Electronic supplementary information

Boronic acid engineered gold nanoparticles for cytosolic protein delivery

Song Zhanga, and Yiyun Chenga,b,*

aSouth China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.

bShanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China.

Correspondence and requests for materials should be addressed to Y. C. (E-mail: yycheng@mail.ustc.edu.cn);
Fig. S1 Screening optimal conditions for AuNPs in the delivery of BSA-FITC into HeLa cells. 120 μg mL⁻¹ BSA-FITC and 2-7 μM AuNPs were incubated at 50 μL water for 20 min before incubation with cells. The cells were treated with glucose solutions (2740 mOsmol kg⁻¹) for 3 min at 8 h. Yellow stars represent the optimal condition for the AuNPs. Scale bar, 200 μm.

Fig. S2 Flow cytometry analysis of HeLa cells incubated with CM1-1/BSA-FITC complex for 8 h, followed by treatment with glucose solutions at 2740 mOsmol kg⁻¹ for 3 min. The cells without glucose treatment were measured as a control.
Table S1. Zeta potential of AuNPs/BSA complexes at the optimal condition in water.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Zeta potential (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex 1-0</td>
<td>23.5 ± 2.1</td>
</tr>
<tr>
<td>Complex 2-1</td>
<td>24.3 ± 0.4</td>
</tr>
<tr>
<td>Complex 1-1</td>
<td>22.1 ± 0.9</td>
</tr>
<tr>
<td>Complex 1-2</td>
<td>21.0 ± 1.8</td>
</tr>
</tbody>
</table>