pd/CaCO₃ - higher yields

Elimination of titanium chloride, toluene, THF, CH₂Cl₂, and hexane

Reduction of solvents from 60,000 to 6,000 gal/ton


Elimination of 440 tons of titanium dioxide, 150 tons of 35% HCl, and 100 tons of 50% NaOH

HCI

Sertraline · HCI

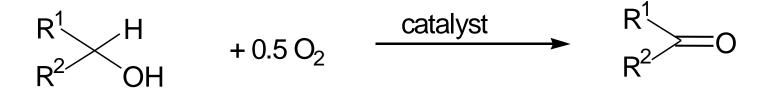
Catalysis & Green Chemistry

Sheldon, Arends and Hanefeld , Green Chemistry And Catalysis, Wiley, New York, 2007

TUDelft ²³

Organic chemistry & Catalysis: Bridging the Gap

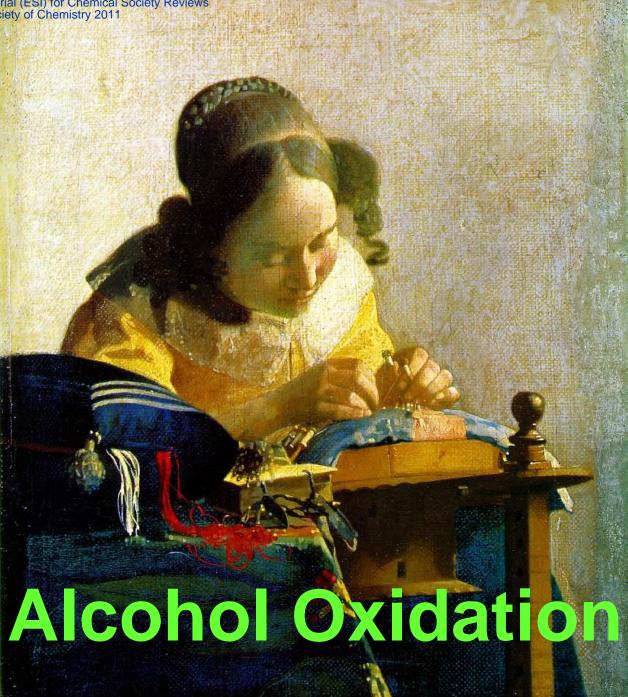
J. J. Berzelius 1779-1848

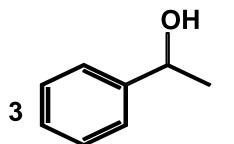

Organic Chem	<mark>istry (1807)</mark>	Catalysis
Urea synthesis (Wöhler)	1828	ca. 1900 Cat ((
First synthetic dye Aniline purple (Perkin)	1856	Cata (S ca. 1920 Pet
Dyestuffs Industr (based on coal-ta	•	1936 C 1949 C 1955 Z
Fine Chemica	als	Bulk Ch
	Catalysis in	Organic Synthesis

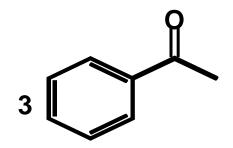
Catalysis (1835)


ca. 1900 (Catalysis definition (Ostwald) Catalytic Hydrogenation (Sabatier)	
ca. 1920	Petrochemicals	
	$\mathbf{+}$	
1936	Catalytic cracking	
1949	Catalytic reforming	
1955	Ziegler-Natta catalysis	
	\checkmark	
Bulk Chemicals & Polymers		
anic Synth		

Pivotal Reactions in Organic Synthesis

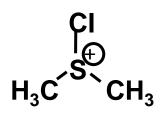

Oxidation

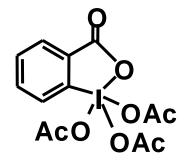

Reduction



Classical Alcohol Oxidations

 $\frac{2 \operatorname{CrO}_3 + 3 \operatorname{H}_2 \operatorname{SO}_4}{(\operatorname{Jones reagent})}$ - $\operatorname{Cr}_2 (\operatorname{SO}_4)_3$

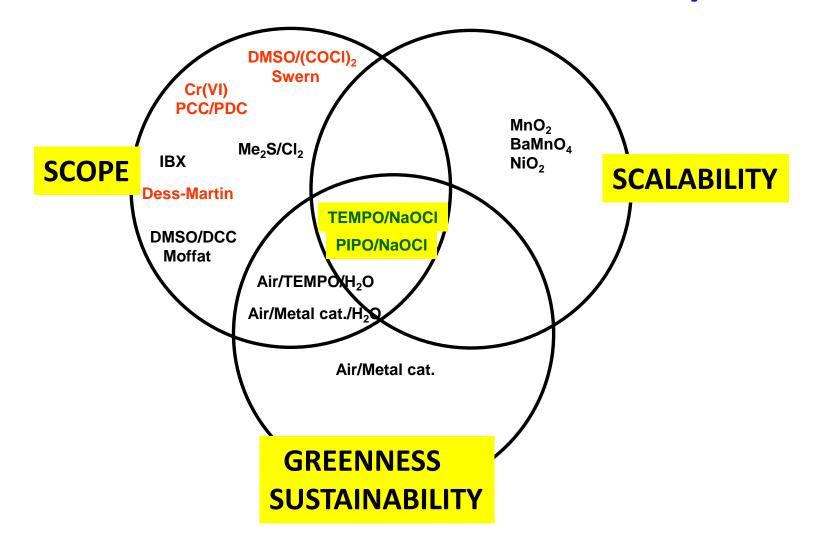

"It's hexavalent chromium, highly toxic, highly carcinogenic. Gets into your DNA, so you


pass the trouble along to your kids."

Julia Roberts in 'Erin Brokovich'

Atom Utilisation = 44%E = > 3

Other reagents favoured by organic chemists


- Poor atom economy
- Hazardous reagents

Swern

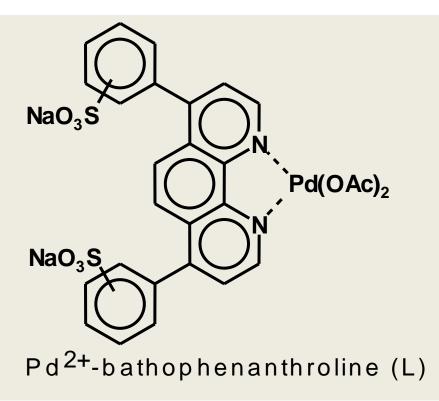
Dess-Martin

Electronic Supplementary Material (ESI) for Chemical Society Reviews This journal is © The Royal Society of Chemistry 2011 Venn and the Art of Green Chemistry 2017

Oxidation of Primary Alcohol to Aldehyde

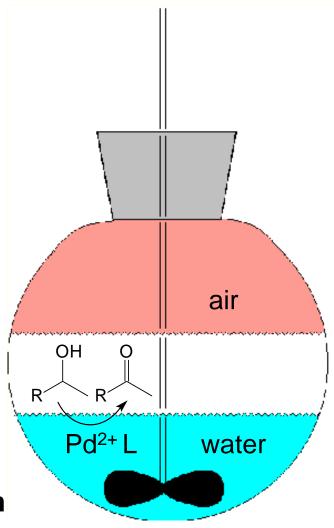
P. Dunn et al, Green Chem. 2008, 10, 31-36

Catalytic Oxidations in Water

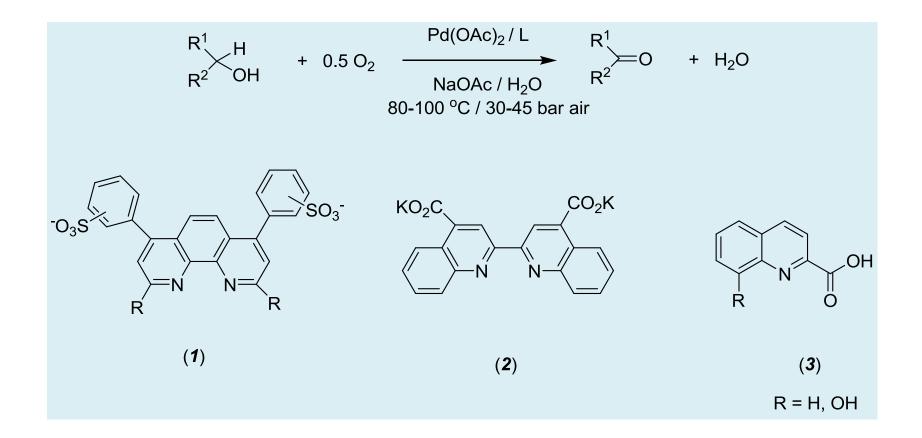

<u>Water</u>

- Polar, inert and clean solvent
- Facile product separation
- Cheap and widely available
- Non-flammable and non-toxic
- Odourless and colourless

Recycling of catalyst

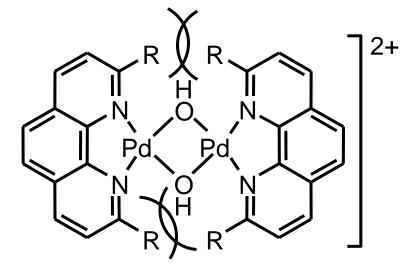


Green, Catalytic Alcohol Oxidations

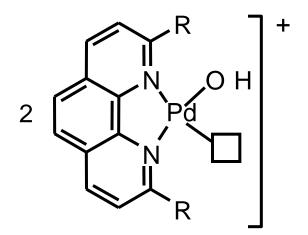

- Air as oxidant
- No organic solvent
- Catalyst recycling via phase separation (recycled 4 times without activity loss)

G.J. ten Brink, I.W.C.E. Arends and R.A. Sheldon, Science 287 (2000) 1636-9.

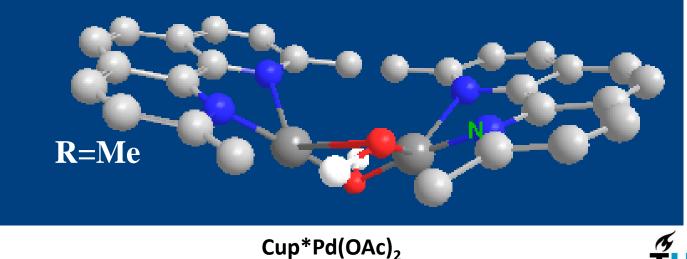
Aerobic Oxidation of Alcohols with Pd(II) – Diamine Catalysts



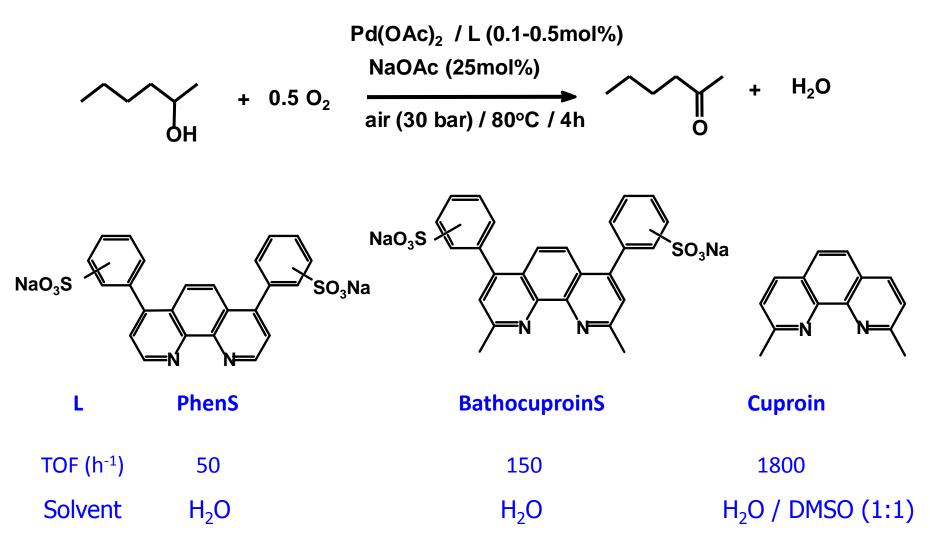
- (1) G.J. ten Brink, I.W.C.E. Arends and R.A. Sheldon, Science 287 (2000) 1636
- (2) B. P. Buffin, N. L. Belitz, S. L. Verbeke, J. Mol. Catal. A: Chemical, 2008, 284, 149
- (3) D. S. Bailie, G. M. A. Clendenning, L.McNamee and M. J. Muldoon, *Chem. Commun.*, 2010, 46, 7238



31


Steric Effects

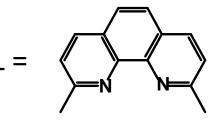
Structure in aq. solution

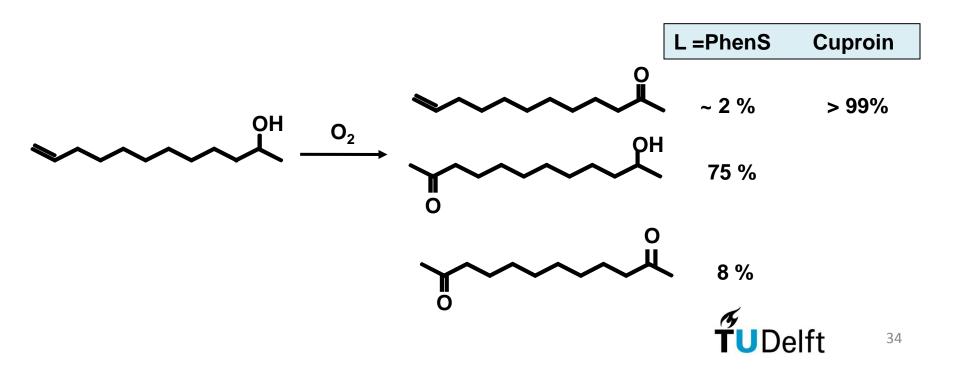


Active catalyst

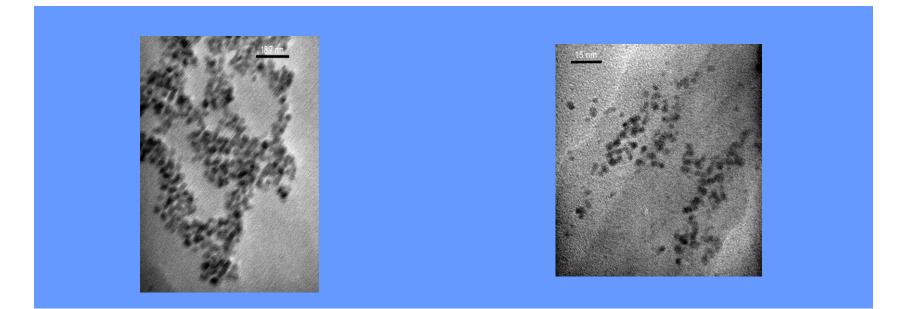
TUDelft ³²

Steric Effects





Cuproin/Pd(OAc)₂: Functional Group Tolerance

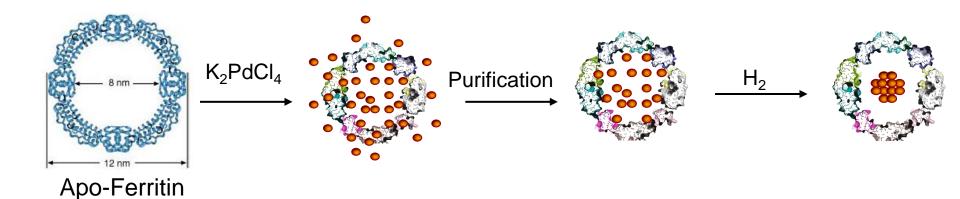

C=C	C=0	acetylene
OR	SR	SiR ₃
(O)S=O	SO₃R	NR ₂
CN	CONH ₂	CO ₂ R

Alcohol (0.3M),0.5m% LPd(OAc)₂ 25m % NaOAc in DMSO/H₂O 80^oC/30 bar air,4h

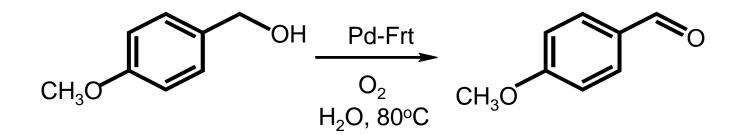
Pd-nanoparticles

$Pd(O_2CCF_3)_2/neocuproin = 1/1$ ethylene carbonate in H_2O

Particle size: 5 nm

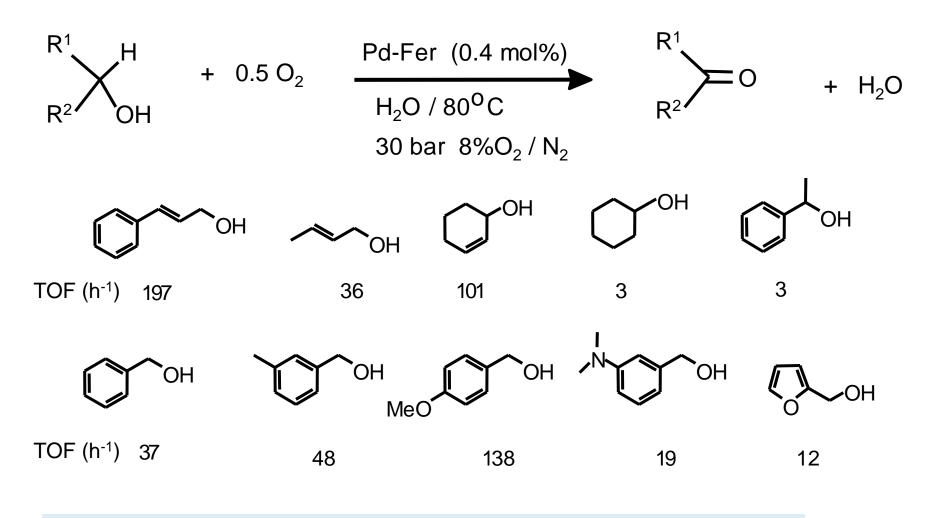

 $Pd(O_2CCF_3)_2/neocuproin = 1/1$ PEG3400 in H₂O

Particle size: 3 nm


See also I. I. Moiseev et al, Chem. Commun. 1985, 937-8

Pd-Ferritin as an Oxidation Catalyst

Thermostable Fer from Pyrococcus furiosus

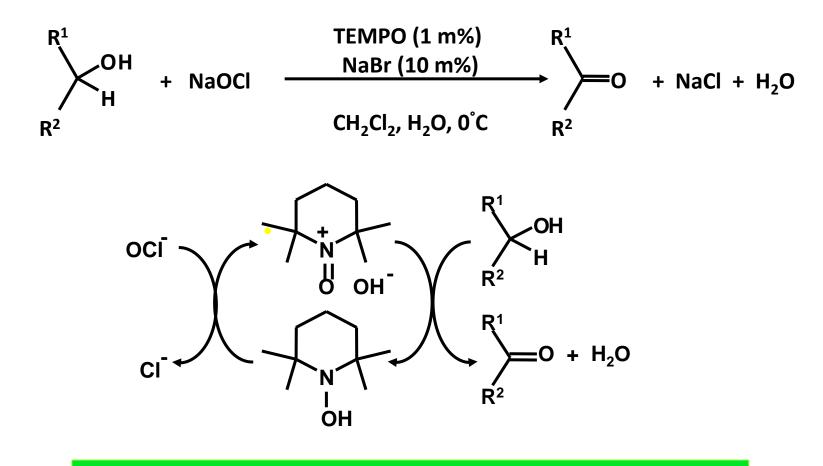


Chemomimetic biocatalysis

Seda Aksu-Kanbak

Electronic Supplementary Material (ESI) for Chemical Society Reviews This journal is © The Royal Society of Chemistry 2011 Catalytic Oxidation of Alcohols in Water with Pd-Ferritin

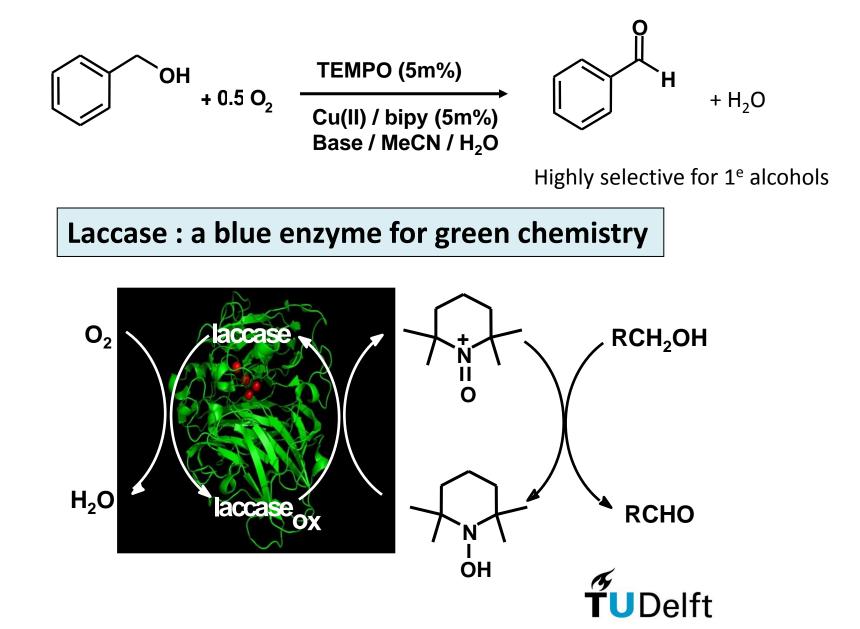
N.B. Pd-Fer catalyzes the Suzuki coupling *in aqua*


Electronic Supplementary Material (ESI) for Chemical Society Reviews This journal is © The Royal Society of Chemistry 2011

Organocatalysis

Electronic Supplementary Material (ESI) for Chemical Society Reviews

This journal is © The Royal Society of Chemistry 201 Stable Nitroxyl Radicals: **Versatile Catalysts for Alcohol Oxidations**

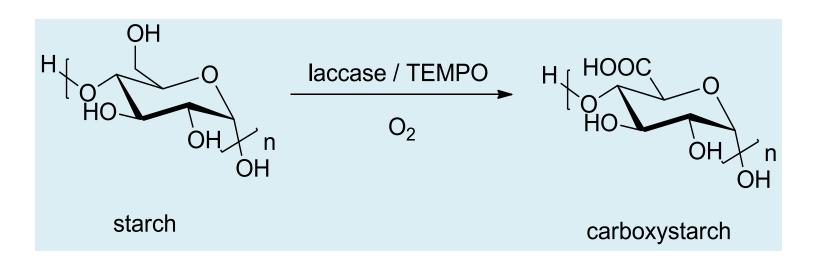


There are many shades of green!

P.L.Anelli, C.Biffi, F.Montanari, S.Quici, JOC, 52, 2559 (1987)

Dioxygen (Air) as Oxidant

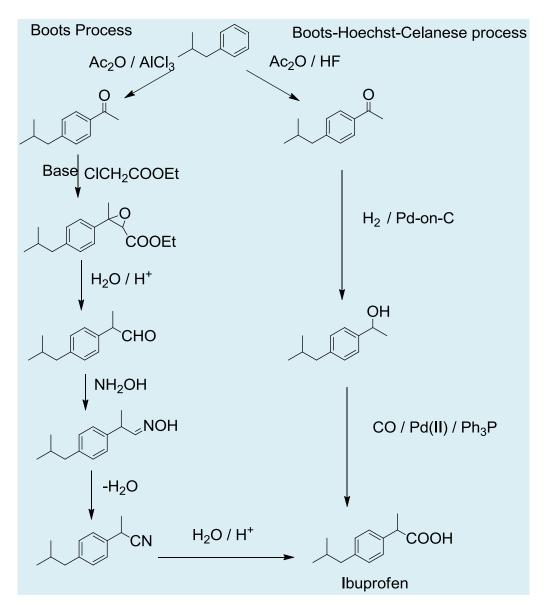
Electronic Supplementary Material (ESI) for Chemical Society Reviews

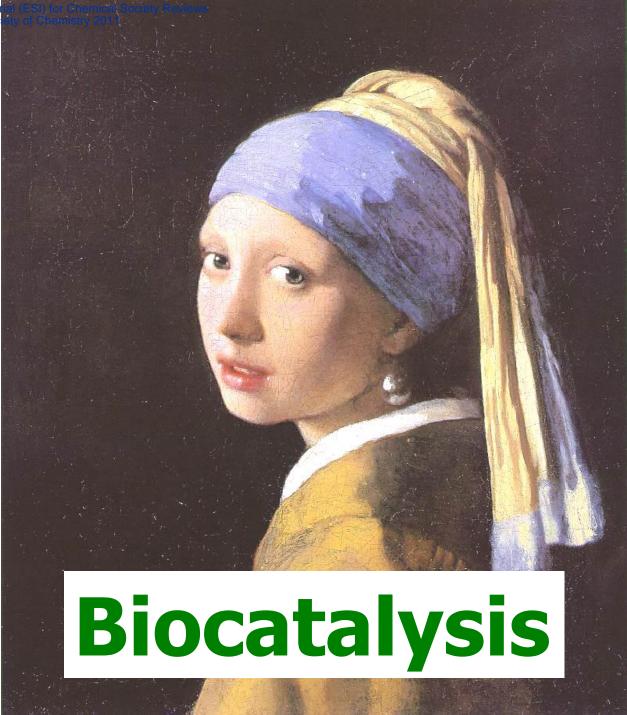

This journal is © The Royal Society of Chemistry 2011 Oxidation of Benzylic Alcohols

RCH ₂ OH	laccase/TEMPO	RCHO
	O ₂ , 30° C	

		Conversion %
Substrate	Product	after 4 hour
3-Methoxybenzyl alcohol	3-Methoxybenzaldehyde	100
Veratryl alcohol	3,4-Dimethoxybenzaldehyde	100
4-Methoxybenzyl alcohol	4-Methoxybenzaldehyde	98
3-Phenyl-2-propene-1-ol	Cinnamaldehyde	72
3-(Hydroxymethyl) pyridine	Nicotinaldehyde	98
Benzyl alcohol	Benzaldehyde	90

1.6 mmol substrate, Lacc/Subs: 62.5 U/mmol, TEMPO (9.4 mol%), 0.1 M phosphate buffer (pH 4)


A Green Product: Carboxystarch


- A biodegradable water super absorbent
- To replace poorly biodegradable polyacrylates
- Laccase immobiliized as a CLEA for improved performance

Electronic Supplementary Material (ESI) for Chemical Society Reviews This journal is © The Royal Society of Chemistry 2011

Efficiency in C-C Bond Formation: Carbonylation

Electronic Supplementary Mater This journal is © The Royal Soc

Biocatalysis is Green & Sustainable

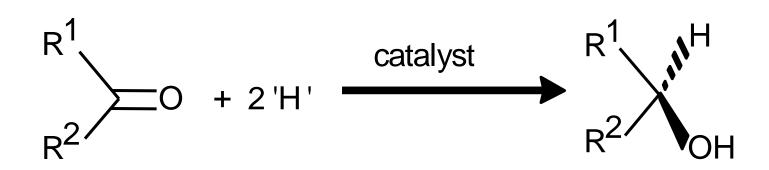
- Enzymes are derived from renewable resources and are biodegradable
- Avoids use of (and product contamination by) scarce precious metals
- Mild conditions: ambient T & P in water
- High rates & highly specific : substrate, chemo-, regio-, and enantiospecific
- Higher quality product
- No special equipment needed

Biocatalysis : why now ?

- 1. Genome sequencing (> 5000) (more enzymes)
- 2. Directed evolution technologies (better enzymes)
- 3. Immobilization technologies (better formulation)
- 4. Green & Sustainable (small environmental footprint)

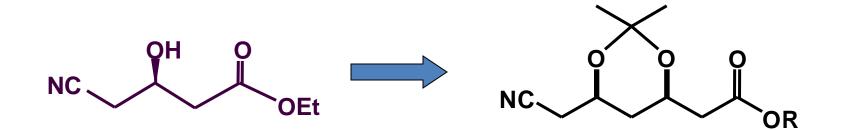
Two Types of Biotransformations

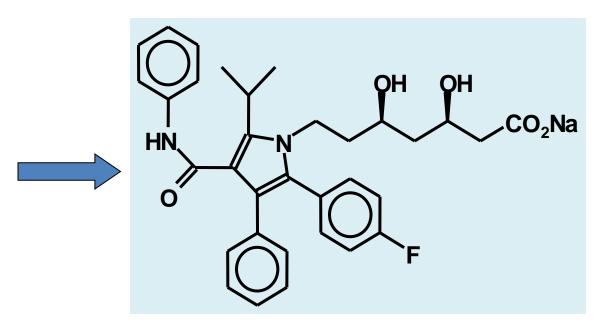
- Free enzymes
 - isolated (purified)
 - whole cells (not growing)
 - can be very high STY
- Fermentations (growing microbial cells)
 - less expensive (no enzyme isolation needed)
 - often dilute solution / low STY
 - water footprint /energy intensive
 - byproducts from enzyme impurities


E Factors of Fermentations

Product	E Factor	E factor (incl. water)	
Citric acid	1.4	17	
Bioethanol	1.1	42 ^a	
Rec. insulin	6600	50,000	

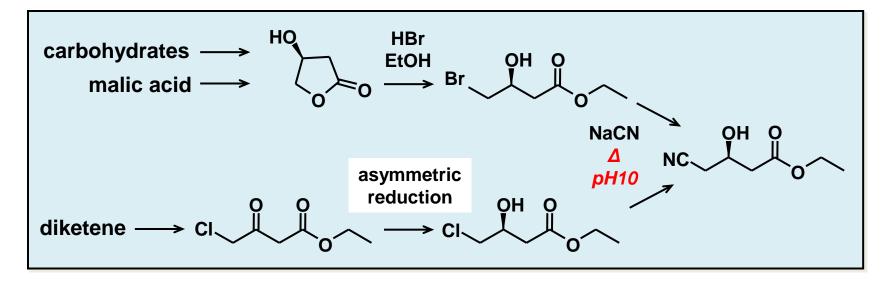
^a Includes water and carbon dioxide


Asymmetric Ketone Reduction



Electronic Supplementary Material (ESI) for Chemical Society Reviews This journal is © The Royal Society of Chemistry 2011

Production of Lipitor Intermediates

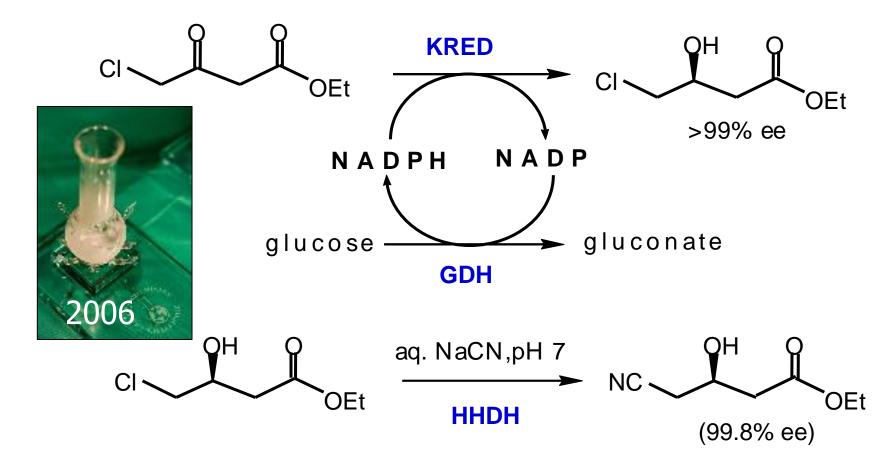


Lipitor (Pfizer)

Sales in 2009: \$14 bio

Existing Processes for Hydroxynitrile

- Forcing conditions for cyanation result in base-catalyzed side reactions,
- Purification requires problematic, high vacuum fractional distillation.


ightarrowUnderstanding the problem is key (chem. and opt. purity >99%) ightarrowCyanation at neutral pH and RT (with an enzyme)

Electronic Supplementary Material (ESI) for Chemical Society Reviews This journal is © The Royal Society of Chemistry 2011

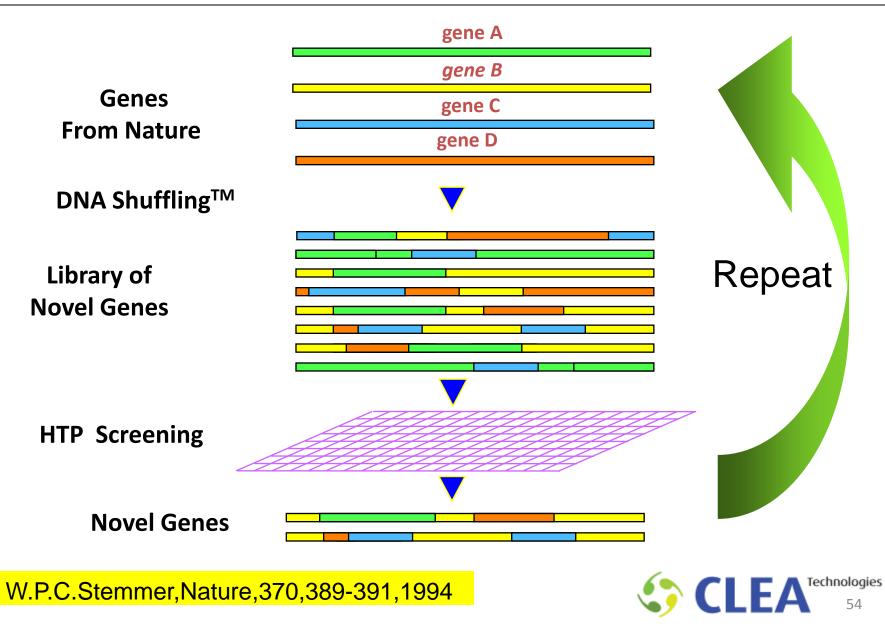
Delft

Enzymatic Synthesis of Lipitor Intermediate

- KRED = keto reductase ; GDH = glucose dehydrogenase
- HHDH = halohydrin dehalogenase (non-natural nucleophile)

R.J.Fox, S.C.Davis, R.A.Sheldon, G.W.Huisman, et al Nature Biotechnology, 25 (2007) 338-344

Directed Evolution for Improved Performance


Features of the Wild-Type Enzymes:

- high enantioselectivity
- mild (ambient) conditions
- no metal catalysts required
- no need for dedicated equipment
- low productivities

Productivities of all three enzymes improved by directed evolution using gene shuffling technology

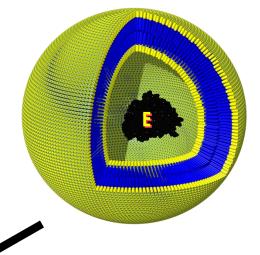
Gene Shuffling : Evolution in the Fast Lane

E factor of the Codexis Three-Enzyme Process

Presidential Green Chemistry Challenge Award 2006

Waste	Quantity (kg per kg HN)	% contribution to E (excluding water)	% contribution to E (including water)
ECAA losses (8%)	0.08	<2%	<1%
Triethanolamine	0.04	<1%	<1%
NaCI and Na ₂ SO ₄	1.29	22%	ca. 7%
Na-Gluconate	1.43	ca. 25%	ca. 9%
BuOAc (85%recycle)	0.46	ca. 8%	ca3%
EtOAc (85%recycle)	2.50	ca. 43%	ca. 14%
Enzymes	0.023	<1%	<1%
NADP	0.005	0.1%	<0.1%
Water	12.25	-	67%
E Factor	5.8 (18)		

R. A. Sheldon, G. Huisman et al, Green Chem. 2010, 12, 81-86


Biocatalyst Engineering

Multistep Syntheses: Nature's Way

The Cell Factory:

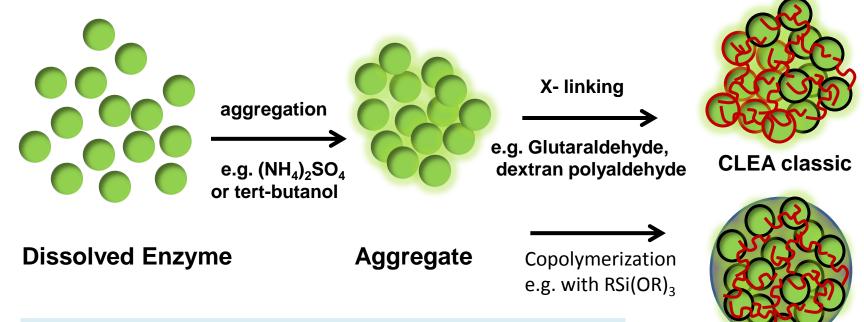
$$A \rightarrow B \rightarrow C \rightarrow D$$

Cascade approach in metabolic pathways by enzymatic catalysis in water without isolation of intermediates

Step economy

Compartmentalisation for compatibility

Limitations of Enzymes


- Low operational stability & shelf-life
- Cumbersome recovery & re-use
- Product contamination
- Allergic reactions of proteins

The solution: immobilization an enabling technology

Heterogeneous Catalysis with Cross-Linked Enzyme Aggregates

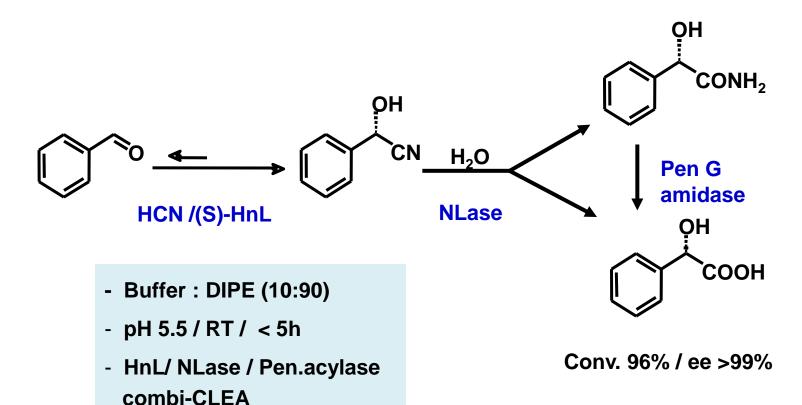
- Simple and broadly applicable
- Cost-effective (no need for pure enzyme)
- Short time-to-market (low development costs)
 - Scalable protocols

Silica-CLEA composite

www.cleatechnologies.com

Advantages of CLEAs

1. Improved properties


- better storage and operational stability
- (to heat, organic solvents and autolysis)
- hypoallergenic
- no leaching of enzyme in aqueous media

2. Cost-effective

- no need for highly pure enzyme (crude enzyme extract sufficient)
- easy recovery and recycle (no product contamination)
- high activity recovery and productivity (kg product/kg enzyme)
- 3. Broad scope & short time to market
 - combi CLEAs containing more than one enzyme



Step Economy a Tri-enzymatic Cascade with a Triple-Decker CLEA

Catalytic Conversion of Renewable Raw Materials

Take Home Message

Green chemistry & (bio)catalysis merge science and technology with environment and economics on the road to a sustainable society.

Green chemistry is not only good for the environment it is good for business. Electronic Supplementary Material (ESI) for Chemical Society Reviews This journal is © The Royal Society of Chemistry 2011

Think Green

1297 B and Sustainable

THE CANTER STATES OF AMERICA

689991297B HISHMOTONIA