Supporting Information

Supramolecularly Controlled Surface Activity of an Amphiphilic Ligand. Application to Aqueous Biphasic Hydroformylation of Higher Olefins

Natacha Six, Antonella Guerriero, David Landy, Maurizio Peruzzini, Luca Gonsalvi, Frédéric Hapiot and Eric Monflier

a Université Lille Nord de France, CNRS UMR 8181, Unité de Catalyse et de Chimie du Solide, UCCS UArtois, Faculté Jean Perrin, rue Jean Souvraz, SP18, F-62300 Lens, France.
Tel: (+) 33(0)321791772 ; Fax: (+) 33(0)321791755 ; E-mail: eric.monflier@univ-artois.fr

b Istituto di Chimica del Composti Organometallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
Tel: (+) 39 055 5225251; Fax: (+) 39 055 5225203; E-mail: l.gonsalvi@iccom.cnr.it

c Université Lille Nord de France, UCEIV, Université du Littoral 145, Avenue Maurice Schumann, MREI 1, F-59140 Dunkerque, France
Index

S1. The sodium salt of the trisulfonated triphenylphosphane (TPPTS).

S2. Job plot derived from chemical shift variations of the phosphorous signal on 31P NMR spectra of β-CD/1 mixtures in D_2O at 25 °C.

S3. Job plot derived from chemical shift variations of the tBu signal on 1H NMR spectra of β-CD/1 mixtures in D_2O at 80 °C.

S4. Job plot derived from chemical shift variations of the tBu signal on 1H NMR spectra of RAME-β-CD/1 mixtures in D_2O at 25 °C.

S5. Job plot derived from chemical shift variations of the tBu signal on 1H NMR spectra of RAME-β-CD/1 mixtures in D_2O at 80 °C.

S6. 2D T-ROESY NMR spectrum of an equimolar mixture of native β-CD and 1 (10 mM/10 mM) at room temperature in D_2O (mixing time = 300 ms).

S7. 2D T-ROESY NMR spectrum of an equimolar mixture of native β-CD and 1 (10 mM/10 mM) at 80 °C in D_2O (mixing time = 300 ms).

S8. Zoom of S6 on dipolar contacts between the tBu protons of 1 and CD protons H-3, H-5 and H-6.

S9. 2D T-ROESY NMR spectrum of an equimolar mixture of RAME-β-CD and 1 (10 mM/10 mM) at room temperature in D_2O (mixing time = 300 ms).

S10. Zoom of S8 on dipolar contacts between the tBu protons of 1 and CD protons H-3, H-5 and H-6.

S11. 2D T-ROESY NMR spectrum of an equimolar mixture of RAME-β-CD and 1 (10 mM/10 mM) at 80 °C in D_2O (mixing time = 300 ms).

S12. Zoom of S10 on dipolar contacts between the tBu protons of 1 and CD protons H-3, H-5 and H-6.

S14. Reaction profiles of entries 5, 6, 8 and 9.
S1. The sodium salt of the trisulfonated triphenylphosphane (TPPTS)
S2. Continuous variation plot (Job plot) derived from chemical shift variations of the phosphorous signal on 31P NMR spectra of β-CD/1 mixtures in D$_2$O at 25 °C. The total concentration of species is 10 mM.

$$r = [1]/([1] + [\beta-CD])$$
S3. Continuous variation plot (Job plot) derived from chemical shift variations of the tBu signal on 1H NMR spectra of β-CD/1 mixtures in D$_2$O at 80 °C. The total concentration of species is 10 mM.
S4. Continuous variation plot (Job plot) derived from chemical shift variations of the tBu signal on 1H NMR spectra of RAME-β-CD/1 mixtures in D$_2$O at 25 °C. The total concentration of species is 10 mM.
S5. Continuous variation plot (Job plot) derived from chemical shift variations of the tBu protons signal on 1H NMR spectra of RAME-β-CD/1 mixtures in D$_2$O at 80 °C. The total concentration of species is 10 mM.
S6. 2D T-ROESY NMR spectrum of an equimolar mixture of native β-CD and 1 (10 mM/10 mM) at room temperature in D₂O (mixing time = 300 ms).
S7. 2D T-ROESY NMR spectrum of an equimolar mixture of native β-CD and 1 (10 mM/10 mM) at 80 °C in D₂O (mixing time = 300 ms).
S8. Zoom of S6 on dipolar contacts between the tert-Bu protons of 1 and the H-3, H-5 and H-6 CD protons of native β-CD.
S9. 2D T-ROESY NMR spectrum of an equimolar mixture of RAME-β-CD and 1 (10 mM/10 mM) at room temperature in D$_2$O (mixing time = 300 ms).
S10. Zoom of S8 on dipolar contacts between the tBu protons of 1 and CD protons H-3, H-5 and H-6.
S11. 2D T-ROESY NMR spectrum of an equimolar mixture of RAME-β-CD and 1 (10 mM/10 mM) at 80 °C in D₂O (mixing time = 300 ms).
S12. Zoom of S10 on dipolar contacts between the tBu protons of 1 and CD protons H-3, H-5 and H-6.
Phosphane selenides were synthesized by stirring overnight at room temperature excess selenium (10 equiv.) with 1 (250 mg) in absolute ethanol (15 mL) under nitrogen. The resulting mixture was directly analyzed by 31P{1H} NMR without any purification. NMR spectra exhibit the presence of phosphane selenides characterized by a singlet with two satellites due to only 7.6% of active selenium isotope (77Se) in NMR spectroscopy. The upfield phosphorus signal (-83.09 ppm) was characteristic of the PTA phosphorus atom. The first order phosphorus-selenium coupling constants ($^1J_{P-Se}$) of the Se=1 selenide allowed for the estimation of the basicity of 1. The higher the $^1J_{P-Se}$ value, the lower the basicity. Ligand 1 ($^1J_{P-Se} = 814.6$ Hz) was thus more basic than the previously synthesized CD non-interacting phosphane N-Bz-PTA (Scheme 1) for which a $^1J_{P-Se} = 817.7$ Hz constant was determined.
S14. Reaction profiles of entries 5, 6, 8 and 9.

Experimental conditions: Rh(acac)(CO)₂ (4.07 × 10⁻² mmol), water-soluble ligand (0.21 mmol), cyclodextrin (0.48 mmol), H₂O (11.5 mL), 1-alkene (20.35 mmol), 1500 rpm, CO/H₂ (1/1): 50 bar, 6 h. Entry 5: 80 °C without CD; Entry 6: 80 °C with RAME-β-CD; Entry 8: 100 °C without CD; Entry 9: 100 °C with RAME-β-CD.

The reaction profiles of these four relevant experiments highlight the poisoning effect of RAME-β-CD at 80 °C (red arrow) and the increase in activity observed at 100 °C (blue arrow).