Periodic mesoporous organosilica functionalized sulfonic acid as highly efficient and recyclable catalysts in biodiesel production

Babak Karimi,* Hamid Mohamad-Mirzaei and Akbar Mobarakia

*a Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), P.O.Box 45195-1159, Gava Zang, Zanjan, Iran.

Table of contents

1. Experimental Procedure Page
 1-1. General S2
 1-2. Chemicals S2
 1-3. Catalyst preparation S2
 1-3-1. Synthesis of Et-PMO-Me-PrSO3H (1b) S2
 1-3-2. Synthesis of Ph-PMO-Me-PrSO3H (1a) S2
 1-3-3. Preparation of SBA-15-Pr-SH S2
 1-3-4. Preparation of SBA-15-Ph-PrSH S3
 1-3-5. Preparation of SBA-15-PrSO3H S3
 1-3-6. Preparation of SBA-15-Ph-PrSO3H S3
 1-4. Characterization S3
 1-4-1. Et-PMO-Me-PrSH analysis data S4
 1-4-2. Et-PMO-Me-PrSO3H (1b) analysis data S5
 1-4-3. Ph-PMO-Me-PrSO3H (1a) analysis data S7
 1-4-4. Reused Et-PMO-Me-PrSO3H catalyst data at 150 °c S9
 1-4-5. SBA-15-PrSO3H porosimetry data S10
 1-4-6. SBA-15-Ph-PrSO3H porosimetry data S11
 1-5. Characterization of the oils and products S13
 1-6. References S29
1. Experimental Procedure

1-1. General

1H NMR spectra were recorded on commercial instruments (250 MHz and 400 MHz). Chemical shifts were reported in ppm with the solvent resonance as the internal standard (CDCl$_3$: δ= 7.26). Spectra are reported as follows: chemical shift (=δ ppm), multiplicity (s= singlet, d= doublet, t= triplet, q= quartet, m= multiplet), coupling constants (Hz), integration.

13C NMR spectra were collected on commercial instruments (62.90 MHz and 100.60 MHz) with complete proton decoupling. Reagents obtained from commercial sources were used without further purification. Thermal treatments were conducted from room temperature to 800 °C in argon flow using a Pheometric Scientific analyzer.

1-2. Chemicals

BTEB (1,4-bis(triethoxysilyl)benzene), BTEE (1,2-bis(triethoxysilyl)ethane), MPMDS (3-mercaptopropylmethyl dimethoxysilane), tetraethoxysilane (TEOS), 3-mercaptopropyl trimethoxysilane (MPTMS) and triblock co-polymer P123 (E$_{70}$P$_{20}$E$_{70}$) were obtained from Aldrich and used as received.

1-3. Catalyst preparation

1-3-1. Synthesis of Et-PMO-Me-PrSO$_3$H (1b)

In this synthesis procedure, pluronic P123 (1.95 g) was added under vigorous stirring to 70 ml of HCl solution (2N). After complete dissolution of surfactant at 35 °C, BTEE (2.77 g) was added and the agitation was continued for 3h before the dropwise incorporation of MPMDS (0.478 g). The stirring was followed for 24 h at 35 °C. Then the suspension was aged for 24 h at 87 °C. The solid material were separated by filtration, washed with deionized water and dried at room temperature. The surfactant was removed by solvent extraction with anhydrous ethanol in a soxhlet apparatus for 24 h (Entry 1, Table 1). Typically, 0.2 g of extracted material was contacted with 8 g H$_2$O$_2$ (30 wt%) and the suspension was stirred at room temperature for 24 h. After filtration and washing with deionized water and warm ethanol separately, the oxidized samples were acidified in 100 ml 0.1 M H$_2$SO$_4$ solution during 2 h. Next, the samples were washed thoroughly with deionized water until neutral pH, filtered and vacuum dried at 60 °C overnight.

1-3-2. Synthesis of Ph-PMO-Me-PrSO$_3$H (1a)

In a typical one-step synthesis, 0.66 g pluronic P123 was dissolved in 23.6 g deionized water, 0.57 g H$_2$O$_2$ (30wt%), and 0.13 g of HCl (37wt%). Then 0.47 g BTEB and 0.0902 g (30 mol% in total silica precursors) of MPMDS were added to the solution. The resulting mixture was agitated for 2 h at 40 °C and thereafter aged for 24 h at 100 °C. The resulting solid material was filtered and air-dried. To extract the residual block co-polymer, the solid material (0.5 g) was stirred in acetone (60 ml) for 10 h at 56 °C, followed by washing with deionized water. The final products were obtained after drying the samples in oven for 1 day at 100 °C.

1-3-3. Preparation of SBA-15-Pr-SH

The synthesis of SBA-15-Pr-SH has been achieved using known procedure described by Stucky and his co-workers. The procedure involved a synthetic strategy based on cocondensation of tetraethoxysilane (TEOS) and 3-mercaptopropyltrimethoxysilane.
4.0 g of Pluronic P123 (Aldrich, average Mw = 5800) was dissolved in 125 g of 1.9 M HCl solution with stirring at room temperature. The solution was heated to 40 °C before adding 6.83 g TEOS. After 3 h pre-hydrolysis of TEOS, 1.6 g thiol precursor MPTMS was added. The resultant solution was stirred for 20 h at 40 °C, after which the mixture was aged at 100 °C for 24 h under static conditions. The solid was recovered by filtration and air dried at room temperature overnight. The template was removed from the as-synthesized material by washing with ethanol using a Soxhelet apparatus for 24 h.

1-3-4. Preparation of SBA-15-Ph-PrSH

To a suspension of SBA-15-Pr-SH (3 g) in dry toluene PhSi(OEt)₃ (PTES, 4 mmol) was added. The resulting mixture was first stirred at room temperature for 1 h and then refluxed for further 24 h. The solid materials was filtered and successively washed with toluene, EtOH, and Et₂O and dried overnight at 120 °C to afford the corresponding SBA-15-Ph-PrSH.

1-3-5. Preparation of SBA-15-PrSO$_3$H

Typically, 0.3 g of SBA-15-Pr-SH was suspended in 10 g of aqueous 30 wt% H$_2$O$_2$. This suspension was stirred at room temperature in an Ar atmosphere for 24 h. After the oxidation treatment, the resulting solution was filtered and washed separately with water and ethanol. Finally the wet material was suspended in 1M H$_2$SO$_4$ solution for 2 h and then was washed several times with deionized water and ethanol and dried at 60 °C under vacuum overnight to give the corresponding catalyst.

1-3-6. Preparation of SBA-15-Ph-PrSO$_3$H

Conversion of thiol groups of catalyst to sulfonic acid moiety was accomplished by hydrogen peroxide. Typically, 0.3 g of solid hydrophobic material was suspended in 10 g of aqueous 30 wt% H$_2$O$_2$. This suspension was stirred at room temperature in an Ar atmosphere for 24 h. After the oxidation treatment, the resulting solution was filtered and washed separately with water and ethanol. Finally the wet material was suspended in 1M H$_2$SO$_4$ solution for 2 h and then was washed several times with water and ethanol and dried at 60 °C under vacuum overnight to give the corresponding catalyst.

1-4. Characterization

The textural properties of the functionalized mesoporous organosilicas were measured from nitrogen adsorption-desorption isotherms at 77 k with a BELSORB max system. The surface area and pore size distribution were calculated with the BET and BJH methods, respectively. Organic material present in the solids was determined by elemental analysis and the organic composition of the modified mesoporous materials was determined by thermogravimetric analysis (TGA) and differential thermoanalysis (DTA), with heating from room temperature to 800 °C under Argon flow. The ion exchange capacities of the sulfonic acid functionalized mesoporous organosilicas were determined by acid-base titration and pH metery. The TEM image also demonstrate that the mesostructure Et-PMO-Me-PrSO$_3$H (1b) exhibit ordered 2D-hexagonal (p6mm) patterns.
1-4-1. Et-PMO-Me-PrSH analysis data

N\(_2\) adsorption-desorption of Et-PMO-Me-PrSH

BET surface area, \(S_{\text{BET}} = 213\) nm
Pore diameter, \(d_p = 3.5\) nm
Pore volume, \(V_p = 0.24\) cm\(^3\) g\(^{-1}\)

BJH analysis of Et-PMO-Me-PrSH
1-4-2. Et-PMO-Me-PrSO$_3$H (1b) analysis data

$S_{\text{BET}} = 318$ nm
$dp = 3.4$ nm
$V_p = 0.27$ cm3g$^{-1}$
BJH analysis of Et-PMO-Me-PrSO$_3$H catalyst

TGA analysis of Et-PMO-Me-PrSO$_3$H catalyst

DTA diagram for Et-PMO-Me-PrSO$_3$H catalyst
TEM image of Et-PMO-Me-PrSO$_3$H catalyst

1-4-3. Ph-PMO-Me-PrSO$_3$H (1a) analysis data

N_2 adsorption-desorption of Ph-PMO-Me-PrSO$_3$H catalyst
BJH analysis of Ph-PMO-Me-PrSO₃H catalyst

TGA analysis of Ph-PMO-Me-PrSO₃H catalyst

S_{BET} = 404 \text{ nm}
d_p = 2.4 \text{ nm}
V_p = 0.27 \text{ cm}^3 \text{ g}^{-1}
DTA diagram for Ph-PMO-Me-PrSO₃H catalyst

1-4-4. Reused Et-PMO-Me-PrSO₃H catalyst data at 150 °C

N₂ adsorption-desorption of 3rd reused Et-PMO-Me-PrSO₃H catalyst in conditions: T=150 °C, Molar ratio Canola oil/methanol= 1/100, time= 4 h
BJH analysis of 3rd reused Et-PMO-Me-PrSO3H catalyst in conditions: T=150 °c, Molar ratio Canola oil/methanol= 1/100, time= 4 h

1-4-5. SBA-15-PrSO3H porosimetry data

N2 adsorption-desorption of SBA-15-PrSO3H catalyst
1-4-6. SBA-15-Ph-PrSO₃H porosimetry data

BJH analysis of SBA-15-PrSO₃H catalyst

S\text{BET} = 628 \text{ nm}
d_p = 6.2 \text{ nm}
V_p = 0.92 \text{ cm}^3\text{g}^{-1}
BJH analysis of SBA-15-Ph-PrSO$_3$H catalyst

$S_{\text{BET}} = 349$ nm
$dp = 5.4$ nm
$V_p = 0.62$ Cm3g$^{-1}$
1-5. Characterization of the product

1 Canola oil

1H NMR (400 MHz; CDCl$_3$): $\delta_H = 5.27-5.41$ (m, 9H), 4.25-4.31 (dd, $J_1 = 4.4$ Hz, $J_2 = 12$ Hz, 2H), 4.14-4.18 (dd, $J_1 = 5.6$ Hz, $J_2 = 12.00$ Hz, 2H), 2.79 (t, 2H), 2.33 (t, J = 7.5 Hz, 6H), 2.02-2.09 (m, 11H), 1.63 (brs, 6H), 1.27-1.32 (brs, 57H), 0.99 (t, J = 7.5 Hz, 9H); 13C NMR (100.6 MHz, CDCl$_3$): $\delta_C = 173.2, 172.8, 130.2, 130.0, 129.9, 129.7, 129.6, 128.0, 127.9, 68.8, 62.1, 34.1, 34.0, 31.9, 31.5, 29.7, 29.7, 29.6, 29.6, 29.6, 29.5, 29.5, 29.4, 29.4, 29.3, 29.3, 29.2, 29.2, 29.1, 29.1, 29.0, 27.2, 25.6, 24.8, 22.6, 22.6, 14.1

IR (neat): 456, 605, 721, 1103, 1161, 1235, 1371, 1456, 1652, 1745, 2925, 3006, 3461

1HNMR (400 MHz) of Canola oil
\(^1\)C NMR (400 MHz) of Canola oil

IR spectrum of Canola oil (neat)
2 Olive oil

1H NMR (400 MHz; CDCl$_3$): δ_H = 5.20-5.40 (m, 7H), 4.25-4.31 (dd, $J_1 = 4.2$ Hz, $J_2 = 11.7$ Hz, 2H), 4.09-4.16 (dd, $J_1 = 5.8$ Hz, $J_2 = 12.0$ Hz, 2H), 2.72-2.80 (m, 1H), 2.30 (t, $J = 7.8$ Hz, 8H), 1.95-2.10 (m, 12H), 1.55-1.70 (m, 8H), 1.25 (brs, 72H), 0.86 (t, $J = 6.0$ Hz, 12H); 13C NMR (100.6 MHz, CDCl$_3$): δ_C = 173.2, 172.8, 130.2, 129.9, 129.6, 128.0, 127.8, 68.8, 62.0, 34.1, 34.0, 33.9, 31.8, 31.5, 29.7, 29.6, 29.5, 29.3, 29.1, 27.2, 27.1, 25.6, 24.8, 24.6, 14.1

IR (neat): 456, 603, 722, 1161, 1235, 1370, 1457, 1745, 2924, 3002, 3467

1HNMR (400 MHz) of refined olive oil
13CNMR (100.6 MHz) of refined olive oil

IR spectrum of Olive oil (neat)
3 Extracted oil from olive sludge

1HNMR (250 MHz) of Extracted oil from olive sludge

13CNMR (62.9 MHz) of Extracted oil from olive sludge
4 Corn oil

1H NMR (400 MHz; CDCl$_3$): $\delta_H = 5.27$-5.41 (m, 9H), 4.29-4.33 (dd, $J_1 = 4.0$ Hz, $J_2 = 12$ Hz, 2H), 4.14-4.18 (dd, $J_1 = 5.6$ Hz, $J_2 = 12.00$ Hz, 2H), 2.78 (t, $J = 6$ Hz, 3H), 2.32 (t, $J = 7.6$ Hz, 6H), 2.02-2.09 (m, 10H), 1.62 (brs, 6H), 1.27-1.32 (brs, 57H), 0.92 (m, 9H); 13C NMR (100.6 MHz, CDCl$_3$): $\delta_C = 173.2$, 172.8, 130.2, 130.0, 129.9, 129.9, 129.6, 129.6, 128.0, 128.0, 127.8, 68.8, 62.0, 34.1, 34.0, 31.9, 31.9, 31.5, 30.9, 29.7, 29.7, 29.6, 29.6, 29.5, 29.5, 29.3, 29.3, 29.3, 29.2, 29.2, 29.1, 29.1, 29.0, 27.2, 25.6, 24.8, 22.6, 22.6, 14.1

1HNMR (400 MHz) of Corn oil
5 Sunflower oil

1H NMR (400 MHz; CDCl$_3$): $\delta_H = 5.27-5.41$ (m, 10H), 4.29-4.33 (dd, $J_1 = 4.0$ Hz, $J_2 = 12$ Hz, 2H), 4.14-4.18 (dd, $J_1 = 5.6$ Hz, $J_2 = 12.00$ Hz, 2H), 2.78 (t, $J = 6$ Hz, 3H), 2.32 (t, $J = 7.6$ Hz, 6H), 2.02-2.09 (m, 10H), 1.62 (brs, 6H), 1.27-1.32 (brs, 54H), 0.92 (m, 9H); 13C NMR (100.6 MHz, CDCl$_3$): $\delta_C = 173.2$, 172.8, 130.2, 130.0, 129.9, 129.7, 129.6, 128.0, 128.0, 127.9, 68.8, 62.1, 34.2, 34.0, 31.9, 31.9, 31.5, 29.7, 29.7, 29.6, 29.5, 29.5, 29.4, 29.3, 29.3, 29.3, 29.2, 29.2, 29.1, 29.1, 29.0, 27.2, 25.6, 24.8, 22.6, 22.6, 14.1
1HNMR (400 MHz) of Sunflower oil

13CNMR (100.6 MHz) of Sunflower oil
6 Biodiesel 99% from refined olive oil

1H NMR (400 MHz; CDCl$_3$): $\delta_H = 5.33-5.40$ (m, 2H), 3.68 (s, 3H), 2.32 (t, $J = 7.6$ Hz, 2H), 2.00-2.03 (m, 4H), 1.62-1.65 (quin, $J = 6.8$ Hz, 2H), 1.27-1.32 (brs, 22H), 0.89 (m, 3H); 13C NMR (100.6 MHz, CDCl$_3$): $\delta_C = 174.3$, 129.9, 129.7, 51.4, 34.0, 31.9, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 29.1, 29.1, 27.2, 27.1, 24.9, 14.0

1HNMR (400 MHz) of biodiesel 99% from refined olive oil
13CNMR (100.6 MHz) of biodiesel 99% from refined olive oil

IR spectrum of biodiesel 99% from refined olive oil
7 Biodiesel 98% from Canola oil

1H NMR (400 MHz; CDCl$_3$): δ_H= 5.34-5.38 (m, 3H), 3.66 (s, 3H), 2.77 (t, J=6 Hz, 1H), 2.30 (t, J= 7.6 Hz, 2H), 2.00-2.07 (m, 4H), 1.60-1.63 (t, J= 6.4 Hz, 2H), 1.31 (brs, 19H), 0.89 (m, 3H); 13C NMR (100.6 MHz, CDCl$_3$): δ_C= 174.2, 130.1, 129.9, 129.7, 128.0, 127.9, 51.3, 34.0, 31.9, 31.5, 29.7, 29.6, 29.5, 29.5, 29.4, 29.3, 29.3, 29.2, 29.1, 29.1, 29.1, 27.2, 27.2, 27.1, 25.6, 24.9, 14.0

1HNMR (400 MHz) of canola biodiesel (98%)
8 biodiesel 93% from olive sludge extracted oil

1H NMR (400 MHz; CDCl₃): δ$_H$ = 5.32-5.40 (m, 2H), 3.68 (s, 3H), 2.32 (t, J = 7.6 Hz, 2H), 2.00-2.03 (m, 4H), 1.62-1.65 (quin, J = 6.8 Hz, 2H), 1.27-1.32 (brs, 23H), 0.91 (m, 3H); 13C NMR (100.6 MHz, CDCl₃): δ$_C$ = 174.3, 130.2, 130.0, 129.7, 128.0, 127.9, 51.4, 34.1, 31.9, 31.5, 29.7, 29.7, 29.6, 29.5, 29.4, 29.3, 29.3, 29.2, 29.1, 29.1, 29.1, 27.2, 27.1, 25.6, 24.9, 14.0
1H NMR (400 MHz) of biodiesel (93%) from olive sludge extracted oil

13C NMR (100.6 MHz) of biodiesel (93%) from olive sludge extracted oil
9 Biodiesel from Corn Oil

1H NMR (100.6 MHz) of Corn biodiesel (95%)
10 Biodiesel of sunflower oil

1HNMR (100.6 MHz) of Sunflower biodiesel (94%)

11 Glycerol

1H NMR (400 MHz; DMSO): $\delta_H = 3.27-3.31$ (dd, $J_1 = 5.6$ Hz, $J_2 = 10.8$ Hz, 2H), 3.35-3.39 (dd, $J_1 = 5.6$, $J_2 = 10.8$ Hz, 2H), 3.40-3.46 (quin, $J = 5.6$ Hz, 1H); 13C NMR (100.6 MHz, DMSO): $\delta_C = 72.9, 63.5$

IR (neat): 801, 856, 920, 1041, 1104, 1453, 1646, 2128, 2500-3800 (broad)
1HNMR (400 MHz) of Glycerol (by-product of biodiesel production)

13CNMR (1006 MHz) of Glycerol (by-product of biodiesel production)
IR spectrum of Glycerol (by-product of biodiesel production)

References
