Heteropoly acid catalysts for the synthesis of fragrance compounds from biorenewables: isomerization of limonene oxide

Vinícius V. Costa, Kelly A. da Silva Rocha, Ivan V. Kozhevnikov, Elena F. Kozhevnikova and Elena V. Gusevskaya

Departamento de Química, Universidade Federal de Minas Gerais 31270-901, Belo Horizonte, MG, Brazil. Fax: (+)55 31 34095700; Tel: (+)55 31 34095741. E-mail: elena@ufmg.br

Departamento de Química, Universidade Federal de Ouro Preto, 35400-000, Ouro Preto, MG, Brazil

Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK.

Supplementary Information

Table of contents

Catalyst characterization data-------------------------------S2
Product characterization data -----------------------------S3-S7
Catalyst characterization data

Fig. S1. 31P MAS NMR spectrum for 20%H$_3$PW$_{12}$O$_{40}$/SiO$_2$.

Fig. S2. XRD patterns for H$_3$PW$_{12}$O$_{40}$ (1) and 20%H$_3$PW$_{12}$O$_{40}$/SiO$_2$ (2).

The acid properties of the catalysts under study (H$_3$PW$_{12}$O$_{40}$, H$_3$PW$_{12}$O$_{40}$/SiO$_2$ and Cs$_{2.5}$H$_{0.5}$PW$_{12}$O$_{40}$) have been discussed in detail elsewhere,35,36 including the number and the nature of acid sites and their strength.
Product characterization data

Fig. S3. Mass spectra of compounds 2a, 2b, 3, 4, 5 and 6 (the structures are shown on Scheme 1).
Fig. S4. 1H and 13C spectra of compound 2a.
Fig. S5. 1H and 13C spectra of compound 2b (the solution also contains 2a: $2a/2b \approx 1/2$).
Fig. S6. 1H and 13C spectra of compound 3.
Fig. S7. 1H and 13C spectra of compound 4.