SUPPORTING INFORMATION FOR

Liquid/Solid Phase Transfer Activation of Grubbs-Type Alkene Metathesis Catalysts; Application of Silver Salts of Sulfonated Polystyrene[†]

Zhenxing Xi,^a Hassan S. Bazzi,^{*b} John A. Gladysz^{*a}

submitted to Catalysis Science and Technology.

^a Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas

77842-3012, USA

E-mail: gladysz@mail.chem.tamu.edu

^b Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar

E-mail: hassan.bazzi@qatar.tamu.edu

Experimental Section

General. All reactions were conducted under nitrogen. The CH_2Cl_2 was purified using a Glass Contour Solvent System. Tridecane (Aldrich or Alfa Aesar), ethyl vinyl ether (Alfa Aesar), Amberlyst 15 hydrogen form (Aldrich), HCl (Macron), HNO₃ (VWR), NaCl (Mallinckrodt), PCy₃ (Alfa Aesar), ClPPh₂ (TCI), Grubbs' second generation catalyst (**1a**; Aldrich), and all deuterated solvents (Cambridge) were used as received. The PS-SO₃Ag (dried as reported under vacuum for 24 h or until a constant weight was achieved),^{\$1} (H₂IMes)(Cy₂PCH₂CH₂N(CH₃)₃⁺)-(Cl)₂Ru(=CHPh) Cl⁻ (**1c**),^{\$2} Cy₂PCH₂CH₂NMe₃⁺ Cl⁻,^{\$3} *N*-allyl-*N*-methallyl-*p*-tosylamide (**2**),^{\$4} diethyl 2-allyl-2-methallylmalonate (**4**),^{\$5} and *N*-allyl-*N*-(3-methyl-3-butenyl)-*p*-tosylamide (**6**)^{\$4} were prepared by literature procedures.

NMR spectra were recorded on modern Varian spectrometers at ambient probe temperatures at the field strengths indicated. Samples were referenced as follows (δ , ppm): ¹H, residual internal CHDCl₂ (5.32), CHCl₃ (7.26), or CHD₂OD (3.34); ¹³C, internal CD₂Cl₂ (53.2), CDCl₃ (77.0); ³¹P, external H₃PO₄ (0.00). GC data were acquired using a Shimadzu GC 2010 instrument fitted with a capillary column (SHRXI-5MS-0.25 µm; 15 m × 0.25 mm).

Standardization of PS-SO₃Ag.^{s1} A vial was charged with HNO₃ (1.0 M, 15.0 mL) and PS-SO₃Ag (0.7142 g) and mechanically shaken (2.5 h). The sample was filtered, and the filter cake was washed with HNO₃ (1.0 M, 2.0 mL). The filtrate was transferred to a round bottom flask. Then NaCl (1.17 g, 20 mmol) was added with stirring. The white precipitate was isolated by centrifugation and dried under oil pump vacuum to give AgCl (0.154 g, 1.07 mmol). This indicated a silver loading (PS-SO₃Ag) of 1.5 mmol Ag⁺/g resin.

Characterization of ring closing metathesis products.

Alkene **3**.^{s4} NMR (δ (ppm), CDCl₃): ¹H (500 MHz) 7.72 (d, 2H, *J* = 8.0 Hz), 7.32 (d, 2H, *J* = 8.0 Hz), 5.25 (m, 1H), 4.07 (m, 2H), 3.96 (br s, 2H), 2.42 (s, 3H), 1.65 (s, 3H); ¹³C{¹H} (125 MHz) 143.3, 135.0, 134.2, 129.7, 127.4, 119.0, 57.6, 55.1, 21.5, 14.0. MS (ESI, *m/z*): 238 (M + H⁺).

Alkene **5**.^{s6} NMR (δ (ppm), CDCl₃): ¹H (500 MHz) 5.16 (m, 1H), 4.17 (q, 4H, J = 7.0 Hz), 2.94 (m, 2H), 2.87 (br s, 2H), 1.68 (s, 3H), 1.22 (t, 6H, J = 7.0 Hz); ¹³C{¹H} (125 MHz) 172.3, 137.4, 121.2, 61.4, 59.3, 44.5, 40.7 16.0, 14.0. MS (ESI, m/z): 227 (M + H⁺).

Alkene 7.^{s4} NMR (δ (ppm), CDCl₃): ¹H (500 MHz) 7.67 (d, 2H, *J* = 8.5 Hz), 7.32 (d, 2H, *J* = 8.5 Hz), 5.30 (m, 1H), 3.52 (m, 2H), 3.16 (t, 2H, *J* = 6.0 Hz), 2.42 (s, 3H), 2.10 (br s, 2H), 1.65 (s, 1H); ¹³C{¹H} (125 MHz) 143.4, 133.3, 132.7, 129.5, 127.7, 116.5, 44.7, 42.8, 29.9, 22.8, 21.4. MS (ESI, *m/z*): 252 (M + H⁺).

Experiments in Figure 1. A. (\blacklozenge) A Schlenk tube was charged with 1c (0.0025 g, 0.0028 mmol) under nitrogen. Then 2 (0.0268 g, 0.101 mmol), tridecane (GC standard, 0.0187 g, 0.102 mmol), CH₂Cl₂ (2.0 mL), and PS-SO₃Ag (0.0105 g) were added to give a 0.051 M solution of 2. The mixture was stirred and aliquots were periodically removed, quenched with ethyl vinyl ether in CH₂Cl₂ (0.10 M), and assayed by GC. B. (\blacksquare) A Schlenk tube was charged with 1c (0.0022 g, 0.0025 mmol) under nitrogen. Then 2 (0.0269 g, 0.102 mmol), tridecane (0.0190 g, 0.103 mmol), CH₂Cl₂ (2.0 mL), and PS-SO₃Ag (0.0212 g) were added to give a 0.051 M solution of 2 that was treated as in A. C. (\checkmark) A Schlenk tube was charged with 1c (0.0022 g, 0.0025 mmol) under nitrogen. Then 2 (0.0263 g, 0.099 mmol), tridecane (0.0188 g, 0.102 mmol), CH₂Cl₂ (2.0 mL), and PS-SO₃Ag (0.0335 g) were added to give a 0.049 M solution of 2 that was treated as in A. D. (\bigstar) A Schlenk tube was charged with 1c (0.0022 g, 0.0025 mmol) under nitrogen. Then 2 (0.0263 g, 0.0101 mmol), CH₂Cl₂ (2.0 mL), and PS-SO₃Ag (0.0185 g, 0.101 mmol), CH₂Cl₂ (2.0 mL), and PS-SO₃Ag (0.0335 g) were added to give a 0.049 M solution of 2 that was treated as in A. D. (\bigstar) A Schlenk tube was charged with 1c (0.0022 g, 0.0025 mmol) under nitrogen. Then 2 (0.0266 g, 0.100 mmol), tridecane (0.0185 g, 0.101 mmol), CH₂Cl₂ (2.0 mL), and PS-SO₃Ag (0.0423 g) were added to give a 0.050 M solution of 2 that was treated as in A. E. (\blacktriangleleft) A Schlenk tube was charged with 1c (0.0022 g, 0.0025 mmol) under nitrogen. Then 2 (0.0268 g, 0.101 mmol), CH₂Cl₂ (2.0 mL), and PS-SO₃Ag (0.0423 g) were added to give a 0.050 M solution of 2 that was treated as in A. E. (\blacktriangleleft) A Schlenk tube was charged with 1c (0.0022 g, 0.0025 mmol) under nitrogen. Then 2 (0.0268 g, 0.101 mmol), tridecane (0.0189 g, 0.103 mmol), CH₂Cl₂ (2.0 mL), and PS-SO₃Ag (0.0520 g)

were added to give a 0.051 M solution of **2** that was treated as in A. F. (\triangleright) A Schlenk tube was charged with **1c** (0.0022 g, 0.0025 mmol) under nitrogen. Then **2** (0.0263 g, 0.099 mmol), tridecane (0.0186 g, 0.101 mmol), CH₂Cl₂ (2.0 mL), and PS-SO₃Ag (0.1020 g) were added to give a 0.049 M solution of **2** that was treated as in A.

TON and TOF values for every data point in Figure 1.^{\$7} **A**. (•) TON: 16.6 (15 min); 17.6 (30 min); 18.0 (45 min); 22.0 (60 min); 25.3 (75 min); 27.7 (90 min); 29.6 (105 min); 31.7 (120 min); 34.6 (180 min); 35.6 (240 min); 35.7 (300 min); 35.7 (360 min). TOF (min⁻¹): 1.106 (15 min); 0.587 (30 min); 0.400 (45 min); 0.367 (60 min); 0.337 (75 min); 0.309 (90 min); 0.282 (105 min); 0.264 (120 min); 0.192 (180 min); 0.148 (240 min); 0.119 (300 min); 0.099 (360 min). B. (
) TON: 27.3 (15 min); 32.6 (30 min); 33.9 (45 min); 38.3 (60 min); 39.6 (75 min); 40.0 (90 min); 40.0 (105 min); 40.4 (120 min); 40.4 (180 min); 40.4 (240 min); 40.4 (300 min); 40.4 (360 min). TOF (min⁻¹): 1.820 (15 min); 1.087 (30 min); 0.753 (45 min); 0.638 (60 min); 0.528 (75 min); 0.444 (90 min); 0.381 (105 min); 0.337 (120 min); 0.224 (180 min); 0.168 (240 min); 0.135 (300 min); 0.112 (360 min). C. (♥) TON: 26.5 (15 min); 31.7 (30 min); 38.0 (45 min); 38.0 (60 min); 38.4 (75 min); 39.2 (90 min); 39.2 (105 min); 39.2 (120 min); 39.2 (180 min); 39.2 (240 min); 39.2 (300 min); 39.2 (360 min). TOF (min⁻¹): 1.767 (15 min); 1.057 (30 min); 0.844 (45 min); 0.633 (60 min); 0.512 (75 min); 0.436 (90 min); 0.373 (105 min); 0.327 (120 min); 0.218 (180 min); 0.163 (240 min); 0.131 (300 min); 0.109 (360 min). **D.** () TON: 30.4 (15 min); 34.4 (30 min); 36.8 (45 min); 37.6 (60 min); 38.4 (75 min); 38.4 (90 min); 38.8 (105 min); 38.8 (120 min); 39.2 (180 min); 39.2 (240 min); 39.2 (300 min); 39.6 (360 min). TOF (min⁻¹): 2.027 (15 min); 1.147 (30 min); 0.818 (45 min); 0.627 (60 min); 0.512 (75 min); 0.427 (90 min); 0.370 (105 min); 0.323 (120 min); 0.218 (180 min); 0.163 (240 min); 0.130 (300 min); 0.110 (360 min). E. (◄) TON: 26.3 (15 min); 28.7 (30 min); 30.7 (45 min); 31.5 (60 min); 33.5 (75 min); 34.3 (90 min); 35.1 (105 min); 35.6 (120 min); 36.4 (180 min); 36.8 (240 min); 37.2 (300 min); 37.2 (360 min). TOF (min⁻¹): 1.753 (15 min); 0.957 (30 min); 0.682 (45 min); 0.525 (60 min); 0.447 (75 min); 0.381 (90 min); 0.334 (105 min); 0.297 (120 min); 0.202 (180 min); 0.153 (240 min); 0.124 (300 min); 0.103 (360 min). F. (>) TON: 23.0 (15 min); 28.1 (30 min); 30.1 (45 min); 31.7 (60 min); 32.9 (75 min); 34.1 (90 min); 34.4 (105 min); 35.2 (120 min); 36.4 (180 min); 36.8 (240 min); 37.2 (300 min); 37.2 (360 min). TOF (min⁻¹): 1.533 (15 min); 0.936 (30 min); 0.667 (45 min); 0.528 (60 min); 0.439 (75 min); 0.379 (90 min); 0.328 (105 min); 0.293 (120 min); 0.202 (180 min); 0.153 (240 min); 0.124 (300 min); 0.103 (360 min).

Experiments in Figure 2. A. (\blacklozenge) A Schlenk tube was charged with **1c** (0.0023 g, 0.0026 mmol) under nitrogen. Then **2** (0.0263 g, 0.099 mmol), tridecane (GC standard, 0.0189 g, 0.102 mmol), and CH₂Cl₂ (2.0 mL) were added to give a 0.049 M solution of **2**. The mixture was stirred and aliquots were periodically removed, quenched with ethyl vinyl ether in CH₂Cl₂ (1.0 M), and assayed by GC. **B**.^{\$2} (**•**) A Schlenk tube was charged with **1c** (0.0024 g, 0.0027 mmol) and freshly degassed distilled water (1.0 mL) under nitrogen. Then **2** (0.0269 g, 0.101 mmol), tridecane (0.0191 g, 0.104 mmol), and CH₂Cl₂ (2.0 mL) were added to give a 0.051 M solution of **2**. The biphasic mixture was stirred and aliquots were periodically removed from the organic phase, quenched with ethyl vinyl ether in CH₂Cl₂ (0.10 M) and assayed by GC. **C**.^{\$2} (**•**) A Schlenk tube was charged mith **1c** (0.0022 g, 0.0025 mmol) under nitrogen and freshly degassed aqueous HCl (0.010 M, 1.0 mL) was added. Then **2** (0.0261 g, 0.098 mmol), tridecane (0.0189 g, 0.102 mmol), and CH₂Cl₂ (2.0 mL) were added to give a 0.049 M solution of **2** that was treated as in B. **D**. (**v**) This experiment is identical with C in Figure 1.

TON and TOF values for every data point in Figure 2.⁸⁷ **A**. (\diamond) TON: 5.3 (15 min); 7.6 (30 min); 10.7 (45 min); 11.4 (60 min); 12.2 (75 min); 14.1 (90 min); 14.8 (105 min); 15.2 (120 min); 15.6 (180 min); 16.4 (240 min); 16.8 (300 min); 19.0 (360 min). TOF (min⁻¹): 0.353 (15 min); 0.253 (30 min); 0.238 (45 min); 0.190 (60 min); 0.163 (75 min); 0.157 (90 min); 0.141 (105 min); 0.127 (120 min); 0.087 (180 min); 0.068 (240 min); 0.056 (300 min); 0.053 (360 min). **B**. (**•**) TON: 13.5 (15 min); 15.7 (30 min); 16.4 (45 min); 17.2 (60 min); 17.6 (75 min); 19.8 (90 min); 23.2 (105 min); 24.3 (120 min); 25.4 (180 min); 26.9 (240 min); 27.7 (300 min); 29.2 (360 min). TOF (min⁻¹): 0.900 (15 min); 0.523 (30 min); 0.364 (45 min); 0.287 (60 min); 0.235 (75 min); 0.220 (90 min); 0.221 (105 min); 0.202 (120 min); 0.141 (180 min); 0.112 (240 min); 0.092 (300 min); 0.081 (360 min). **C**. (**a**) TON: 25.5 (15 min); 27.4 (30 min); 28.2 (45

min); 28.2 (60 min); 29.4 (75 min); 29.8 (90 min); 30.1 (105 min); 30.6 (120 min); 31.0 (180 min); 32.9 (240 min); 33.7 (300 min); 34.5 (360 min). TOF (min⁻¹): 1.700 (15 min); 0.913 (30 min); 0.627 (45 min); 0.470 (60 min); 0.392 (75 min); 0.331 (90 min); 0.287 (105 min); 0.255 (120 min); 0.172 (180 min); 0.137 (240 min); 0.112 (300 min); 0.096 (360 min). **D.** (\checkmark) This data is identical with C in Figure 1.

Experiments in Figure 3A. A. (•) A Schlenk tube was charged with 1c (0.0026 g, 0.0029 mmol) under nitrogen. Then 4 (0.0255 g, 0.100 mmol), tridecane (GC standard, 0.0186 g, 0.101 mmol), and CH₂Cl₂ (2.0 mL) were added to give a 0.050 M solution of 4. The mixture was stirred and aliquots were periodically removed, quenched with ethyl vinyl ether in CH₂Cl₂ (0.10 M), and assayed by GC. B.^{\$2} (•) A Schlenk tube was charged with 1c (0.0024 g, 0.0026 mmol) and freshly degassed distilled water (1.0 mL) under nitrogen. Then 4 (0.0259 g, 0.102 mmol), tridecane (0.0181 g, 0.098 mmol), and CH₂Cl₂ (2.0 mL) were added to give a 0.051 M solution of 4. The biphasic mixture was stirred and aliquots were periodically removed from the organic phase, quenched with ethyl vinyl ether in CH₂Cl₂ (0.10 M), and assayed by GC. C.^{\$2} (•) A Schlenk tube was charged with 1c (0.0022 g, 0.0025 mmol) and freshly degassed aqueous HCl (0.010 M, 1.0 mL) under nitrogen. Then 4 (0.0258 g, 0.102 mmol), tridecane (0.0195 g, 0.106 mmol), and CH₂Cl₂ (2.0 mL) were added to give a 0.051 M solution 4 that was treated as in B. D. (•) A Schlenk tube was charged with 1c (0.0023 g, 0.0026 mmol) under nitrogen. Then 4 (0.0254 g, 0.100 mmol), tridecane (0.0184 g, 0.100 mmol), CH₂Cl₂ (2.0 mL), and PS-SO₃Ag (0.0305 g) were added to give a 0.050 M solution of 4 that was treated as in A.

TON and TOF values for every data point in Figure 3A.^{\$7} **A.** (◆) TON: 1.4 (15 min); 1.7 (30 min); 1.7 (45 min); 1.7 (60 min); 1.7 (75 min); 1.7 (90 min); 2.1 (105 min); 2.1 (120 min); 2.1 (180 min); 2.4 (240 min); 5.2 (300 min); 7.9 (360 min). TOF (min⁻¹): 0.093 (15 min); 0.057 (30 min); 0.038 (45 min); 0.028 (60 min); 0.023 (75 min); 0.019 (90 min); 0.020 (105 min); 0.018 (120 min); 0.012 (180 min); 0.010 (240 min); 0.017 (300 min); 0.022 (360 min). **B**. (■) TON: 3.9 (15 min); 5.1 (30 min); 5.5 (45 min); 6.7 (60 min); 7.1 (75 min); 7.8 (90 min); 8.2 (105 min); 10.6 (120 min); 12.2 (180 min); 13.7 (240 min); 14.5 (300 min); 14.9 (360 min). TOF

(min⁻¹): 0.260 (15 min); 0.170 (30 min); 0.122 (45 min); 0.112 (60 min); 0.095 (75 min); 0.087 (90 min); 0.078 (105 min); 0.088 (120 min); 0.068 (180 min); 0.057 (240 min); 0.048 (300 min); 0.041 (360 min). **C**. (▲) TON: 7.3 (15 min); 10.6 (30 min); 14.7 (45 min); 16.4 (60 min); 20.8 (75 min); 21.2 (90 min); 22.4 (105 min); 23.7 (120 min); 27.3 (180 min); 29.4 (240 min); 31.0 (300 min); 31.8 (360 min). TOF (min⁻¹): 0.487 (15 min); 0.353 (30 min); 0.327 (45 min); 0.273 (60 min); 0.277 (75 min); 0.236 (90 min); 0.213 (105 min); 0.198 (120 min); 0.152 (180 min); 0.122 (240 min); 0.103 (300 min); 0.088 (360 min). **D**. (▼) TON: 2.7 (15 min); 8.1 (30 min); 15.8 (45 min); 21.9 (60 min); 24.6 (75 min); 28.1 (90 min); 30.4 (105 min); 32.7 (120 min); 36.5 (180 min); 0.351 (45 min); 0.365 (60 min); 0.328 (75 min); 0.312 (90 min); 0.290 (105 min); 0.272 (120 min); 0.203 (180 min); 0.155 (240 min); 0.126 (300 min); 0.106 (360 min).

Experiments in Figure 3B. A. (•) A Schlenk tube was charged with 1c (0.0019 g, 0.0021 mmol) under nitrogen and cooled to 0 °C. Then 6 (0.0562 g, 0.201 mmol), tridecane (GC standard, 0.0369 g, 0.200 mmol), and cold CH₂Cl₂ (4.0 mL) were added to give a 0.050 M solution of 6. The mixture was stirred at 0 °C and aliquots were periodically removed, quenched with ethyl vinyl ether in CH₂Cl₂ (0.10 M), and assayed by GC. **B**.^{s2} (**a**) A Schlenk tube was charged with 1c (0.0017 g, 0.0019 mmol) and freshly degassed distilled water (2.0 mL) under nitrogen and cooled to 0 °C. Then 6 (0.0563 g, 0.201 mmol), tridecane (0.0371 g, 0.202 mmol), and cold CH₂Cl₂ (4.0 mL) were added to give a 0.050 M solution of 6. The biphasic mixture was stirred at 0 °C and aliquots were periodically removed from the organic phase, quenched with 0.10 M ethyl vinyl ether in CH₂Cl₂, and assayed by GC. C.^{s2} (\blacktriangle) A Schlenk tube was charged with 1c (0.0018 g, 0.0020 mmol) and freshly degassed aqueous HCl (0.010 M, 2.0 mL) under nitrogen and cooled to 0 °C. Then 6 (0.0558 g, 0.200 mmol), tridecane (0.0362 g, 0.196 mmol), and cold CH₂Cl₂ (4.0 mL) were added to give a 0.050 M solution of **6** that was treated as in B. **D**. (\bigtriangledown) A Schlenk tube was charged with 1c (0.0019 g, 0.0021 mmol) under nitrogen and cooled to 0 °C. Then 6 (0.0558 g, 0.200 mmol), tridecane (0.0364 g, 0.198 mmol), cold CH₂Cl₂ (4.0 mL), and PS-SO₃Ag (0.0243 g) were added to give a 0.050 M solution of **6** that was treated as in A.

TON and TOF values for every data point in Figure 3B.^{\$7} A. (•) TON: 15.3 (15 min); 17.2 (30 min); 21.1 (45 min); 25.8 (60 min); 29.7 (75 min); 32.5 (90 min); 33.5 (105 min); 34.4 (120 min); 38.3 (180 min); 39.2 (240 min); 47.9 (300 min); 50.7 (360 min). TOF (min⁻¹): 1.020 (15 min); 0.573 (30 min); 0.469 (45 min); 0.430 (60 min); 0.396 (75 min); 0.361 (90 min); 0.319 (105 min); 0.286 (120 min); 0.213 (180 min); 0.163 (240 min); 0.160 (300 min); 0.141 (360 min). B. (**•**) TON: 28.6 (15 min); 28.6 (30 min); 31.7 (45 min); 32.8 (60 min); 34.9 (75 min); 40.2 (90 min); 43.4 (105 min); 43.4 (120 min); 45.5 (180 min); 48.7 (240 min); 49.7 (300 min); 56.1 (360 min). TOF (min⁻¹): 1.907 (15 min); 0.953 (30 min); 0.704 (45 min); 0.547 (60 min); 0.465 (75 min); 0.447 (90 min); 0.413 (105 min); 0.362 (120 min); 0.253 (180 min); 0.203 (240 min); 0.166 (300 min); 0.156 (360 min). C. (A) TON: 29.0 (15 min); 40.0 (30 min); 41.0 (45 min); 42.0 (60 min); 46.0 (75 min); 47.0 (90 min); 52.0 (105 min); 55.0 (120 min); 65.0 (180 min); 68.0 (240 min); 77.0 (300 min); 79.0 (360 min). TOF (min⁻¹): 1.933 (15 min); 1.333 (30 min); 0.911 (45 min); 0.700 (60 min); 0.613 (75 min); 0.522 (90 min); 0.495 (105 min); 0.458 (120 min); 0.361 (180 min); 0.283 (240 min); 0.257 (300 min); 0.219 (360 min). **D.** (♥) TON: 11.4 (15 min); 38.1 (30 min); 44.8 (45 min); 57.1 (60 min); 82.9 (75 min); 83.8 (90 min); 87.6 (105 min); 89.5 (120 min); 92.4 (180 min); 93.3 (240 min); 94.3 (300 min); 94.3 (360 min). TOF (min⁻¹): 0.760 (15 min); 1.270 (30 min); 0.995 (45 min); 0.952 (60 min); 1.105 (75 min); 0.931 (90 min); 0.834 (105 min); 0.746 (120 min); 0.513 (180 min); 0.389 (240 min); 0.314 (300 min); 0.262 (360 min).

Experiments in Figure s1. A. (\bullet) A Schlenk tube was charged with **1a** (0.020 M CH₂Cl₂ solution; 0.050 mL, 0.0010 mmol) under nitrogen. Then **4** (0.0257 g, 0.101 mmol), tridecane (GC standard, 0.0189 g, 0.103 mmol), CH₂Cl₂ (2.0 mL), and PS-SO₃Ag (0.0052 g) were added to give a 0.051 M solution of **4**. The mixture was stirred and aliquots were periodically removed, quenched with ethyl vinyl ether in CH₂Cl₂ (0.10 M), and assayed by GC. **B**. (**•**) A Schlenk tube was charged with **1a** (0.020 M CH₂Cl₂ solution; 0.050 mL, 0.0010 mmol) under nitrogen. Then **4** (0.0254 g, 0.100 mmol), tridecane (0.0186 g, 0.101 mmol), CH₂Cl₂ (2.0 mL), and PS-SO₃Ag (0.0105 g) were added to give a 0.050 M solution of **4** that was treated as in A.

C. (\blacktriangle) A Schlenk tube was charged with **1a** (0.020 M CH₂Cl₂ solution; 0.050 mL, 0.0010 mmol) under nitrogen. Then **4** (0.0257 g, 0.101 mmol), tridecane (0.0185 g, 0.101 mmol), CH₂-Cl₂ (2.0 mL), and PS-SO₃Ag (0.0150 g) were added to give a 0.051 M solution of **4** that was treated as in A.

TON and TOF values for every data point in Figure s1.^{\$7} **A.** (•) TON: 20.2 (5 min); 25.3 (10 min); 33.3 (15 min); 41.4 (20 min); 48.5 (25 min); 52.5 (30 min); 60.6 (35 min); 65.7 (40 min); 68.7 (45 min); 73.7 (50 min); 75.8 (55 min); 78.8 (60 min). TOF (min⁻¹): 4.040 (5 min); 2.530 (10 min); 2.220 (15 min); 2.070 (20 min); 1.940 (25 min); 1.750 (30 min); 1.731 (35 min); 1.643 (40 min); 1.527 (45 min); 1.474 (50 min); 1.378 (55 min); 1.313 (60 min). **B**. (•) TON: 23.0 (5 min); 31.0 (10 min); 43.0 (15 min); 49.0 (20 min); 58.0 (25 min); 69.0 (30 min); 73.0 (35 min); 77.0 (40 min); 81.0 (45 min); 87.0 (50 min); 89.0 (55 min); 91.0 (60 min). TOF (min⁻¹): 4.600 (5 min); 3.100 (10 min); 2.867 (15 min); 2.450 (20 min); 2.320 (25 min); 2.300 (30 min); 2.086 (35 min); 1.925 (40 min); 1.800 (45 min); 1.740 (50 min); 31.3 (25 min); 36.4 (30 min); 41.4 (35 min); 45.5 (40 min); 49.5 (45 min); 53.5 (50 min); 57.6 (55 min); 61.6 (60 min). TOF (min⁻¹): 1.420 (5 min); 2.020 (10 min); 1.547 (15 min); 1.365 (20 min); 1.252 (25 min); 1.213 (30 min); 1.183 (35 min); 1.138 (40 min); 1.100 (45 min); 1.070 (50 min); 1.047 (55 min); 1.027 (60 min).

Figure s1. Rates of formation of **5** (room temperature, $[\mathbf{4}]_0 = 0.050 - 0.051$ M, 1.0 mol % **1a**) in 2.0 mL CH₂Cl₂ in the presence of PS-SO₃Ag resin. Resin loading: $\diamond 0.005$ g (0.0075 mmol Ag⁺); $\bullet 0.010$ g (0.015 mmol Ag⁺); $\blacktriangle 0.015$ g (0.0225 mmol Ag⁺).

Experiments in Figure 4. A. (\blacklozenge) A Schlenk tube was charged with **1a** (0.020 M CH₂Cl₂ solution; 0.050 mL, 0.0010 mmol) under nitrogen. Then **4** (0.0269 g, 0.102 mmol), tridecane (GC standard, 0.0186 g, 0.101 mmol), and CH₂Cl₂ (2.0 mL) were added to give a 0.051 M solution of **4**. The mixture was stirred and aliquots were periodically removed, quenched with ethyl vinyl ether in CH₂Cl₂ (0.10 M) and assayed by GC. **B**. (**a**) This experiment is identical with B in Figure s1. **C**. (\diamondsuit) A Schlenk tube was charged with **1a** (0.020 M CH₂Cl₂ solution; 0.050 mL, 0.0010 mmol) under nitrogen. Then **2** (0.0269 g, 0.102 mmol), tridecane (GC standard, 0.0187 g, 0.102 mmol), and CH₂Cl₂ (2.0 mL) were added to give a 0.051 M solution of **2** that was treated as in **A**. **D**. (**a**) A Schlenk tube was charged with **1a** (0.020 M CH₂Cl₂ solution; 0.050 mL, 0.0010 mmol) under nitrogen. Then **2** (0.0269 g, 0.102 mmol), tridecane (GC standard, 0.0187 g, 0.102 mmol), and CH₂Cl₂ (2.0 mL) were added to give a 0.051 M solution of **2** that was treated as in **A**. **D**. (**a**) A Schlenk tube was charged with **1a** (0.020 M CH₂Cl₂ solution; 0.050 mL, 0.0010 mmol) under nitrogen. Then **2** (0.0266 g, 0.100 mmol), tridecane (0.0185 g, 0.101 mmol), CH₂Cl₂ (2.0 mL), and PS-SO₃Ag (0.0105 g) were added to give a 0.050 M solution of **2** that was treated as in **A**.

TON and TOF values for every data point in Figure 4.⁸⁷ A. (•) TON: 20.4 (5 min); 21.4 (10 min); 22.4 (15 min); 28.6 (20 min); 32.6 (25 min); 38.8 (30 min); 44.9 (35 min); 47.9 (40 min); 52.0 (45 min); 56.1 (50 min); 59.2 (55 min); 63.2 (60 min). TOF (min⁻¹): 4.080 (5 min); 2.140 (10 min); 1.493 (15 min); 1.430 (20 min); 1.304 (25 min); 1.293 (30 min); 1.282 (35 min); 1.198 (40 min); 1.156 (45 min); 1.122 (50 min); 1.076 (55 min); 1.053 (60 min). **B**. (•) This data is identical with B in Figure 1s. **C**. (\diamond) TON: 25.5 (5 min); 67.3 (10 min); 88.7 (15 min); 95.9 (20 min); 97.9 (25 min); 101.0 (30 min); 101.0 (35 min); 101.0 (40 min); 101.0 (45 min); 101.0 (50 min); 101.0 (55 min); 101.0 (60 min). TOF (min⁻¹): 5.100 (5 min); 6.730 (10 min); 5.910 (15 min); 2.020 (50 min); 1.836 (55 min); 1.683 (60 min). **D**. (\square) TON: 92.0 (5 min); 99.0 (40 min); 99.0 (35 min); 99.0 (20 min); 99.0 (30 min); 99.0 (40 min); 99.0 (30 min); 99.0 (25 min); 3.300 (30 min); 2.829 (35 min); 9.600 (10 min); 6.467 (15 min); 4.900 (20 min); 3.960 (25 min); 3.300 (30 min); 2.829 (35 min); 2.475 (40 min); 2.200 (45 min); 1.980 (50 min); 1.800 (55 min); 1.650 (60 min).

Experiments in Figure 5. A. (•) A 1.00 mL volumetric flask was charged with Cy₂P-

 $CH_2CH_2NMe_3^+$ Cl⁻ (0.1284 g, 0.402 mmol)^{s3} and CD₃OD in a glove box to give a 0.40 M solution. A J. Young NMR tube was charged with 0.400 mL of this solution and a sealed capillary containing ClPPh₂ standard. A ³¹P{¹H} NMR spectrum was recorded. Then PS-SO₃Ag (1.5 mmol Ag⁺/g resin; 0.0228 g, 0.0342 mmol Ag⁺) was added with shaking. ¹P{¹H} NMR spectra were periodically recorded, which gave the data in Figure 5. **B**. (**•**) A 1.00 mL volumetric flask was charged with PCy₃ (0.1121 g, 0.400 mmol) and CD₂Cl₂ to give a 0.40 M solution, which was treated as in A but with 0.0215 g (0.0322 mmol Ag⁺) of resin.

References

(s1) (a) Bergbreiter, D. E.; Bursten, M. S.; Parsons, G. L. Cook, K. Appl. Organomet.
Chem. 1987, 1, 65–72. (b) Bergbreiter, D. E.; Bursten, M. S. J. Macromol. Sci., Chem. 1981,
A16, 369–381.

- (s2) Xi, Z.; Bazzi, H. S.; Gladysz, J. A. Org. Lett. 2011, 13, 6188-6191.
- (s3) Mohr, B.; Lynn, D. M.; Grubbs, R. H. Organometallics 1996, 15, 4317-4325.
- (s4) Yao, Q.; Zhang, Y. J. Am. Chem. Soc. 2004, 126, 74-75.
- (s5) Kirkland, T. A.; Grubbs, R. H. J. Org. Chem. 1997, 62, 7310-7318.
- (s6) Schweizer, E. E.; O'Nell, J. G. J. Org. Chem. 1965, 30, 2082–2083.
- (s7) These data were added at the request of a reviewer.