SUPPORTING INFORMATION FOR:

Characterization and Performance of Electrostatically Adsorbed Ru-Hbpp Water Oxidation Catalysts

[a] Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain

[b] Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, E-43007 Tarragona, Spain.

CORRESPONDING AUTHOR FOOTNOTE: Fax: 34 977 902 228; Tel: 34977 902 200; E-mail: allobet@iciq.es. (A.L.) Fax: 34 93 581 3101; Tel: 34 93 586 1606; Email: lluis.escriche@uab.cat
Fax: 34 93 581 3101; Tel: 34 93 586 8295; Email: xavier.sala@uab.cat
Figure S1. 1D and 2D NMR spectra (400 MHz, 298 K, acetonitrile-d$_3$) for L1$^+$: (a) schematic representation, (b) 1H NMR, (c) COSY, (d) 13C-1H NMR, (e) HSQC NMR (aromatic region), (f) HMBC NMR (aromatic region).
Figure S2. Mercury plot of the unit cell of 1^+ (counteranions have been omitted for the sake of clarity).
Figure S3. Mercury plot of the unit cell of 2^{4+} (counteranions have been omitted for the sake of clarity).

Figure S4. 1D and 2D NMR spectra (400 MHz, 298 K, acetone-d_6) for complex 2^{4+}: (a) 1H NMR, (b) COSY, (c) 13C-1H NMR, (d) HSQC NMR (aromatic region), (e) HMBC NMR (aromatic region).

a)
Figure S5. 1D and 2D NMR spectra (250 MHz, 298 K, acetone-\textit{d}_6) for complex 34+: (a) 1H NMR with resonance assignment, (b) COSY, (c) 13C-{1H} NMR, (d) HSQC NMR (aromatic region) (e) HMBC NMR (aromatic region).
Figure S6. Cyclic voltammogram for complex 1⁺ in 0.1 M n-Bu₄NPF₆ in acetonitrile at 100 mV/s scan rate. Glassy carbon electrode is used as working electrode and the potential is measured vs. SSCE.
Figure S7. Cyclic voltammogram for [RuIIICl3(trpy)] in 0.1 M n-Bu4NPF6 in acetonitrile at 100 mV/s scan rate. Glassy carbon electrode is used as working electrode and the potential is measured vs. SSCE.

Figure S8. Cyclic voltammogram for the acetato-bridged complex 34+ in 0.1 M n-Bu4NPF6 in acetone at 100 mV/s scan rate. Glassy carbon electrode is used as working electrode and the potential is measured vs. SSCE.
Figure S9. UV-Vis spectrum of washing acetone for Silica-$2^{4+}/3^{4+}$.

Figure S10. Diffuse reflectance UV-vis spectra of Silica (black line) and Silica-2^{4+} (orange line).
Figure S11. UV-vis spectra of a FTO-TiO$_2$-2$^{4+}$ film with (red line) and without (purple line) previous overnight activation at pH=12.

Figure S12. Cyclic voltammograms for FTO-TiO$_2$-2$^{4+}$ in 0.1 M n-Bu$_4$NPF$_6$ in CH$_2$Cl$_2$ at 50 (a) and 100 (b) mV/s scan rate. FTO is used as working electrode and the potential is measured vs. SSCE.
Figure S13. UV-vis monitoring (aqueous face) of the stability of the generated FTO-TiO₂-2⁺ films when soaked at pH = 1 (a), pH = 7 (b) and pH = 12 (c) aqueous solutions.
Figure S14. UV-vis spectra of a FTO-Nafion film (blue line) and FTO-Nafion-24+ (red line).
Figure S15. Top: Chemically triggered water oxidation with 4^{5+} (1 mM) at pH = 1.0 in 0.1 M triflic acid solution in the presence of $(\text{NH}_4)_2\text{Ce}^{IV}(\text{NO}_3)_6$ (100 mM). (a) Manometric measurement. (b) On-line mass spectrometry (O_2 evolution, red line; CO_2 evolution, blue line). Bottom: Chemically triggered water oxidation with Silica-4^{5+} (0.650 g, 1.82×10^{-3} mmol/g) at pH = 1.0 in 0.1 M triflic acid solution in the presence of $(\text{NH}_4)_2\text{Ce}^{IV}(\text{NO}_3)_6$ (100 mM). (c) manometric measurement (d) on-line Mass Spectrometry (O_2 evolution, red line; CO_2 evolution, blue line).
Figure S16. Chemically triggered water oxidation with FTO-Nafion-4^5+ (1 mM) at pH =1.0 in 0.1 M triflic acid solution in the presence of (NH₄)₂Ce^{IV}(NO₃)₆ (100 mM).
Figure S17. Cyclic voltammetry for FTO-TiO$_2$-2$^{4+}$ before (a) and after (b) CPE at pH = 12 (NaOH 0.01M in water). Potential measured vs. Ag/AgCl.
Figure S18. Controlled Potential Electrolysis (CPE) of FTO-TiO$_2$-4$^{5+}$. $E = 1.1$ V for 8h. FTO used as working electrode. Potential measured vs. Ag/AgCl.

![Graph showing electrolysis data](image1)

Figure S19. Clark electrode profile during the CPE of FTO-TiO$_2$-4$^{5+}$. $E = 1.1$ V for 8h.

![Graph showing electrode profile](image2)
Figure S20. UV-vis spectra of the reaction vessel solution after CPE of FTO-TiO$_2$$^+$.

![UV-vis spectra](image)

Figure S21. Zoom of experimental (right side) and theoretical (left side) mass spectra for complex 1$^+$.

![Zoomed mass spectra](image)
Figure S22. Mass spectrum for complex 2^{4+}.

Figure S23. Zoom of experimental (right side) and theoretical (left side) mass spectra for complex 2^{4+}.
Figure S24. Mass spectrum for complex 3^{4+}.

![Mass spectrum for complex 3^{4+}](image1)

Figure S25. Zoom of experimental (right side) and theoretical (left side) mass spectra for complex 3^{4+}.

![Zoom of experimental (right side) and theoretical (left side) mass spectra for complex 3^{4+}](image2)
Figure S26. Calcination ramps for the FTO-TiO₂ preparation.

Scheme S1. Procedure for the production of Nafion films over FTO electrodes and the subsequent attachment of ²⁺ and ³⁺ to prepare FTO-Nafion-²⁺ and FTO-Nafion-³⁺. (1-2) Deposition and drying of the Nafion solution. (3-5) Attachment of the catalyst onto the FTO-Nafion surface.
Scheme S2. Schematic representation of the proposed interaction between a FTO-Nafion support and catalyst 2^{4+}.

Scheme S3. Representation of activated (red color) and non-activated (green color) methylenic moieties. Top: $\{\text{[Ru}^{II}(\text{H}_2\text{O})(\text{trpy})\}_2(\mu\text{-bpp-Bz})\}_3^{3+}$ and $\text{TiO}_2\text{-}[\text{[Ru}^{II}(\text{H}_2\text{O})\text{ (trpy)}\}_2(\mu\text{-bpp-Ra})\}_3^{3+}$. Bottom: 4^{5+} and $\text{SiO}_2\cdot4^{5+}$.

Electronic Supplementary Material (ESI) for Catalysis Science & Technology
This journal is © The Royal Society of Chemistry 2013
Scheme S4. Electrochemical cell formed by an anode (compartment A), which contains a FTO-TiO$_2$.2$^{4+}$ film and a Clark electrode and where the water oxidation reaction occurs; a cathode (compartment C), which contains the counter and the reference electrodes and where the reduction of protons to hydrogen takes place, and frit (membrane B) permeable to protons.
Scheme S5. Schematic representation of the proposed exchange of the chlorido-bridged ion for two water molecules in FTO-Nafion-2⁴⁺.

![Scheme S5](image)

Table S1. Crystallographic data for complex 1⁺.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C27 H22 Cl3 N6 O6 Ru</td>
</tr>
<tr>
<td>Formula weight</td>
<td>733.93</td>
</tr>
<tr>
<td>Temperature</td>
<td>100(2)K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>Pbc (bca)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 19.3405(8) Å, b = 11.3692(3) Å, c = 25.8709(8) Å</td>
</tr>
<tr>
<td>Volume</td>
<td>5688.6(3) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.714 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.887 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>2952</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.50 x 0.20 x 0.10 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.89 to 33.07 °</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-18 <=h<=29, -17 <=k<=13, -21 <=l<=36</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>26492</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>9571 [R(int) = 0.0552]</td>
</tr>
<tr>
<td>Completeness to theta =33.07 °</td>
<td>0.886 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Empirical</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9165 and 0.6653</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F2</td>
</tr>
</tbody>
</table>
Table S2. Crystallographic data for complex 2⁺.
Empirical formula C268 H204 Cl4 F96 N48 P16 Ru8
Formula weight 7366.67
Temperature 100(2)K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group P2₁/n
Unit cell dimensions
a = 26.0256(14) Å a = 90.00 °.
b = 52.120(3) Å b = 91.920(2) °.
c = 28.8286(14) Å g = 90.00 °.
Volume 39083(4) Å³
Z 4
Density (calculated) 1.252 Mg/m³
Absorption coefficient 0.486 mm⁻¹
F(000) 14688
Crystal size 0.35 x 0.15 x 0.15 mm³
Theta range for data collection 0.78 to 24.78 °.
Index ranges -30 <= h <= 30, -61 <= k <= 61, -32 <= l <= 33
Reflections collected 480821
Independent reflections 65635 [R(int) = 0.1010]
Completeness to theta ~24.78 ° 0.977 %
Absorption correction Empirical
Max. and min. transmission 0.9307 and 0.8483
Refinement method Full-matrix least-squares on F²
Data / restraints / parameters 65635 / 30 / 3961
Goodness-of-fit on F² 1.033
Final R indices [I>2sigma(I)] R1 = 0.0743 , wR2 = 0.1663
R indices (all data) R1 = 0.1179 , wR2 = 0.1816
Largest diff. peak and hole 1.319 and -0.995 e.Å⁻³
Table S3. Selected interatomic distances (Å) and angles (°) for complex 1⁺.

<table>
<thead>
<tr>
<th>BOND DISTANCES</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru(1)-N(3)</td>
<td>2.073(2)</td>
<td>Ru(1)-N(1)</td>
<td>2.080(2)</td>
</tr>
<tr>
<td>Ru(1)-N(2)</td>
<td>1.961(2)</td>
<td>Ru(1)-Cl(3)</td>
<td>2.3429(6)</td>
</tr>
<tr>
<td>Ru(1)-Cl(2)</td>
<td>2.3787(6)</td>
<td>Ru(1)-Cl(1)</td>
<td>2.3435(6)</td>
</tr>
<tr>
<td>ANGLES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(3)-Ru(1)-N(1)</td>
<td>N(3)-Ru(1)-N(2)</td>
<td>N(3)-Ru(1)-N(2)</td>
<td>79.51(8)</td>
</tr>
<tr>
<td>N(1)-Ru(1)-N(2)</td>
<td>80.10(8)</td>
<td>N(2)-Ru(1)-Cl(3)</td>
<td>91.02(6)</td>
</tr>
<tr>
<td>N(1)-Ru(1)-Cl(3)</td>
<td>88.86(6)</td>
<td>N(2)-Ru(1)-Cl(3)</td>
<td>91.02(6)</td>
</tr>
<tr>
<td>N(3)-Ru(1)-Cl(2)</td>
<td>101.51(6)</td>
<td>N(1)-Ru(1)-Cl(2)</td>
<td>98.87(6)</td>
</tr>
<tr>
<td>N(2)-Ru(1)-Cl(2)</td>
<td>178.94(6)</td>
<td>C(3)-Ru(1)-Cl(2)</td>
<td>92.22(2)</td>
</tr>
<tr>
<td>N(3)-Ru(1)-Cl(1)</td>
<td>86.90(6)</td>
<td>N(1)-Ru(1)-Cl(1)</td>
<td>92.12(6)</td>
</tr>
<tr>
<td>N(2)-Ru(1)-Cl(1)</td>
<td>88.84(6)</td>
<td>C(3)-Ru(1)-Cl(1)</td>
<td>176.52(2)</td>
</tr>
<tr>
<td>Cl(2)-Ru(1)-Cl(1)</td>
<td>90.93(2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S4. Selected interatomic distances (Å) and angles (°) for complex 2⁺ (four independent molecules: A, B, C & D).

<table>
<thead>
<tr>
<th>BOND DISTANCES</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru1A-N2A</td>
<td>1.978(5)</td>
<td>Ru1C-N2C</td>
<td>1.958(5)</td>
</tr>
<tr>
<td>Ru1A-N6A</td>
<td>2.004(4)</td>
<td>Ru1C-N6C</td>
<td>1.996(5)</td>
</tr>
<tr>
<td>Ru1A-N3A</td>
<td>2.060(5)</td>
<td>Ru1C-N5C</td>
<td>2.048(4)</td>
</tr>
<tr>
<td>Ru1A-N5A</td>
<td>2.063(4)</td>
<td>Ru1C-N1C</td>
<td>2.070(5)</td>
</tr>
<tr>
<td>Ru1A-N1A</td>
<td>2.075(4)</td>
<td>Ru1C-N3C</td>
<td>2.074(5)</td>
</tr>
<tr>
<td>Ru1A-C1A</td>
<td>2.4592(14)</td>
<td>Ru1C-C1IC</td>
<td>2.4621(15)</td>
</tr>
<tr>
<td>Ru2A-C1A</td>
<td>2.4850(15)</td>
<td>Ru2C-C1IC</td>
<td>2.4597(15)</td>
</tr>
<tr>
<td>Ru2A-N10A</td>
<td>1.967(5)</td>
<td>Ru2C-N10C</td>
<td>1.962(5)</td>
</tr>
<tr>
<td>Ru2A-N7A</td>
<td>2.008(5)</td>
<td>Ru2C-N7C</td>
<td>1.992(5)</td>
</tr>
<tr>
<td>Ru2A-N9A</td>
<td>2.055(5)</td>
<td>Ru2C-N9C</td>
<td>2.061(5)</td>
</tr>
<tr>
<td>Ru2A-N8A</td>
<td>2.056(4)</td>
<td>Ru2C-N8C</td>
<td>2.068(5)</td>
</tr>
<tr>
<td>Ru2A-N11A</td>
<td>2.067(5)</td>
<td>Ru2C-N11C</td>
<td>2.072(5)</td>
</tr>
<tr>
<td>Ru1B-N2B</td>
<td>1.968(4)</td>
<td>Ru1D-N2D</td>
<td>1.957(5)</td>
</tr>
<tr>
<td>Ru1B-N6B</td>
<td>2.005(5)</td>
<td>Ru1D-N6D</td>
<td>1.993(4)</td>
</tr>
<tr>
<td>Ru1B-N3B</td>
<td>2.055(5)</td>
<td>Ru1D-N5D</td>
<td>2.059(5)</td>
</tr>
<tr>
<td>Ru1B-N5B</td>
<td>2.064(4)</td>
<td>Ru1D-N1D</td>
<td>2.064(5)</td>
</tr>
<tr>
<td>Ru1B-N1B</td>
<td>2.080(4)</td>
<td>Ru1D-N3D</td>
<td>2.069(5)</td>
</tr>
<tr>
<td>Ru1B-C1B</td>
<td>2.4546(14)</td>
<td>Ru1D-C1ID</td>
<td>2.4655(15)</td>
</tr>
<tr>
<td>Ru2B-C1B</td>
<td>2.4596(14)</td>
<td>Ru2D-C1ID</td>
<td>2.4536(14)</td>
</tr>
<tr>
<td>Ru2B-N10B</td>
<td>1.975(5)</td>
<td>Ru2D-N10D</td>
<td>1.962(4)</td>
</tr>
<tr>
<td>Ru2B-N7B</td>
<td>2.012(4)</td>
<td>Ru2D-N7D</td>
<td>2.007(5)</td>
</tr>
<tr>
<td>Ru2B-N11B</td>
<td>2.058(5)</td>
<td>Ru2D-N8D</td>
<td>2.053(5)</td>
</tr>
<tr>
<td>Ru2B-N9B</td>
<td>2.069(5)</td>
<td>Ru2D-N11D</td>
<td>2.062(5)</td>
</tr>
<tr>
<td>Ru2B-N8B</td>
<td>2.071(5)</td>
<td>Ru2D-N9D</td>
<td>2.063(5)</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
</tr>
</tbody>
</table>

ANGLES

<p>| N2A-Ru1A-N6A | 177.5(2) | N2C-Ru1C-N6C | 177.48(19) |
| N2A-Ru1A-N3A | 78.96(19) | N2C-Ru1C-N5C | 102.6(2) |
| N6A-Ru1A-N3A | 98.79(19) | N6C-Ru1C-N5C | 76.7(2) |
| N2A-Ru1A-N5A | 105.00(19) | N2C-Ru1C-N1C | 79.3(2) |
| N6A-Ru1A-N5A | 76.14(18) | N6C-Ru1C-N1C | 98.31(19) |
| N3A-Ru1A-N5A | 95.85(18) | N5C-Ru1C-N1C | 91.25(19) |
| N2A-Ru1A-N1A | 78.83(19) | N2C-Ru1C-N3C | 79.14(19) |
| N6A-Ru1A-N1A | 103.45(19) | N6C-Ru1C-N3C | 103.28(19) |
| N3A-Ru1A-N1A | 157.74(19) | N5C-Ru1C-N3C | 91.44(18) |
| N5A-Ru1A-N1A | 88.47(17) | N1C-Ru1C-N3C | 158.3(2) |
| N2A-Ru1A-C1A | 90.99(14) | N2C-Ru1C-C1C | 92.55(14) |
| N6A-Ru1A-C1A | 88.03(13) | N6C-Ru1C-C1C | 88.13(13) |
| N3A-Ru1A-C1A | 90.54(14) | N5C-Ru1C-C1C | 164.82(16) |
| N5A-Ru1A-C1A | 163.64(14) | N1C-Ru1C-C1C | 91.92(14) |
| N1A-Ru1A-C1A | 91.29(13) | N3C-Ru1C-C1C | 91.08(13) |
| Ru1A-C1A-Ru2A | 104.06(5) | Ru2C-C1C-Ru1C | 103.89(5) |
| N10A-Ru2A-N7A | 175.3(2) | N10C-Ru2C-N7C | 177.3(2) |
| N10A-Ru2A-N9A | 80.0(2) | N10C-Ru2C-N9C | 79.66(19) |
| N7A-Ru2A-N9A | 95.6(2) | N7C-Ru2C-N9C | 97.92(19) |
| N10A-Ru2A-N8A | 100.7(2) | N10C-Ru2C-N8C | 104.7(2) |
| N7A-Ru2A-N8A | 77.4(2) | N7C-Ru2C-N8C | 76.6(2) |
| N9A-Ru2A-N8A | 89.4(2) | N9C-Ru2C-N8C | 93.50(19) |
| N10A-Ru2A-N11A | 79.5(2) | N10C-Ru2C-N11C | 78.70(19) |
| N7A-Ru2A-N11A | 104.8(2) | N7C-Ru2C-N11C | 103.7(2) |
| N9A-Ru2A-N11A | 159.4(2) | N9C-Ru2C-N11C | 158.33(19) |
| N8A-Ru2A-N11A | 92.1(2) | N8C-Ru2C-N11C | 90.85(19) |
| N10A-Ru2A-C1A | 95.24(14) | N10C-Ru2C-C1C | 90.43(14) |
| N7A-Ru2A-C1A | 86.75(15) | N7C-Ru2C-C1C | 88.31(14) |
| N9A-Ru2A-C1A | 94.15(14) | N9C-Ru2C-C1C | 90.25(14) |
| N8A-Ru2A-C1A | 164.04(15) | N8C-Ru2C-C1C | 164.84(15) |
| N11A-Ru2A-C1A | 89.99(14) | N11C-Ru2C-C1C | 91.06(13) |
| N2B-Ru1B-N6B | 178.08(19) | N2D-Ru1D-N6D | 177.3(2) |
| N2B-Ru1B-N3B | 79.10(18) | N2D-Ru1D-N5D | 101.2(2) |
| N6B-Ru1B-N3B | 99.41(18) | N6D-Ru1D-N5D | 77.3(2) |
| N2B-Ru1B-N5B | 104.83(18) | N2D-Ru1D-N1D | 79.5(2) |
| N6B-Ru1B-N5B | 76.46(19) | N6D-Ru1D-N1D | 98.28(19) |
| N3B-Ru1B-N5B | 95.27(18) | N5D-Ru1D-N1D | 86.8(2) |
| N2B-Ru1B-N1B | 79.19(17) | N2D-Ru1D-N3D | 79.0(2) |
| N6B-Ru1B-N1B | 102.30(18) | N6D-Ru1D-N3D | 103.1(2) |
| N3B-Ru1B-N1B | 158.28(18) | N5D-Ru1D-N3D | 94.8(2) |
| N5B-Ru1B-N1B | 89.67(18) | N1D-Ru1D-N3D | 158.4(2) |
| N2B-Ru1B-C1B | 90.68(13) | N2D-Ru1D-C1D | 94.59(15) |
| N6B-Ru1B-C1B | 88.08(14) | N6D-Ru1D-C1D | 86.96(14) |
| N3B-Ru1B-C1B | 89.08(13) | N5D-Ru1D-C1D | 164.11(17) |</p>
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N5B-Ru1B-Cl1B</td>
<td>164.42(13)</td>
</tr>
<tr>
<td>N1B-Ru1B-Cl1B</td>
<td>91.79(13)</td>
</tr>
<tr>
<td>Ru1B-Cl1B-Ru2B</td>
<td>104.42(5)</td>
</tr>
<tr>
<td>N10B-Ru2B-N7B</td>
<td>177.47(18)</td>
</tr>
<tr>
<td>N10B-Ru2B-N11B</td>
<td>79.72(19)</td>
</tr>
<tr>
<td>N7B-Ru2B-N11B</td>
<td>97.89(18)</td>
</tr>
<tr>
<td>N10B-Ru2B-N9B</td>
<td>78.92(18)</td>
</tr>
<tr>
<td>N7B-Ru2B-N9B</td>
<td>103.49(17)</td>
</tr>
<tr>
<td>N11B-Ru2B-N9B</td>
<td>158.59(18)</td>
</tr>
<tr>
<td>N10B-Ru2B-N8B</td>
<td>103.97(19)</td>
</tr>
<tr>
<td>N7B-Ru2B-N8B</td>
<td>76.80(19)</td>
</tr>
<tr>
<td>N11B-Ru2B-N8B</td>
<td>90.94(18)</td>
</tr>
<tr>
<td>N9B-Ru2B-N8B</td>
<td>92.79(19)</td>
</tr>
<tr>
<td>N10B-Ru2B-Cl1B</td>
<td>91.61(13)</td>
</tr>
<tr>
<td>N7B-Ru2B-Cl1B</td>
<td>87.57(12)</td>
</tr>
<tr>
<td>N11B-Ru2B-Cl1B</td>
<td>90.44(13)</td>
</tr>
<tr>
<td>N9B-Ru2B-Cl1B</td>
<td>91.59(13)</td>
</tr>
<tr>
<td>N8B-Ru2B-Cl1B</td>
<td>164.35(15)</td>
</tr>
<tr>
<td>N1D-Ru1D-Cl1D</td>
<td>93.50(14)</td>
</tr>
<tr>
<td>N3D-Ru1D-Cl1D</td>
<td>90.76(15)</td>
</tr>
<tr>
<td>Ru2D-Cl1D-Ru1D</td>
<td>104.85(5)</td>
</tr>
<tr>
<td>N10D-Ru2D-N7D</td>
<td>178.92(2)</td>
</tr>
<tr>
<td>N10D-Ru2D-N8D</td>
<td>104.32(2)</td>
</tr>
<tr>
<td>N7D-Ru2D-N8D</td>
<td>76.82(2)</td>
</tr>
<tr>
<td>N10D-Ru2D-N11D</td>
<td>79.01(19)</td>
</tr>
<tr>
<td>N7D-Ru2D-N11D</td>
<td>100.91(19)</td>
</tr>
<tr>
<td>N8D-Ru2D-N11D</td>
<td>94.73(19)</td>
</tr>
<tr>
<td>N10D-Ru2D-N9D</td>
<td>79.50(18)</td>
</tr>
<tr>
<td>N7D-Ru2D-N9D</td>
<td>100.59(18)</td>
</tr>
<tr>
<td>N8D-Ru2D-N9D</td>
<td>89.59(19)</td>
</tr>
<tr>
<td>N11D-Ru2D-N9D</td>
<td>158.49(18)</td>
</tr>
<tr>
<td>N10D-Ru2D-Cl1D</td>
<td>91.47(14)</td>
</tr>
<tr>
<td>N7D-Ru2D-Cl1D</td>
<td>87.48(14)</td>
</tr>
<tr>
<td>N8D-Ru2D-Cl1D</td>
<td>163.97(15)</td>
</tr>
<tr>
<td>N11D-Ru2D-Cl1D</td>
<td>91.21(13)</td>
</tr>
<tr>
<td>N9D-Ru2D-Cl1D</td>
<td>90.33(14)</td>
</tr>
</tbody>
</table>