Selective dehydrogenation of aromatic alcohols photocatalyzed by Pd-deposited CdS-TiO₂ in aqueous solution using visible light

Shinya Higashimoto,*a Yoshimi Tanaka,a Ryo Ishikawa,a Masashi Azuma,a Hiroyoshi Ohue* and Yoshihisa Sakatab

a Department of Applied Chemistry, College of Engineering, Osaka Institute of Technology
5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
b Graduate School of Science and Engineering, Yamaguchi University
2-16-1 Tokiwadai, Ube 755-8611, Japan

Author E-mail address: higashimoto@chem.oit.ac.jp (Shinya Higashimoto)
Figure S1 Effect of CdS amounts (x wt.%) on the formation of benzaldehyde for the dehydrogenation of benzyl alcohol. Reaction conditions: 0.4Pd/xCdS-TiO$_2$ catalyst (50 mg); benzyl alcohol (50 µmol); argon (1 atm); blue LED ($\lambda_{max} = 460$ nm, ca. 10 mW/cm2); reaction time (2h).
Figure S2 Effect of Pd amounts (y wt.%) on the formation of benzaldehyde for the dehydrogenation of benzyl alcohol. Reaction conditions: γPd/15CdS-TiO₂ catalyst (50 mg); benzyl alcohol (50 µmol); argon (1 atm); blue LED (λ_{max} = 460 nm, ca. 10 mW/cm²); reaction time (2h).
Figure S3 XRD patterns of (a) TiO₂ and (b) 0.4Pd/15CdS-TiO₂.
Figure S4 XPS spectrum of the Pd 3d5/2 peaks of 0.4Pd/15CdS-TiO₂. The spectrum can be deconvoluted into two gauss functions peaked at 336.3 and 335.3 eV.