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1. Video S1: Fluorescence change and recovery cycle of TPE-
amidine-L

An about 3-minute length of video file was provided: Video S1.mp4

2. Video S2: Fluorescence change and recovery cycle of CO, sensing
“tape” (TPE-amidine-S)

An about 6-minutes length of video file was provided: Video S2.mp4

3. Video S3: CO, sensing “tape” (TPE-amidine-S) thickness,
flexibility and adhesion

An about 1-minutes length of video file was provided: Video S3.mp4



4. Fluorescent sensors for CO,

Design principle

Fluorescent unit

Detection mechanism

Example

Aggregate-
induced emission
(AIE)-based
fluorescent sensor

Anion-activated
fluorescent sensor

Intra-molecular
hydrogen bond-
based fluorescent
sensor

Multidye-based
small-molecule
fluorescent sensor

AIE type molecule

N-heterocyclic
carbenes and their
derivatives

Amino acid and
their derivatives

Charge transfer
dye and molecular
rotor dye

CO, induced the systematic physico-
chemical change of the molecule
(aggregation or disaggregation) or the
medium (polarity, viscosity, etc), which in
turn influences the fluorescent ability.

NHCs are often produced by deprotonating
the corresponding imidazolium salts, has a
intrinsic  ability to active CO, to form
imidazolium carboxylates.

Amino acids and their derivatives can react
with CO, to form carbamic acids. The intra-
molecular hydrogen bond-based fluorescent
sensor is based on the photoinduced
electronic transfer (PET) effect and the
special ability of amino acid.

CO, induced the systematic physico-
chemical change of the the medium (polarity,
viscosity, efc), which in turn influences the
dye’s fluorescent ability.
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Table S1. Brief introduction of the sorts of CO, fluorescent sensors based on different

design principle.

5. Synthesis of TPE-amidine

TPE-amidine was synthesized according to Scheme S1.

Synthesis and characterization
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Scheme S1. Synthesis route of TPE-amidine
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5.1 Synthesis of 1-(4-Aminophenyl)-1,2,2-triphenylethene (TPE-NH,)

A 250 mL flask charged with Zn powder (1.28 g, 19.6 mmol) and ultra-dry THF (50
mL) was placed in an ice-water mixture under continuous stirring with a magnetic
stirring bar. After purging the flask with N, gas, 1.04 ml of TiCl,; was added slowly
with a constant pressure drop funnel under the temperature range of 0-10°C.
Consequently, the reaction mixture was stirred in room temperature for 30 minutes and
then refluxed for 2.5 h. After the mixture was cooled to room-temperature, 0.4 mL of
pyridine was added into the flask slowly. 0.2 g of benzophenone (1.1 mmol) and 0.18
g of 4-aminobenzophenone (1.0 mmol) were dissolved in 5 mL THF and then added
into the flask slowly within 30 minutes. The mixture was refluxed at 70 °C for 24 h and
cooled to room-temperature. 10% K,COj3 solution was added to terminate the reaction
and the solvent was removed using rotary evaporation. The residue was added to water
and was extracted twice with dichloromethane (DCM). Finally, the organic phase was
dried with MgSO4. The crude product was purified by silica-gel column
chromatography using DCM/PE (1/3, v/v) as eluent. The target molecular 1-(4-
Aminophenyl)-1,2,2-triphenylethene (TPE-NH,) was obtained in 53% yield (0.22 g)
based on benzophenone. 'H NMR (600 MHz, Chloroform-d) & 7.08 (d, J = 20.3 Hz,
15H), 6.86 (s, 2H), 6.47 (s, 2H), 3.65 (s, 2H). 3C NMR (151 MHz, Chloroform-d) &
144.66 , 144.26 ,132.56 ,131.54,131.47,131.43,127.74 ,127.62 ,127.59,126.32 ,
126.14, 114.45. Q-Exactive LC-MS calcd for [M * H] *: 348.17468; found: 348.17474.
'H NMR, 3C NMR and Mass spectra of TPE-NH, was shown in Figure S-1, S-2, and

S-3, respectively.



5.2 Synthesis of N,N-dimethyl-N'-(4-(1,2,2-triphenylvinyl)phenyl)acetimidamide
(TPE-amidine)

TPE-NH, (0.100 g, 0.288 mmol) and 1,1-dimethoxy-N,N-dimethylethan-1-amine
(0.115 g, 0.864 mmol) and methanol (0.2 ml) were stirred at 65 °C for 12h under N,
atmosphere. Solvent was removed under reduced pressure, followed by
chromatography using a silica gel column (CH,Cl,:PE, 3:1, v:v). The product was
further heated at 65°C on high vacuum for 8h to afford TPE-amidine (N,N-dimethyl-
N'-(4-(1,2,2-triphenylvinyl)phenyl)acetimidamide) as a yellow solid in 92.4% yield
(0.110 g) based on 1-(4-Aminophenyl)-1,2,2-triphenylethene. 'H NMR (600 MHz,
Chloroform-d) 6 7.09 (d, J = 33.9 Hz, 15H), 6.91 (s, 2H), 6.48 (s, 2H), 3.03 (s, 6H),
1.86 (s, 3H). 3C NMR (151 MHz, CDCl3) 8 157.36, 150.62, 144.27, 144.17, 141.28,
139.70, 136.86, 131.93, 131.52, 131.46, 127.61, 127.51, 126.26, 126.15, 126.10,
121.82, 38.02, 14.99. Q-Exactive LC-MS calcd for [M * H] *: 417.23253; found:
417.23233.'"H NMR, 3C NMR and Mass spectra of TPE-NH, was shown in Figure S-

4, S-5 and S-6, respectively.
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Figure S-1. '"H NMR spectrum of TPE-NH, (chloroform-d)
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Figure S-2. 3C NMR spectrum of TPE-NH, (chloroform-d)
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Figure S-3. Mass spectrum of TPE-NH, (calculated for C,sHy N [M*H]" 346.17468, found

348.17474)

. 1.0 3.5
f1 (ppm)

2.0 1.5 1.0 0.5

Figure S-4. "H NMR spectrum of TPE-amidine (chloroform-d)
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Figure S-5. 3C NMR spectrum of TPE-amidine (chloroform-d)
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Figure S-6. Mass spectrum of TPE-NH, (calculated for C3oHsN, [MTH]* 417.23253, found

417.23233)



6. The size distribution of nanoparticles of TPE-amidine
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Figure S-7. The size distribution of nanoparticles of TPE-amidine (100 pM) in DMF/H,0 (1/9,

v/v, 3ml) mixture.

7. Transmittance changes of TPE-amidine-L
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Figure S-8. (a) Photographs of TPE-amidine-L before (left) and after (after) being bubbled into 20

ug CO,; (b) Transmittance changes of TPE-amidine-L



8. Determination of limit of detection (LOD)

rms

slope ) (Formula S1)

LOD=3x(

Where “slope” is the k of curve equation and rms,,;s represents the standard deviation
for maximum FL intensity (500 nm) of the fluorescent probe in the absence of carbon
dioxide.

Yppm=-0.01038 - 0.0001 Ve, (R>=0.99426)

LOD =3 *0.000820 / 0.0001 (ppm) = 24.6 ppm

9. Fluorescence change of CO, sensing “tape” (TPE-amidine-S)
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Figure S-9. Fluorescence spectra of CO, sensing “tape” (TPE-amidine-S) before and after

exposing to CO, vapor.



