Multi-enzymatic cascade synthesis of D-fructose 6-phosphate and deoxy analogs as substrates for high-throughput aldolase screening

Wolf-Dieter Fessner,*a Dirk Heyl*a and Madhura Ralea

a Technische Universität Darmstadt, Institut für Organische Chemie und Biochemie, Petersenstr. 22, 64287 Darmstadt, Germany. Fax: +49 6151 166636; Tel: +49 6151 166666; E-mail: fessner@tu-darmstadt.de

Electronic Supplementary Information

1) ¹H NMR spectrum of 1-deoxy-D-fructose 6-phosphate (500 MHz, D₂O)

2) ¹³C NMR spectrum of 1-deoxy-D-fructose 6-phosphate (125 MHz, D₂O) overview

3) ¹³C NMR spectrum of 1-deoxy-D-fructose 6-phosphate (125 MHz, D₂O), expanded signals

4) Reaction control by t.l.c. for routes A and B
1H-NMR 1-deoxy-fructose-6-phosphate in D$_2$O (500 MHz)
13C-NMR spectrum of 1-deoxy-fructose-6-phosphate in D$_2$O (125 MHz)
13C-NMR spectrum of 1-deoxy-fructose-6-phosphate in D$_2$O (125 MHz)

13C NMR (126 MHz, D$_2$O) δ 80.02 (d, $J = 8.2$ Hz), 79.02 (d, $J = 8.4$ Hz), 69.62 (d, $J = 7.5$ Hz), 66.08 (d, $J = 5.0$ Hz), 65.84 (d, $J = 5.0$ Hz), 64.39 (d, $J = 4.5$ Hz).
Documentation of reaction control by t.l.c. for routes A and B

Route A: aldol-aldol cascade

Start	1 h	2 days
Fru1,6P₂ | | 1dFru6P

Route B: aldol-kinase cascade

Start	12 h	24 h	4 days
1dFru | | | 1dFru6P
ATP | ADP | ATP