Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2014

Observation of Guanidine-Carbon Dioxide Complexation in Solution and Its Role in Reaction of Carbon Dioxide and Propargylamines

Rachel Nicholls, Simon Kaufhold and Bao N. Nguyen*

General Information

Anhydrous solvents were obtained by expression through an activated alumina column built after procedure described by Grubbs.¹ All other compounds and anhydrous solvents were purchased from Sigma Aldrich and VWR, and used as supplied without any further purification. Unless otherwise specified, CO_2 was of research grade from BOC, and was dried by passing through a silica gel drying tube before use.

NMR spectra were recorded in chloroform-*d* on Bruker AV400 spectrometers. Chemical shifts were calibrated using the chloroform signal.

Compound **1a** was prepared according to Gabriele and Costa.² MTBD.HCl was prepared according to Joseph *et al.*³

Complexation Experiments

Typical procedure: A MultiMaxIRTM reactor was cleaned and dried before being flushed with nitrogen for 10 minutes. Anhydrous THF (20 mL) was introduced via a septum, followed by the organic base (20 μ L or 20 mg in the case of DABCO). The solution was stirred at 25 °C and 750 rpm for 10 minutes. Collection of IR spectra for the 500-4000 cm⁻¹ range was started. Spectra were collected every 30 seconds, each consisted of 44 scans, at 8 cm⁻¹ resolution. After 300 seconds, CO₂ was introduced via a balloon and a separated needle to facilitate the replacement of nitrogen with CO₂. When relevant, addition of EtOH (2 mL) or water (50 μ L) was carried out after an additional 300 seconds.

Acetonitrile was found to be unsuitable for the experiment due to significant precipitation upon treating TBD and MTBD with CO₂.

 $TBD + CO_2$

 $MTBD + CO_2$

TMG (20 µL)

DABCO (20 mg)

TEA (20 µL)

IR freq. 1620, 1603 cm⁻¹

Computational Study

Molecular modelling was performed using Gaussian 09 package⁴ on the Chemistry SCAN (Supercomputer at Night) Cluster at Imperial College London. The optimised structure of some amine/guanidine-CO₂ complexes are displayed below.

TBD.CO₂ Mulliken charges map

TBD.CO₂ Electrostatic potential map

TMG.CO₂ MP2/6-311G(d,p)

MTBD.CO₂ Mulliken charges map

TBD.CO₂ Electrostatic potential map

DABCO.CO₂ MP2/6-311G(d,p)

Typical Procedure for Preliminary Small-Scale Catalytic Reaction between 1a and CO2

An EndeavorTM multi-well hydrogenator from Biotage® was adapted for reactions using research grade CO₂ supplied by BOC (10 bar, containing < 0.5% H₂O, which was then passed through a silica gel drying column before use) at low to medium pressure. A dry reaction vessel containing **1a** (50 mg, 0.29 mmole) was charged with dry solvent (1 mL) and assembled into the equipment. The reaction was purged three times with nitrogen and pressurized with CO₂ (2 bar) for 15 minutes. After the pressure equilibrated, the vessel was heated to 50 °C and the pressure of CO₂ raised to 5 bar. The reaction was allowed to equilibrate for 15 minutes before stirring (500 rpm) is started. After 18 hours, the reaction vessel was purged with nitrogen and a crude ¹H NMR spectrum was measured after solvent evaporation. The crude yield was determined by normalising the integration of the benzyl CH₂ signals in the product and the starting material.

The product of MTBD/MeCN reaction was purified with flash chromatography on silica gel using EtOAc/DCM (60:40) as eluent, giving product 2a (0.51 g) in 81% isolated yield.

¹H NMR (400 MHz, CDCl₃) δ 7.38-7.25 (m, 5H), 4.69 (d, *J* 3.4, 1H), 4.47 (s, 2H), 4.24 (d, *J* 3.4, 1H), 1.33 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 155.0, 137.7, 128.8, 127.9, 127.9, 84.3, 61.7, 44.2, 27.8.

Lit.⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.35 (m, 5H), 4.67 (d, *J* 3.2, 1H), 4.45 (s, 2H), 4.21 (d, *J* 3.2, 1H), 1.30 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 160.8, 154.8, 137.6, 128.6, 127.7, 127.7, 84.1, 61.5, 44.1, 27.6.

The spectra are included at the end of this ESI.

The preliminary results are summarised in Table S1

No.	Catalyst	MeCN	DMSO	EtOH	THF ^[c]	Toluene
1	MTBD	100	100	45	7	19
2	TBD	39	56	19		36
3	TMG	50	96	92	0	1
4	DBU	100	64	28		0
5	DABCO	3	2	3		1
6	DMAP	4	1	19		1

Table S1 Conversion (%) of 1a to 2a using various catalysts and solvents at 50 °C^[a,b]

[a] Reaction were performed using 0.3 mmol of **1a** and 10 mol% catalyst in 1.0 mL of the specified solvent under 5 bar of CO₂ at 50 °C; [b] Conversion was determined using ¹H NMR of the crude product; [c] reaction at 75 °C.

Table S2 Solvents in this study and their polarity parameters

No.	Solvent	Dielectric constant ⁶	$E_T(30)^7$
1	MeCN	36.64	45.6
2	DMSO	47.24	45.1
3	EtOH	25.3	51.9
4	Toluene	2.39	33.9

Typical Procedure for Catalytic Reaction between 1a and CO_2 using MTBD and TMG as Catalyst

A solution of benzyl-(1,1-dimethylprop-2-ynyl)amine **1a** (0.15 g, 0.866 mmol, 1 equiv.) in the selected solvent (3 mL) was prepared in a vial under nitrogen. The catalyst (0.0868 mmol, 0.1 equiv. / 0.00868 mmol, 0.01 equiv.) was added to the reaction. A stainless steel high pressure reaction vessel was flushed with CO_2 and the solution injected into the cell. The vessel was further flushed with CO_2 and heated to 75 °C. After thermal equilibrium was reached the vessel was pressurised to 5 bar and stirred for 18 h. The vessel was cooled, vented through solvent and reaction solvent removed under vacuum. Reaction in DMSO required an extraction: reaction mixture diluted with H_2O (30 ml) washed with diethyl ether (3 x 40 mL) ether, washed with water (70 mL), and dried over MgSO₄. The organic solution was filtered and solvent evaporated under vacuum to give the crude product.

The CO_2 in these reactions was supplied from high purity grade BOC bottle (99.99%), which was liquefied using an Isco 260D syringe pump before transfering to the reaction vessel.

The results are summarised in Table 3 of the manuscript.

Some results under seemingly similar conditions are different between Table S1 and S3. This is due to both the different temperature and the much higher purity of CO_2 (no moisture) employed in experiments in Table 3.

Current NAME EXPNO PROCNO			rameters)1-029p5 10 1	
F2 - PI SI SF WDW		-	paramete 32768 8684114 EM	
SSB	0			
LB			1.00	Ηz
GB	0			
PC			1.40	

References

- 1. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, *Organometallics*, 1996, 15, 1518-1520.
- 2. Gabriele, P. Plastina, G. Salerno, R. Mancuso and M. Costa, Org. Lett., 2007, 9, 3319-3322.
- 3. US Pat., US2012/46437 A1, 2012.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. M. Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09*, (2009) Gaussian, Inc., Wallingford CT.
- 5. M. Yoshida, T. Mizuguchi, K. Shishido, Chem.-Eur. J., 2012, 18, 1699.
- 6. J. A. Dean, Lange's Handbook of Chemistry, 15th edn., McGraw-Hill, 1999.
- 7. J. Adams, P. J. Dyson and S. J. Taverner, Chemistry In Alternative Reaction Media, Wiley, 2003.