Supporting Information

Ensuring high selectivity for preconcentration & detection of ultra-

trace cadmium by phage-functionalized metal-organic framework

Yi-Kun Li¹, Xiao-Yan Wang¹, Xun Liu¹, Ting Yang¹, Ming-Li Chen^{*1,2}, Jian-Hua Wang^{*1}

 Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
 Analytical and Testing Center, Northeastern University, Box 106, Shenyang, 110819, China

Keywords: Phage functionalization; Metal-organic frameworks; Solid phase extraction; Selectivity; Preconcentration; Cadmium

*Corresponding author.

E-mail address: <u>chenml@mail.neu.edu.cn</u> (M.-L. Chen), <u>jianhuajrz@mail.neu.edu.cn</u> (J.-H. Wang) Tel: +86 24 83684533

1. Experimental details

1.1. Materials and reagents

All the reagents used in the present study were analytical reagent grade. Deionized (DI) water (18 M Ω cm⁻¹) was used throughout.

A phage display heptapeptide library together with its host cell *E. coli* ER2738 (Ph.D., Phage Display Peptide Library Kit) was purchased from NEB (New England Bio-Laboratories, USA). AffimagTM γ -Fe₂O₃ (4-5 µm) was purchased from Baseline Chromtech Research Centre (Tianjin, China). Ni-NTA-Sefinose resin used for metal-loaded resin preparation was obtained from Bio Basic Inc. (Canada). The centrifugal filter device (100 kDa, 4 mL) for phage isolation was obtained from Millipore (MA, United States). LB medium (10 g of tryptone, 5 g of yeast extract, 5 g of NaCl in 1 L of deionized (DI) water, pH 7.0-7.2) with 20 mg L⁻¹ tetracycline was used for host cell culture and phage amplification. All solutions were sterilized by autoclave procedure (120°C, 20 min) and the pipette tips equipped with filter cartridge were used throughout.

Zirconium chloride (ZrCl₄) was purchased from the Shanghai Aladdin Bio-Chem Technology Co., Ltd. (Shanghai, China). 2-aminoterephthalic acid (BDC-NH₂) was purchased from Sigma-Aldrich (St. Louis, USA). N, N-dimethylformamide (DMF) and chloroauric acid (HAuCl₄) were the products of the Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

Stock solution of cadmium (1000 mg L⁻¹) was prepared by dissolving appropriate amount of cadmium pellets in 1.0 mol L⁻¹ of HNO₃. Working standards of various concentrations were obtained by diluting the stock solution. pH value of the sample solution was adjusted by using HNO₃ (1.0 mol L⁻¹) or NaOH (2.0 mol L⁻¹). Nitrate solution of metals including K⁺, Na⁺, Ca²⁺, Mg²⁺, Zn²⁺, Fe³⁺, Cu²⁺, Hg²⁺, Ni²⁺ and Pb²⁺ were prepared for the interference studies. 1.2. The preparation of cadmium loaded magnetic microbeads and metal-chelating resin

2 mL of AffimagTM γ -Fe₂O₃ (1 % (w/v)) was mixed with 4 mL of iminodiacetic acid (IDA, 5 % (w/w), pH 9.16) and incubated in 4 mL of NaHCO₃-Na₂CO₃ (0.1 mol L⁻¹, pH 9.5) buffer solution for 24 h (37°C, 250 rpm). Then the IDA functionalized magnetic microbeads were rinsed for 3 times with DI water and stored at 4°C in PBS buffer solution (pH 7.4). For the preparation of Cd²⁺ immobilized magnetic microbeads, 500 µL AffimagTM γ -Fe₂O₃-IDA microbeads (1 % (w/v)) was incubated in 5 mL of Cd²⁺ solution (0.1 mol L⁻¹) overnight (37°C, 250 rpm). It is then rinsed for 3 times by PBS buffer solution (pH 5.8) and stored in PBS (pH 5.8) at 4°C for further use.

M⁺-loaded resin was prepared by replacing the preloaded Ni²⁺ by metal ions on the Ni-NTA-Sefinose resin. The resin beads were first washed with EDTA solution (0.5 mol L⁻¹, pH 8.0) to strip off Ni²⁺. The metal-free resin M⁻ was obtained until the resin turned from blue to colorless. The M⁻ resin were rinsed for 3 times with DI water and stored at 4°C for further use. Resin loading other metals was prepared in similar procedure. 1 mL of M⁻ resin suspension was incubated in 5 mL of metal ion solution (0.1 mol L⁻¹, M⁺ represents Zn²⁺, Pb²⁺, Hg²⁺, Fe³⁺ and Cu²⁺) overnight with gentle shaking. It is then rinsed with buffer solution and stored at 4°C.

1.3. Screening for Cd(II) binding phage

 $60 \ \mu\text{L}$ of the phage library (2×10¹² virions, library complexity (unique clones) = $\sim 2.8 \times 10^9$ as claimed by NEB) was dissolved in 940 μ L of sterilized DI water. Then it was mixed with 500 μ L of Cd²⁺ loaded magnetic microbeads and 200 μ L of M⁺-loaded resin beads together. The mixture was added into 1500 μ L sterilized DI water and incubated for 30 min (150 rpm, 25°C). The resin beads and supernatant were discarded and the magnetic microbeads were collected with magnet and washed three times with sterilized DI water to remove the loosely bonded phages. 2 mL of EDTA solution (0.5 M, pH 8.0) was added to microbeads and shook for 40 min (250 rpm,

25°C). The eluate was further centrifuged for 15 min (8000 rpm) with a centrifugal filter device with MWCO of 100 kDa (5000 rpm, 4°C). Phages retained on the filter membrane were carefully collected, amplified, and tittered for the next round of screening. The amplified phages were purified by precipitation with PEG/NaCl (20 % (w/v) poly (ethylene glycol) (PEG)-8000, 2.5 M NaCl). 10 μ L of the phage was used for phage tittering using X-gal/IPTG agar plates.

2. Supplemental tables and figures

Step	Temperature/°C	Ramp/s	Hold/s
Drying	100	15	10
Pyrolysis	350	15	10
Atomization	1900	1	3
Cleaning	2100	1	3

Table S1. Temperature program of the GFAAS instrument for cadmium detection.

Table S2. Elemental percentage in UiO66-NH₂ and UiO66-NH₂@phage.

			*
Element	Peak/eV	UiO66-NH ₂	UiO66-NH2@phage
		atomic/%	atomic/%
C (1s)	284.8	76.66	76.73
O (1s)	532.6	21.42	21.20
N (1s)	399.1	1.14	1.26
Zr (3d5)	182.3	0.77	0.70
Au (4f7)	83.8	0	0.11

Table S3. The kinetic parameters of Cd²⁺ adsorption by UiO66-NH₂@phage.

Adsorbent	pseudo-first-order kinetic			pseudo-second-order kinetic		
	K_f/\min^{-1}	$q_e/\mu { m g}~{ m g}^{-1}$	R ²	$K_s/g \mu g^{-1} min^{-1}$	$q_e/\mu { m g}~{ m g}^{-1}$	R ²
UiO66- NH ₂ @phag e	1.76	31.2	0.8881	0.182	13.6	0.9994

Table S4. *Langmuir* and *Freundlich* model parameters of Cd²⁺ adsorption by UiO66-NH₂@phage.

mill_copildge.						
Adsorbent ·	Langmuir model			Freundlich model		
	$K_L/L \mu g^{-1}$	$q_m/\mu { m g}~{ m g}^{-1}$	R ²	$K_F/\mu { m g}~{ m g}^{-1}$	N	R ²
UiO66- NH ₂ @phage	1.01	621	0.9999	368	8.45	0.9112

Adsorbent	Detection	LOD /ng L ⁻¹	EF	Sample volume/mL	Ref.
Fe ₃ O ₄ @FePO ₄	ETAAS	21	10.3	2	38
BSA-NFs	FAAS	370	40	20	39
L-cystine modified zeolite	FAAS	40	400	100	40
Amine functionalized resin	FAAS	1500		50	41
Ionic liquid modified	FAAS	500	50	50	42
Fe ₃ O ₄					
Ionic liquid-modified TiO ₂	FAAS	100		100	43
Modified nanoporous	FAAS	30	165	75	44
carbon					
Ionic imprinted polymers	ETAAS	160	12.5	25	45
Modified Fe ₃ O ₄	FAAS	3710	100	100	46
Graphene oxide	ETAAS	5	15	1.5	47
Ion imprinted mesoporous	GFAAS	6.1	50	25	48
silica					
Modified chitosan	FAAS	21	90	900	49
UiO66-NH ₂ @phage	GFAAS	3.9	17.4	1	This work

Table S5. The comparison of the proposed approach in terms of analytical performances with other methods reported in the literatures for the preconcentration & detection of Cd²⁺ by SPE-AAS.

Fig. S1. Optical microscopic images of (a) $UiO66-NH_2$ and (b) $UiO66-NH_2$ @phage. Inset: photograph of (a) and (b) under daylight.

Fig. S2. SEM images of UiO66-NH₂ (a-b) and UiO66-NH₂@phage (c-d). (a) UiO66-NH₂ (20000×), (b) UiO66-NH₂ (40000×), (c) UiO66-NH₂@phage (20000×), (d) UiO66-NH₂@phage (400000×).

Fig. S3. EDS map of element distribution.

Fig. S4. FT-IR spectra of UiO66-NH₂ and UiO66-NH₂@phage.

Fig. S5. XPS spectra of UiO66-NH₂ (bottom) and UiO66-NH₂@phage (top).

Fig. S6. The effect of reaction time on the adsorption efficiency of Cd^{2+} by the UiO66-NH₂@phage adsorbent. Sample solution: 1.0 mL (2.0 µg L⁻¹ Cd²⁺); pH: 6.0; The mass of adsorbent: 0.15 mg.

Fig. S7. (a) Pseudo-first-order kinetic and (b) pseudo-second-order kinetic plots of Cd^{2+} adsorption by UiO66-NH₂@phage. Sample solution: 1.0 mL (2.0 µg L⁻¹ Cd²⁺); pH: 6.0; The mass of adsorbent: 0.15 mg.

Fig. S8. The adsorption isotherm of Cd^{2+} by UiO66-NH₂@phage. Sample solution: 1.0 mL, 5-300 µg L⁻¹ Cd²⁺; pH: 6.0; The mass of adsorbent: 0.15 mg; Adsorption time: 20 min.

Fig. S9. Linear regression of the (a) *Langmuir* and (b) *Freundlich* adsorption isotherm. Sample solution: 1.0 mL, 5-300 μ g L⁻¹ Cd²⁺; pH: 6.0; The mass of adsorbent: 0.15 mg; Adsorption time: 20 min.