Cyclopentadienyl Molybdenum Alkylester Complexes as Catalyst Precursors for Olefin Epoxidation

Nidhi Grover, Alexander Pöthig, Fritz E. Kühn*

Chair of Inorganic Chemistry/Molecular Catalysis, Catalysis Research Center, Technische Universität München, D-85747 Garching bei München, Germany Tel: +49 89 289 13096; Fax: +49 89 289 13473; e-mail: fritz.kuehn@ch.tum.de

Supporting Information

1. Analytical data for 1	S2
2. Analytical data for 2	S4
3. Analytical data for 3	S7
4. Analytical data for 4	S11
5. Analytical data for 5	S14
6. Variable temperature study for terminal CO of 5	S18
7. Solid state NMR comparison study of CpMo(CO) $_3$ CH $_3$ and 5.	S19
8. X-ray Crystallographic Data for 1 , 2 and 5	S22
9. TOFs for catalysis reactions with 1-5 and different substrates	S26
10. Results from NMR study of catalytic epoxidation of <i>cis</i> -cyclooctene	S27
11. Structural proof for complex II as oxoperoxo complex	S28

Figure S1. (a) 1 H, (b) 13 C, (c) 95 Mo (d) IR spectra for complex 1

S6

Figure S2. (a) ¹H, (b) ¹³C, (c) ⁹⁵Mo, (d) IR, (e) TGA-MS, (f) Mass spectra for complex 2

3. Analytical data for 3

Figure S3. (a) ¹H, (b) ¹³C, (c) ⁹⁵Mo, (d) IR, (e) TGA-MS, (f) Mass spectra for complex 3

S15

Figure S5. (a) ¹H, (b) ¹³C, (c) ⁹⁵Mo, (d) IR, (e) TGA-MS, (f) Mass spectra for complex 5

Figure S6. Variable temperature ¹³C NMR (C_6D_6) of **5** in the *cis*-CO region, showing electronic inequivalence or asymmetry of the carbonyl ligands even at 70°C.

7. Solid state NMR comparison study of $CpMo(CO)_3CH_3$ and **5**.

^{270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80} f1 (ppm)

Figure S7. (a) ¹H-MAS and (b) ¹³C-CPMAS spectra for complex $CpMo(CO)_3(CH_3)$; (c) ¹H-MAS and (d) ¹³C-CPMAS for complex **5**.

There are two signals in the ¹H-MAS spectrum for CpMo(CO)₃CH₃ at δ 5.52 (for C₅H₅) and δ 0.53 (for -CH₃) and for **5**, Cp ligand appears at 5.57 as a broad signal. In ¹³C-CPMAS spectrum of the methyl complex, side bands of the Cp signal at δ 94.68 appear at δ 253.67 and δ -64.37 (12 kHz). The -CH₃ group appears at δ -22.6 and the molybdenum bound carbonyl ligands at δ 242.35 and δ 230.34. However, ¹³C-CPMAS for complex **5** shows three distinct peaks for the three Mo-CO groups at δ 242.25, δ 230.16 and δ 226.59. The first rotational side bands of the Cp ligand of **5** appear at δ 254.96 and δ -63.01.

8. X-ray Crystallographic Data for 1, 2 and 5

Figure S8. Ortep drawing with 50% ellipsoids for complex 1.

A clear light yellow fragment-like specimen of $C_{12}H_{12}MoO_5$, approximate dimensions 0.258 mm x 0.358 mm x 0.480 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a Bruker Kappa APEX II CCD system equipped with a graphite monochromator and a Mo fine-focus tube ($\lambda = 0.71073$ Å).

Crystal Data Formula C12 H12 Mo O5 Formula Weight 332.16 Crystal System Orthorhombic Space group P212121 (No. 19) 8.5556(1) a, b, c [Angstrom] 10.4982(2) 14.8086(2)V [Ang**3] 1330.09(3)Ζ 4 D(calc) [g/cm**3]1.659 0.995 Mu(MoKa) [/mm] F(000) 664 Crystal Size [mm] 0.26 x 0.36 x 0.48 Data Collection Temperature (K) 123 0.71073 Radiation [Angstrom] МоКа Theta Min-Max [Deg] 2.4, 25.5 Dataset -10: 10 ; -12: 12 ; -17: 17 Tot., Uniq. Data, R(int) 37426, 2464, 0.027 Observed data [I > 2.0 sigma(I)]2449 Refinement Nref, Npar 2464, 164 R, wR2, S 0.0208, 0.0544, 1.11

 $w = 1/[s^2(Fo^2)+(0.0366P)^2+0.7711P]$ where $P=(Fo^2+2Fc^2)/3$

Max.	and A	Av.	Shift/H	Error		0.00,	0.00
Flack	κх					0.	50(4)
Min.	and N	Max.	Resd.	Dens.	[e/Ang^3]	-0.29,	1.82

Compound 2 (CCDC 934899)

A clear intense yellow fragment-like specimen of $C_{13}H_{14}MoO_5$, approximate dimensions 0.150 mm x 0.359 mm x 0.554 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a Bruker Kappa APEX II CCD system equipped with a Montel mirror monochromator and a Mo FR591 rotating anode ($\lambda = 0.71073$ Å).

Crystal Data

Formula C13 H14 Mo O5 Formula Weight 346.18 Crystal System Orthorhombic Space group Pbca (No. 61) a, b, c [Angstrom] 10.3022(8) 11.1065(9)23.6758(19) 2709.0(4)V [Ang**3] 8 Ζ D(calc) [g/cm**3]1.698 Mu(MoKa) [/mm] 0.981 F(000) 1392 Crystal Size [mm] 0.15 x 0.36 x 0.55 Data Collection 123 Temperature (K) 0.71073 Radiation [Angstrom] МоКа Theta Min-Max [Deg] 1.7, 25.4 -12: 12 ; -13: 13 ; -28: 28 Dataset Tot., Uniq. Data, R(int) 55418, 2486, 0.032 Observed data [I > 2.0 sigma(I)] 2067 Refinement Nref, Npar 2486, 203 R, wR2, S 0.0231, 0.0524, 1.13 $w = 1/[s^2(Fo^2)+(0.0135P)^2+4.3243P]$ where $P=(Fo^2+2Fc^2)/3$ 0.00, 0.00 Max. and Av. Shift/Error Min. and Max. Resd. Dens. [e/Ang^3] -0.37, 0.67

Compound 5 (CCDC 934900)

Figure S10. Ortep drawing with 50% ellipsoids for complex 5.

A clear light yellow plate-like specimen of $C_{20}H_{24}MoO_5$, approximate dimensions 0.030 mm x 0.230 mm x 0.330 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a Bruker Kappa APEX II CCD system equipped with a graphite monochromator and a Mo fine-focus tube ($\lambda = 0.71073 \text{ Å}$).

Crystal Data

Formula C20 H24 Mo O5 Formula Weight 440.33 Crystal System Orthorhombic Space group P212121 (No. 19) a, b, c [Angstrom] 7.4170(2) 7.6621(2) 34.3794(9) V [Ang**3] 1953.77(9) Ζ 4 D(calc) [q/cm**3]1.497 Mu(MoKa) [/mm] 0.698 F(000) 904 Crystal Size [mm] 0.03 x 0.23 x 0.33 Data Collection Temperature (K) 123 Radiation [Angstrom] MoKa 0.71073 Theta Min-Max [Deg] 2.4, 25.4 8; -9: 9; -41: 41 Dataset -8: 37467, 3579, 0.089 Tot., Uniq. Data, R(int) Observed data [I > 2.0 sigma(I)] 3025 Refinement Nref, Npar 3579, 238 R, wR2, S 0.0550, 0.0943, 1.15 $w = 1/[(s^{2}(Fo^{2})+(0.0133P)^{2}+6.0706P]]$ where $P = (Fo^{2}+2Fc^{2})/3$ Max. and Av. Shift/Error 0.00, 0.00 0.02(7)Flack x

-1.29, 0.65

Min. and Max. Resd. Dens. [e/Ang^3]

9. Yields and Turnover frequencies (TOFs) for catalysis reactions with **1-5** and different substrates.

Table S1.

TOFs^a for complexes **1-5** (in mol mol_{Mo⁻¹} h⁻¹) utilized for olefin epoxidation in DCM at 22 °C using TBHP with catalyst:substrate:oxidant = 1:100:200 unless stated otherwise.

Experiment	Substrate	1	2	3	4	5
(a)	<i>cis</i> -cyclooctene, 1 mol% catalyst	120	124	188	118	189
(b)	<i>cis</i> -cyclooctene, 0.1 mol% catalyst	236	302	262	263	362
(c)	<i>cis</i> -cyclooctene, no co- solvent	220	290	500	188	210
(d)	cis-cyclooctene, 55 °C, CHCl₃	775	1024	1187	784	781
(e)	<i>cis</i> -stilbene	25	40	33	26	24
(f)	<i>trans</i> -stilbene	26	50	91	40	60
(g)	1-octene	38	27	31	37	12
(h)	<i>trans</i> -β-methylstyrene	-	85	97	70	48

^a All values were determined from the steepest part of the conversion vs. time slope.

Table S2.

Yield(%)^a of respective epoxides using complexes **1-5** for olefin epoxidation in DCM at 22 °C at 4h and $24h^{b}$ using TBHP with catalyst:substrate:oxidant = 1:100:200 unless stated otherwise.

Experiment	Substrate	1	2	3	4	5
(a)	cis-cyclooctene, 1 mol%	99 (99)	99 (99)	99 (99)	97 (99)	99 (99)
(b)	<i>cis</i> -cyclooctene, 0.1 mol% catalyst	22 (99)	29 (99)	43 (99)	21 (99)	20 (99)
(c)	<i>cis</i> -cyclooctene, no co- solvent	99 (99)	99 (99)	99 (99)	96 (99)	99 (99)
(d)	cis-cyclooctene, 55 °C, CHCl₃	99 (99)	99 (99)	99 (99)	99 (99)	99 (99)
(e)	<i>cis</i> -stilbene ^c	45 (59)	52 (65)	56 (66)	42 (63)	49 (65)
(f)	<i>trans</i> -stilbene ^c	39 (57)	45 (58)	47 (62)	38 (54)	42 (60)
(g)	1-octene	27 (34)	25 (33)	25 (35)	27 (38)	26 (36)
(h)	<i>trans</i> -β-methylstyrene	-	58 (70)	64 (75)	55 (77)	58 (73)

^a GC-MS yield of corresponding epoxides.

^b Indicated in parenthesis.

^c Only their respective epoxides were formed.

10. Results from NMR study of catalytic epoxidation

Figure S11. ⁹⁵Mo NMR measured after 24 h of oxidation of precatalyst 5 with 10 equiv. of TBHP (n-decane) in $CDCI_3$.

Pre-catalyst **5** (0.2335 M in CDCl₃) was first oxidized with 50 equiv. TBHP (0.85 mL of 5.5 M in n-decane) at room temperature. After 48 h, 10 equiv. of *cis*-cyclooctene (0.12 mL) was added to the NMR tube and the reaction was monitored for 4 h. The rate of epoxidation of *cis*-cyclooctene is slower and there is an incomplete conversion of cyclooctene even after 4 h and presence of initial excess of TBHP (50 equiv.). (**Figure S12**)

Figure S12. Kinetic plot of epoxidation of *cis*-cyclooctene with TBHP and oxo-peroxo complex obtained after oxidation of **5**.

11. Table S3 - Crystal Data and Details of Structure Determination

Formula 2 Mo 05.36, C17 H22 Mo 05.23, C17 H22 Mo 05, C16 H20 Mo 05 Formula Weight 1604.45 Crystal System Monoclinic Space group P21 (No. 4) a, b, c [Angstrom] 22.4707(5) alpha, beta, gamma [deg] 90 7.0620(2) 23.4265(5) 90 112.704(1) 90 3429.44(15) V [Ang**3] Ζ 2 D(calc) [q/cm**3]1.554 0.787 Mu(MoKa) [/mm] F(000) 1642 Crystal Size [mm] 0.12 x 0.16 x 0.20 Data Collection Temperature (K) 296 Radiation [Angstrom] MoKa 0.71073 Theta Min-Max [Deg] 0.9, 25.5 -27: 27 ; -8: 8 ; -28: 28 Dataset 76028, 12626, 0.055 Tot., Uniq. Data, R(int) Observed data [I > 2.0 sigma(I)] 10042 Refinement Nref, Npar 12626, 851 R, wR2, S 0.0512, 0.1445, 1.04 $w = 1/[(s^{2}(Fo^{2})+(0.0723P)^{2}+9.7594P)]$ where $P = (Fo^{2}+2Fc^{2})/3$ Max. and Av. Shift/Error 0.45, 0.01 Flack x 0.00(5)

Due to disordered peroxo moieties at two of the four independent molecules in the asymmetric unit, the refinement could not proceed to a satisfying model. The structural proof of the oxo-peroxo species is valid.

-0.84, 1.31

Min. and Max. Resd. Dens. [e/Ang^3]

S28

A solution of 0.1 mmol of **5** was stirred with 20 equiv. of TBHP in 4 mL CHCl₃ at r.t. for 4 h. Excess hydroperoxide was destroyed with activated MnO₂ and the light yellow supernatant was separated by cannular filtration, followed by washing several times with 2 mL of CHCl₃. The collected supernatant and washings were concentrated under vacuum and gave a deep yellow oily residue. The residue was re-dissolved in CDCl₃ and an attempt to obtain crystals by slow vapour diffusion using pentane, CDCl₃ solvent mixture gave very small crystals. Their structure could not be refined completely but proves formation of oxo-peroxo complex **II**.