Supporting Information

A versatile ultrafine and super-absorptive H+-modified montmorillonite: application for metabolic syndrome intervention and gastric mucosal protection

Qiwen Wang ‡a,b, Jie Shen ‡c, Enqi Mo b, Haotian Zhang d, Jianwei Wang b, Xiurong Hu b, Jun Zhou b, Hongzhen Bai b, *, Guping Tang b, *

a Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, P. R. China

b Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China

c School of Medicine, Zhejiang University City College, Hangzhou 310015, P. R. China

d School of Medicine, Zhejiang University, Hangzhou 310058, P. R. China

‡ Both authors contributed equally to this work

* To whom correspondence should be addressed:
Hongzhen Bai: hongzhen_bai@zju.edu.cn
Guping Tang: tangguping@zju.edu.cn.

Electronic Supplementary Information (2 pages)

1. FT-IR spectra S2
2. Sections from hamsters treated with high dose of simvastatin S3
1. FT-IR spectra

Na-MMT
H-MMT (ion exchange)
H-MMT (HCl treated)

Figure S1 FT-IR spectra of Na-MMT, H-MMT (ion exchange) and H-MMT (HCl treated).
2. Sections from hamsters treated with high dose of simvastatin

Figure S2 H&E staining of heart (A), kidney (B), liver (C) sections and oil red O staining of liver (D) sections from hamsters treated with high dose of simvastatin (10 mg/kg).
3. Intestinal tract sections from hamsters treated with different formulations

Figure S3 H&E staining of intestinal tract sections from hamsters treated with normal diet (control), high-fat diet, high-fat diet with simvastatin, high-fat diet with H-MMT and high-fat diet with Na-MMT, respectively.