## **Supplementary Information**

A new approach to study human perivascular adipose tissue of internal mammary artery by fiber optic Raman spectroscopy supported by spectral modelling

Zuzanna Majka<sup>a,b,#</sup>, Krzysztof Czamara<sup>a,#</sup>, Piotr Wegrzyn<sup>c</sup>, Radoslaw Litwinowicz<sup>c</sup>, Joanna Janus<sup>a,b</sup>,

Stefan Chlopicki<sup>a,d</sup> and Agnieszka Kaczor<sup>a,b,\*</sup>

<sup>a</sup>Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.

<sup>b</sup>Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.

<sup>c</sup>Department of Cardiovascular Surgery and Transplantology, John Paul II Hospital, Jagiellonian University Medical College, 80 Pradnicka Str., 31-202 Krakow, Poland.

<sup>d</sup>Chair of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Str., 31-531 Krakow, Poland.

## WITec Alpha Cart Raman fiber probe adjustment ruler objective excitation fiber 10x/o.23 10x/o.23 sample

Figure S1. The experimental setup of Raman spectrometer WITec Alpha Cart with Raman fiber probe.

Table S1. Detailed characteristics of studied patients.

|                                    | Patients                                   |                        |                                        |                                                                    |                                                |                             |                                                                      |                                                                   |                                                                   |                                                                     |
|------------------------------------|--------------------------------------------|------------------------|----------------------------------------|--------------------------------------------------------------------|------------------------------------------------|-----------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|
|                                    | 1                                          | 2                      | 3                                      | 4                                                                  | 5                                              | 6                           | 7                                                                    | 8                                                                 | 9                                                                 | 10                                                                  |
| Gender                             | Male                                       | Male                   | Male                                   | Male                                                               | Male                                           | Male                        | Male                                                                 | Male                                                              | Male                                                              | Male                                                                |
| Age (years)                        | 66                                         | 57                     | 68                                     | 63                                                                 | 61                                             | 69                          | 62                                                                   | 66                                                                | 73                                                                | 72                                                                  |
| $BMI^1$ ( $kg/m^2$ )               | 31.64                                      | 32.93                  | 25.83                                  | 27.72                                                              | 26.12                                          | 26.37                       | 34.72                                                                | 23.88                                                             | 23.12                                                             | 25.86                                                               |
| Smoking                            | NO                                         | YES                    | YES                                    | YES                                                                | NO                                             | NO                          | NO                                                                   | YES                                                               | NO                                                                | NO                                                                  |
| Blood glucose<br>level<br>(mmol/L) | 8.4                                        | 6.1                    | 5.4                                    | 5.6                                                                | 5.6                                            | 5                           | 9.1                                                                  | 6.2                                                               | 6.2                                                               | 8                                                                   |
| Affiliates                         |                                            |                        |                                        |                                                                    |                                                |                             |                                                                      |                                                                   |                                                                   |                                                                     |
| Arterial hypertension              | YES                                        | YES                    | YES                                    | YES                                                                | YES                                            | YES                         | YES                                                                  | YES                                                               | YES                                                               | YES                                                                 |
| Type 2<br>diabetes<br>mellitus     | NO                                         | YES                    | NO                                     | YES                                                                | YES                                            | YES                         | YES                                                                  | NO                                                                | YES                                                               | NO                                                                  |
| Acute myocardial infarction        | NO                                         | NO                     | NO                                     | NO                                                                 | NO                                             | YES                         | YES                                                                  | NO                                                                | YES                                                               | NO                                                                  |
| Hypercholeste rolemia              | YES                                        | YES                    | YES                                    | YES                                                                | YES                                            | YES                         | YES                                                                  | YES                                                               | YES                                                               | YES                                                                 |
| Others                             | Chronic kidney disease                     |                        | Kidney<br>calculus<br>AAA <sup>3</sup> |                                                                    |                                                | Gout                        | Kidney<br>calculus                                                   | Gallstone<br>AAA <sup>3</sup>                                     | COPD⁴                                                             | Kidney<br>calculus<br>A lesion<br>in right<br>lung                  |
| CCS <sup>2</sup> scale             | II                                         | II                     | II                                     | II                                                                 | II                                             | III                         | III                                                                  | III                                                               | III                                                               | III                                                                 |
| Number of<br>bypass grafts         | 3                                          | 3                      | 4                                      | 3                                                                  | 1                                              | 4                           | 3                                                                    | 2                                                                 | 3                                                                 | 4                                                                   |
| Drug<br>treatment                  | Statins.  ACE-I <sup>5</sup> Beta-blockers | Statins Beta- blockers | Statins Beta-blockers                  | Statins.  ACE-I <sup>5</sup> . Beta- blockers Anti-db <sup>6</sup> | Statins.  Beta - blockers Anti-db <sup>6</sup> | Statins. ACE-I <sup>5</sup> | Statins.  ACE-I <sup>5</sup> .  Beta- blockers  Anti-db <sup>6</sup> | Statins.  ACE-I <sup>5</sup> beta- blockers  Anti-db <sup>6</sup> | Statins.  ACE -I <sup>5</sup> Beta- blockers Anti-db <sup>6</sup> | Statins.  ACE-I <sup>5</sup> .  Beta- blockers Anti-db <sup>6</sup> |
| Atrial<br>fibrillation             | YES                                        |                        |                                        |                                                                    |                                                |                             |                                                                      |                                                                   |                                                                   |                                                                     |

| Lipid<br>unsaturation<br>degree | 0.339 | 0.349 | 0.352 | 0.365 | 0.369 | 0.383 | 0.400 | 0.405 | 0.491 | 0.516 |
|---------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Carotenoid<br>level             | 4.452 | 1.591 | 5.069 | 2.562 | 2.059 | 1.399 | 3.423 | 4.440 | 0.399 | 0.000 |

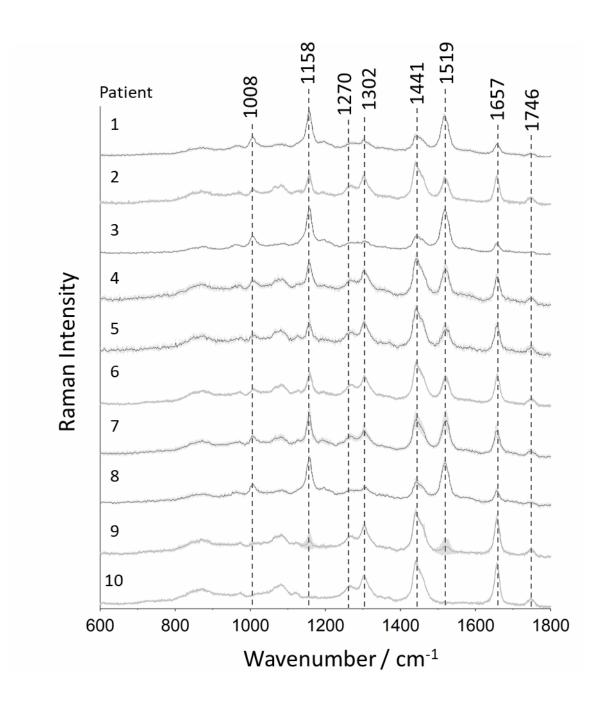
<sup>&</sup>lt;sup>1</sup>BMI – Body Mass Index (kg/m<sup>2</sup>)

## Heterogeneity of population and influence of affiliated diseases

Due to the fact that this study was done on a heterogeneous group of patients. various factors may affect the obtained results and it is impossible to define them. however based on current results it is tempting to speculate that age could be also an important factor. Indeed. two oldest patients (number 9 and 10) have a markedly increased level of unsaturation of lipids in PVAT of IMA (close to 0.50) compared to all other patients (0.34-0.40). Moreover. these patients have also a notably low carotenoid content: for one of these patients carotenoids were not observed in PVAT of IMA. for the other one the relative carotenoid content was 0.4. In the rest of the studied population, the carotenoid content was 1.4-3.4 and 4.4-5.1 for the diabetic patients and non-diabetic individuals, respectively. Moreover, one of the most obvious factors that may influence the results is the BMI of the patients. Although evaluation of the BMI influence on the studied markers in such small population as studied is impossible, it is necessary to underline that the this factor may affect the unsaturation ratio and, in particularly, the PVAT carotenoid level.

<sup>&</sup>lt;sup>2</sup> CCS scale – Canadian Cardiovascular Society scale (I – IV)

<sup>&</sup>lt;sup>3</sup>AAA – Abdominal aortic aneurysm


<sup>&</sup>lt;sup>4</sup>COPD – Chronic obstructive pulmonary disease

<sup>&</sup>lt;sup>5</sup>ACE-I – ACE inhibitor – An angiotensin-converting-enzyme inhibitor

<sup>&</sup>lt;sup>6</sup>Anti-db – Antidiabetic drugs

**Table S2**. Experimental and modeled values of lipid unsaturation degree and carotenoid level with relative error.

|                                 | Patients |       |       |       |       |       |       |       |       |       |
|---------------------------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                                 | 1        | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
| Lipid<br>unsaturation<br>degree |          |       |       |       |       |       |       |       |       |       |
| Experimental                    | 0.339    | 0.349 | 0.352 | 0.365 | 0.369 | 0.383 | 0.400 | 0.405 | 0.491 | 0.516 |
| Modeled                         | 0.375    | 0.384 | 0.362 | 0.401 | 0.394 | 0.404 | 0.396 | 0.378 | 0.460 | 0.505 |
| Relative error [%]              | 8.069    | 8.781 | 1.685 | 1.007 | 6.486 | 5.483 | 4.808 | 7.579 | 4.959 | 2.321 |
| Carotenoid<br>level             |          |       |       |       |       |       |       |       |       |       |
| Experimental                    | 4.452    | 1.591 | 5.069 | 2.562 | 2.059 | 1.399 | 3.423 | 4.440 | 0.399 | 0.000 |
| Modeled                         | 6.407    | 2.892 | 6.916 | 3.645 | 2.784 | 3.047 | 4.320 | 6.216 | 1.226 | 0.000 |
| Relative error [%]              | 7.959    | 20.57 | 9.795 | 15.71 | 0.215 | 9.153 | 12.39 | 8.319 | 49.69 | 0.000 |



**Figure S2**. **Raman spectra of PVAT of the human internal mammary artery.** Averaged Raman spectra of PVAT of IMA of all studied patients with assigned characteristic bands. Spectra were normalized in the 1800-400 cm<sup>-1</sup> spectral range and shifted for clarity.