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Mathematical proof of bulk-mole-fraction-weighted Fourier frequency for two-subunit Class II 
ion populations satisfying the mean-proportional-variance condition. 

 
Lemma: The product of two Gaussian functions is another Gaussian function with a mean equal 
to the variance-weighted average of the means of the two Gaussians. 
 

Proof: Let 𝑓𝑓(𝑘𝑘) = 𝐼𝐼𝐴𝐴exp (−
�𝑘𝑘− 𝑧𝑧

𝑚𝑚𝐴𝐴
�
2

2𝜎𝜎𝐴𝐴
2 ) and 𝑔𝑔(𝑘𝑘) = 𝐼𝐼𝐵𝐵exp (−

�𝑘𝑘− 𝑧𝑧
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2𝜎𝜎𝐵𝐵
2 ), which represent the 

frequency-domain peak shapes corresponding two Gaussian mass spectral peak distributions 
with charge state 𝑍𝑍, repeated subunit masses 𝑚𝑚𝐴𝐴 and 𝑚𝑚𝐵𝐵, and mass spectral-domain variances 1

𝜎𝜎𝐴𝐴
 

and 1
𝜎𝜎𝐵𝐵

, respectively. 𝐼𝐼𝐴𝐴 and 𝐼𝐼𝐵𝐵 are the peak intensities of 𝑓𝑓(𝑘𝑘) and 𝑔𝑔(𝑘𝑘) in the frequency domain, 
respectively. Let ℎ(𝑘𝑘) = 𝑓𝑓(𝑘𝑘) × 𝑔𝑔(𝑘𝑘). 

Then ℎ(𝑘𝑘) = 𝐼𝐼𝐴𝐴𝐼𝐼𝐵𝐵 exp�−
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Completing the square inside the exponent yields: 

ℎ(𝑘𝑘) = 𝐼𝐼𝐴𝐴𝐼𝐼𝐵𝐵exp�−�𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘 −
𝜎𝜎𝐵𝐵2𝑍𝑍 𝑚𝑚𝐴𝐴

� + 𝜎𝜎𝐴𝐴2𝑍𝑍 𝑚𝑚𝐵𝐵
�

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡
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/2𝜎𝜎𝐴𝐴2𝜎𝜎𝐵𝐵2� × 𝐼𝐼𝐶𝐶 

where 𝐼𝐼𝐶𝐶 = exp �−�𝜎𝜎𝐵𝐵
2𝑍𝑍2

𝑚𝑚𝐴𝐴
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2� +2𝜎𝜎𝐴𝐴

2𝜎𝜎𝐵𝐵
2𝑍𝑍2
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� +𝜎𝜎𝐴𝐴

4𝑍𝑍2
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𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡2 � /2𝜎𝜎𝐴𝐴2𝜎𝜎𝐵𝐵2� and 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡2 =

𝜎𝜎𝐴𝐴2 + 𝜎𝜎𝐵𝐵2. 

Thus, ℎ(𝑘𝑘) is again a Gaussian function of 𝑘𝑘 with mean ℎ(𝑘𝑘)������ =
𝜎𝜎𝐵𝐵
2𝑍𝑍

𝑚𝑚𝐴𝐴
� +𝜎𝜎𝐴𝐴

2𝑍𝑍
𝑚𝑚𝐵𝐵
�

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡2 , QED. 
 
 

With the result of this Lemma in hand, we note that ℎ(𝑘𝑘)������ is the fundamental frequency 
that is observed in the Fourier domain upon FT of a mass spectrum that is the convolution of two 
underlying m/z distributions with variances 1

𝜎𝜎𝐴𝐴
2 and 1

𝜎𝜎𝐵𝐵
2. Note that 𝒉𝒉(𝒌𝒌)������ is independent of the 

means of the two underlying m/z distributions for 𝐴𝐴 and 𝐵𝐵 and therefore does not directly 
relate to the average number of either subunit type in the total ion population. 

Now let 𝑛𝑛𝐴𝐴��� and 𝑛𝑛𝐵𝐵���� be the abundance-weighted average number of subunit 𝐴𝐴 and 𝐵𝐵 in the 
respective underlying mass distributions. If we assume the variances in the number of 𝐴𝐴 and 𝐵𝐵 in 
the underlying mass distributions are each proportional to their means, i.e., 1

𝜎𝜎𝐴𝐴
2 = 𝑐𝑐𝑛𝑛𝐴𝐴��� and 1

𝜎𝜎𝐵𝐵
2 =

𝑐𝑐𝑛𝑛𝐵𝐵���� for some common constant 𝑐𝑐 (hereafter, the “mean-proportional-variance” condition), then 
we have 

ℎ(𝑘𝑘)������ =
𝑍𝑍
𝑐𝑐𝑛𝑛𝐵𝐵����𝑚𝑚𝐴𝐴
� + 𝑍𝑍

𝑐𝑐𝑛𝑛𝐴𝐴���𝑚𝑚𝐵𝐵
�

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡2
=
𝑛𝑛𝐴𝐴���𝑍𝑍 𝑚𝑚𝐴𝐴

� + 𝑛𝑛𝐵𝐵����𝑍𝑍 𝑚𝑚𝐵𝐵
�

𝑛𝑛𝐴𝐴��� + 𝑛𝑛𝐵𝐵����
= 𝑥𝑥𝐴𝐴��� 𝑍𝑍 𝑚𝑚𝐴𝐴� + 𝑥𝑥𝐵𝐵��� 𝑍𝑍 𝑚𝑚𝐵𝐵�  
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where 𝑥𝑥𝐴𝐴��� and 𝑥𝑥𝐵𝐵��� are the mole fractions of the corresponding lipids averaged over the entire ion 
population. This results justifies the approach taken in this manuscript for mixed-lipid Nanodiscs 
and block copolymers as well as that used by Marty and coworkers,1 crucially assuming the 
mean-proportional-variance condition. In other words, under the mean-proportional-variance 
condition, the mean of ℎ(𝑘𝑘)������ is the frequency corresponding to the mole-fraction-weighted 
average of the mean frequencies of 𝑓𝑓(𝑘𝑘) and 𝑔𝑔(𝑘𝑘). 

Through some slightly tedious algebra, 𝐼𝐼𝐶𝐶, a term that tends to dampen the intensity of 
ℎ(𝑘𝑘), can be rearranged to: 

𝐼𝐼𝐶𝐶 = exp�−
𝑍𝑍2(𝑚𝑚𝐴𝐴 −𝑚𝑚𝐵𝐵)2

2𝑚𝑚𝐴𝐴
2𝑚𝑚𝐵𝐵

2(𝜎𝜎𝐴𝐴2 + 𝜎𝜎𝐵𝐵2)� = exp �−
( 𝑍𝑍𝑚𝑚𝐵𝐵

− 𝑍𝑍
𝑚𝑚𝐴𝐴

)2

2𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡2
� 

Thus 𝐼𝐼𝐶𝐶, and hence the intensity of the peak in ℎ(𝑘𝑘), tends to decrease 1) as the difference 
masses of subunits 𝐴𝐴 and 𝐵𝐵 (hence also the difference in the means of 𝑓𝑓(𝑘𝑘) and 𝑔𝑔(𝑘𝑘)) increases, 
and 2) as 𝑓𝑓(𝑘𝑘) and 𝑔𝑔(𝑘𝑘) become narrower (i.e., the underlying mass distributions for 𝐴𝐴 and 𝐵𝐵 
become wider). These two factors are thus very important in determining whether ℎ(𝑘𝑘) will 
be observable above any noise present in the frequency domain; higher resolution of 𝑓𝑓(𝑘𝑘) 
and 𝑔𝑔(𝑘𝑘) leads to lower signal for ℎ(𝑘𝑘). See, for illustration, Fig. 4 in the main text and Fig. 
S1B, below. High resolution of 𝑓𝑓(𝑘𝑘) and 𝑔𝑔(𝑘𝑘) occurs when the underlying mass distributions for 
𝐴𝐴 and 𝐵𝐵 are relatively broad and/or the masses of 𝐴𝐴 and 𝐵𝐵 are very different. 
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Figure S1. Modeled mass spectra for a single charge state representing different classes of multi-
subunit polydispersity for ion populations composed of three different subunit types in 1:1:1 bulk 
mole fractions and relative masses 10:11:12 (Class I, top; Class II, middle; and Class III, 
bottom). The mass spectra were built with polydispersity from three different subunits, whose 
underlying distributions are represented by the blue, orange and green traces with underlying m/z 
distributions s(m/z) labeled by the same color. • denotes multiplication, * denotes convolution, 
and superscript *n for Class III denotes n-fold autoconvolution. 
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Figure S2. Zero-charge deconvolutions of Nanodisc mass spectra using UniDec v. 4.2.1 
corresponding to the data in Figure 2A (A), Figure 2C (B), and Figure 2E (C and D) of the main 
manuscript. The UniDec Nanodisc preset was used with parameters adjusted to match the 
experimental data (mass range 100,000-200,000 Da, charge state range 8-14, and an appropriate 
comb filter for the subunit mass). Because the ion population in Figure 2E of the main 
manuscript contains two different lipid types, the corresponding UniDec deconvolutions in (C) 
and (D) use an assumed subunit mass of 734 and 760, respectively, for the comb filter. 
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Figure S3. Experimental mass spectrometry data for mixture of two separately-prepared POPC 
and DPPC Nanodiscs acquired at different time intervals after mixing. Shown above are mass 
spectra and corresponding Fourier spectra of the same sample shown in Figure 2C in the main 
manuscript but at longer time intervals after mixing the Nanodisc sample: 20-40 minutes (A) and 
40-60 minutes (B).   



S-8 
 

 
Figure S4. Experimental mass spectra and corresponding Fourier spectra for Nanodiscs 
assembled from a mixture of 50:50 (A) and 25:75% (B) DPPC:POPC. In contrast to the mixture 
of two single-lipid Nanodiscs mixed together (see Fig. S3), Nanodiscs assembled from a mixture 
of two different lipids produces only a single series of peaks in the Fourier spectrum, whose 
spacing corresponds to the bulk-mole-fraction-weighted average subunit mass. 
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Figure S5. Simulated recovered mole fractions for Class II (A) and Class III (B) ion populations 
consisting of two types of repeated subunits, X and Y, with masses 44 and 58 Da, respectively, 
and population average ion mass 1,000 Da. Red dots represent recovered mole fractions 
determined using Fourier Transform method described in main text under the mean-proportional-
variance condition. Dotted line represents perfect agreement with actual mole fractions. 
Excellent agreement is obtained for Class II, but recovered mole fractions are essentially 
constant (at ~50/50) for Class III and generally do not reflect actual mole fractions.  
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Figure S6. Simulated mass spectrum and corresponding Fourier spectrum for a Class III 
Nanodisc population formed from a 1:1 bulk mole fraction of DPPC (nominal mass 734 Da) and 
POPC (nominal mass 760 Da) lipids. A base mass of 44,087.8 Da was used to simulate the mass 
of two MSP1D1 membrane scaffold proteins. The total number of lipids was held constant at 160 
lipids, and all combinations of the different lipids (e.g., 80 DPPC and 80 POPC, 81 DPPC and 79 
POPC, etc.) were used to determine the different expected masses. Signal-to-noise of 20:1 was 
used to illustrate noise tolerance. Peaks in the Fourier spectrum (shown in black) correspond to 
the reciprocal of the difference of the two lipids (0.038) and the resulting higher harmonics.  
Also shown in the inset of the Fourier spectrum are the (much lower) frequencies where peaks 
would be expected for a Class II population formed from DPPC (orange) and POPC (blue) 
lipids; peaks at these frequencies are clearly absent in the spectrum for the Class III Nanodisc 
population. 
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