Supplementary Information

Promotion Effect of Fe in Mordenite Zeolite on Carbonylation of Dimethyl Ether to Methyl Acetate

Hui Zhoua,b,c, Wenliang Zhua,b, Lei Shia,b, Hongchao Liua,b, Shiping Liua,b,c, Shutao Xua,b, Youming Nia,b, Yong Liua,b, Lina, Lia,b,c, Zhongmin Liua,b

aNational Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, P. O. Box 110, 116023 Dalian, PR China
bDalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
cGraduate University of Chinese Academy of Sciences, Beijing 100049, PR China

*E-mail addresses: liuzm@dicp.ac.cn (Z. Liu)
Fig. S1. XRD peaks of hkl (150) for FeHMOR samples
Fig. S2. IR spectra in the framework vibration region of FeHMOR samples
Fig. S3. UV-Vis spectra of FeNaMOR samples
Fig. S4. Difference spectra of the UV-Vis reflectance spectra between HMOR and NaMOR with various Fe content
Fig. S5. N$_2$ adsorption isotherms of FeHMOR samples
Fig. S6. GC–MS chromatograms of the organic materials retained in FeHMOR catalysts after DME conversion for 12h.
Fig. S7. Structure of mordenite unit-cell viewed down the c-axis
Fig. S8. 31P MAS NMR spectra of TMPO-adsorbed FeHMOR samples
Fig.S1. XRD peaks of hkl (150) for FeHMOR samples
Fig. S2. IR spectra in the framework vibration region of FeHMOR samples
Fig.S3. UV-Vis spectra of FeNaMOR samples
Fig. S4. Difference spectra of the UV-Vis reflectance spectra between HMOR and NaMOR with various Fe content.
Fig. S5. N$_2$ adsorption isotherms of FeHMOR samples
Fig.S6. GC–MS chromatograms of the organic materials retained in FeHMOR catalysts after DME conversion for 12h.
Fig.S7. Structure of mordenite unit-cell viewed down the c-axis
Fig. S8. 31P MAS NMR spectra of TMPO-adsorbed FeHMOR samples
a: FeHMOR-0; b: FeHMOR-0.9; c: FeHMOR-1.8; d: FeHMOR-3.6;