Electronic Supplementary Information (ESI)

A BODIPY-based fluorescent sensor for the detection of Pt²⁺

and Pt drugs

Fung-Kit Tang,^a Jiaqian Zhu,^b Fred Ka-Wai Kong,^c Maggie Ng,^c Qingyuan

Bian,^a Vivian Wing-Wah Yam,^{*c} Anfernee Kai-Wing Tse,^{*d} Yu-Chung

Tse*e and Ken Cham-Fai Leung*a

^a Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China

^b Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China

^c Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China

^d Programme of Food Science and Technology, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, P. R. China

^e Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China

*E-mail: cfleung@hkbu.edu.hk, wwyam@hku.hk, kaiwingtse@uic.edu.hk,

tseyc@sustech.edu.cn

Table of Contents

General experimental information	Page 2
Synthetic schemes and preparation of compounds	Page 7
Table S1. Examples of small molecular fluorescent sensors for Pt^{2+} and Pt drugs	Page 16
Additional spectra, cell images and calculation plots	Page 17
NMR spectra	Page 30
Mass spectra	Page 37
Table S2. Cartesian coordinates of the optimized ground-state geometry of PS .	Page 41
Table S3. Cartesian coordinates of the optimized ground-state geometry of $PS+Pt^{2+}$ in the O^S^S^O binding mode.	Page 42
Table S4. Cartesian coordinates of the optimized ground-state geometry of $PS+Pt^{2+}$ in the O^S^N^O binding mode.	Page 43
Table S5. Cartesian coordinates of the optimized ground-state geometry of $PS+Pt^{2+}$ in the O^S^N^S binding mode.	Page 44
References	Page 45

General information for experiments

General synthetic materials and methods:

Chemicals or reagents were purchased from Sigma Aldrich., Acros, Dieckmann, J&K,

Alfa Aesar or TCI, and used as received. All solvents were used directly without further treatment or distillation. Silica gel 60 (70–230 mesh, Merck) was used for column chromatography. Thin Layer Chromatography (TLC) was performed using F_{254} silica (aluminum sheet back plates, Merck).

Instruments and spectroscopic methods:

NMR spectroscopy

NMR spectra were recorded from Bruker Advance–III 400 NMR spectrometer operating at 400 MHz for ¹H and 101 MHz for ¹³C{¹H}, respectively. Chemical shifts are quoted in ppm. ¹H and ¹³C chemical shifts were referenced internally with solvent residue chemical shift values (CDCl₃: ¹H, 7.26 ppm; ¹³C, 77.16 ppm; CD₃OD: ¹H, 3.31 ppm; ¹³C, 49.00 ppm; (CD₃)₂CO: ¹H, 29.84 ppm; ¹³C, 206.26 ppm). ¹⁹⁵Pt NMR spectra were recorded on a Bruker AscendTM 500 Fourier–transform NMR spectrometer with chemical shifts reported relative to K₂PtCl₄ in D₂O (δ = –1617 ppm). NMR data were processed using MestReNova Software (Mestrelab).

Mass Spectrometry

High-resolution mass spectra were recorded on a Bruker Autoflex mass spectrometer (MALDI–TOF) and a Thermo Fisher Scientific UPLC–Q exactive focus hybrid quadrupole-orbitrap mass spectrometer in positive ion mode (ESI–MS).

Luminescent spectroscopy

Fluorescence spectra and UV–Vis absorption spectra were collected on a PTI QM– 4/2005 spectrometer and an Agilent Cary 8454 UV–Vis Diode Array System, respectively. Solution samples were contained in quartz cuvettes with a volume of 1.5 mL, 1 cm of path length and 0.4 cm of slit length. All aqueous solutions were prepared with Milli-Q water (18.2 M Ω cm⁻¹). Briefly, stock DMF solution of **PS** (1 mM) and stock analyte solutions (10 mM) were freshly prepared and added to aqueous solution according to the detection condition to form a final mixture with a volume of 1 mL. The final concentration of **PS** is 5 μ M, and the final concentration of analyte is 100 μ M (20 mol equiv.). The final reaction mixture was vortexed and incubated at ambient condition for 6 h before emission measurement of cations and platinum salts; while the final reaction mixture was vortexed and incubated at ambient condition for 6–24 h before emission measurement of organoplatinum drugs. Absolute quantum yields were measured on a Hamamatsu C9920-03 Absolute PL Quantum Yield Measurement System.

Biological assays and cell imaging experiments:

Cell Culture

Human A549 (lung) cancer cells were obtained from American Type Culture Collection (ATCC) and cultured in Dulbecco's modification of Eagle medium (DMEM) supplemented with 10 % fetal bovine serum, 100 units/mL penicillin and 100 mg/mL streptomycin. Cells were cultured at 37 °C in an atmosphere of 5 % CO₂ and 95 % humidity.

Cell proliferation assay

Cell proliferation was assessed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium] bromide assay. Briefly, cells were plated in 96–well plates (5×10^3 cells/well) and then treated with **PS** for 24 h. Afterward, cells were treated with MTT reagent and the absorbance at 570 nm was measured using a microplate reader. The viability of control (untreated cells) was regarded as 100 %.

Confocal laser scanning microscopy

For cellular imaging experiments, A549 cells were seeded in 4–well cell culture slides (SPL Life Sciences) and allowed to adhere overnight. Afterward, cells were incubated with Pt(II) derivatives for 4 h, followed by addition of **PS** for 30 min at 37 °C. Cells were then washed twice with PBS and fixed with methanol for 15 min at –20 °C. After fixation, cells were washed three times with PBS. Coverslips were mounted (Fluoroshield Mounting Medium with DAPI; Abcam) onto slides and sealed. Cells were imaged with Leica SP8 confocal microscope using DAPI (for nucleus staining: excitation at 405 nm, detection 440–480 nm) and Alexa 488 filters (excitation at 488 nm, detection 495–545 nm). Images were captured and analyzed with LAS AF software (Leica, Germany).

Computational studies:

All the density functional theory (DFT) calculations were carried out with the Gaussian 09 suite of programs.¹ The ground-state geometries of **PS** and **PS+Pt²⁺** were fully optimized in water by DFT with the hybrid Perdew, Burke, and Ernzerhof (PBE0) functional,²⁻⁴ in conjunction with the conductor-like polarizable continuum model (CPCM).^{5, 6} Regarding **PS+Pt²⁺**, three binding modes, namely, O^S^S^O, O^S^N^O and O^S^N^S, have been considered and the corresponding Pt(II) complexes have been

optimized. Vibrational frequencies of all the stationary points have been calculated to verify that each is a minimum (NIMAG = 0) on the potential energy surface (PES). The Cartesian coordinates of the optimized ground-state geometries of **PS** and **PS+Pt²⁺** in three binding modes are given in Tables S2–5. The Stuttgart effective core potentials (ECPs) and the associated basis set were used to describe Pt⁷ with f-type polarization functions ($\zeta = 0.993$),⁸ whereas the 6-31G(d,p) basis set⁹⁻¹¹ was applied for all other atoms. A pruned (99,590) grid was used for numerical integration in the DFT calculations.

Synthetic scheme and preparation of compounds

Scheme S1. Synthesis of compounds and chemosensor PS.

Scheme S2. Synthesis of compound L.

Scheme S3. Proposed detection mechanism of PS towards Pt^{2+} .

Synthesis of compound 7

Compound 7 was synthesized with a modified method from the literature.¹² Thiosalicylic acid (4 g, 26 mmol) was dissolved in 40 mL of MeOH, followed by 2 mL of concentrated H₂SO₄ was added, and the mixture was heated to reflux overnight. The mixture was diluted with ice and the diluted solution was neutralized by K₂CO₃. The product was extracted with CH₂Cl₂ (100 mL x 3), the organic layer was washed with brine and dried with anhydrous MgSO₄. Solvent was removed to yield a yellow liquid. Yield = 3.7 g, 85 %. ¹H NMR (400 MHz, CDCl₃, 298 K) δ 8.01 (d, *J* = 8.0 Hz, 1H), 7.33 – 7.30 (m, 2H), 7.16 (ddd, *J* = 7.9, 5.3, 3.2 Hz, 1H), 4.68 (s, 1H), 3.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, 298 K) δ 167.30, 138.40, 132.61, 131.82, 131.03, 125.93, 124.79, 52.38.

Synthesis of compound 8

Compound **8** was synthesized with a modified method from the literature.¹³ A mixture of aniline (10 g, 107 mmol), chloroethanol (40 g, 497 mmol), CaCO₃ (47 g, 470 mmol) and KI (2.7 g, 16.3 mmol) in 120 mL of H₂O/MeCN ($\nu/\nu = 1:1$) solution was refluxed for 4 d. Then insoluble materials were filtered and the filtrate was collected. The filtrate

was diluted with 100 mL of H₂O and the product was extracted with CH₂Cl₂ (100 mL x3). The organic layer was concentrated and purified by silica column using CH₂Cl₂/MeOH (v/v = 10:1) to give a white solid. Yield = 13.4 g, 69 %. ¹H NMR (400 MHz, CDCl₃, 298 K, –OH proton signal missing) δ 7.23 (dd, J = 8.9, 7.2 Hz, 2H), 6.73 (t, J = 7.3 Hz, 1H), 6.67 (d, J = 8.0 Hz, 2H), 3.80 (t, J = 4.8 Hz, 4H), 3.53 (t, J = 4.8 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃, 298 K) δ 147.79, 129.39, 116.87, 112.51, 60.83, 55.52.

Synthesis of compound 9

Compound **9** was synthesized with a modified method from the literature.¹³ In brief, a 20 mL of POCl₃ was added dropwise to 40 mL of DMF solution containing compound **8** (8.65 g, 47.7 mmol) at 0 °C for 2 h. The mixture was warmed to room temperature with stirring overnight. The mixture was diluted with ice water, and the solution was neutralized by K₂CO₃. The product was then extracted with CH₂Cl₂ (100 mL x 2). The organic layer was washed with brine and concentrated by rotary evaporator. The product was purified by silica column using EtOAc/hexane (v/v = 1:1) to give a pale yellow solid. Yield = 10.1 g, 86 %. ¹H NMR (400 MHz, CDCl₃, 298 K) δ 9.78 (s, 1H), 7.77 (d, J = 8.9 Hz, 2H), 6.74 (d, J = 9.0 Hz, 2H), 3.84 (t, J = 6.9 Hz, 4H), 3.68 (t, J = 6.8 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃, 298 K) δ 190.32, 151.08, 132.44, 126.86,

111.40, 53.41, 40.15. HRMS (MADLI–TOF): calculated for C₁₁H₁₄Cl₂NO [M+H]⁺ *m/z* 246.0449, found 246.2818.

Synthesis of compound 10

A mixture of compound 7 (1.5 g, 8.9 mmol), K₂CO₃ (3.3 g, 24 mmol) and compound 9 (1 g, 4.1 mmol) in 25 mL of MeCN was refluxed overnight. The insoluble material was filtered and the filtrate was collected. The excess of solvent was removed by rotary evaporator and residue was purified by silica column using EtOAc/hexane (v/v = 1:1) to give a yellow liquid. Yield = 1.5 g, 69 %. ¹H NMR (400 MHz, CDCl₃, 298 K) δ 9.74 (s, 1H), 7.94 (dd, J = 7.8, 1.6 Hz, 2H), 7.71 (d, J = 8.9 Hz, 2H), 7.40 (ddd, J = 8.1, 7.2, 1.6 Hz, 2H), 7.32 (dd, J = 8.2, 1.2 Hz, 2H), 7.19 (ddd, J = 8.2, 7.3, 1.2 Hz, 2H), 6.67 (d, J = 9.0 Hz, 2H), 3.89 (s, 6H), 3.72 (t, J = 7.4 Hz, 4H), 3.17 (t, J = 7.3 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃, 298 K) δ 189.98, 166.61, 151.09, 139.50, 132.31, 132.11, 131.25, 128.42, 126.08, 125.91, 124.54, 111.10, 52.09, 50.15, 29.26. HRMS (MALDI–TOF): calculated for C₂₇H₂₇NO₅S₂Na [M+Na]⁺ m/z 532.1223, found 532.1217.

Synthesis of compound 11

Compound 11 (1.6 g, 3.1 mmol) and 2,4-dimethylpyrrole (0.6 g, 6.3 mmol) were dissolved in 400 mL of degassed CH₂Cl₂, followed by addition of 10 drops of trifluoroacetic acid with stirring at room temperature for 24 h. Then DDQ (0.8 g, 3.5 mmol) was added to the mixture and allowed to react for 4 h at room temperature. 6 mL of triethylamine was added to the mixture, followed by 6 mL of BF₃·OEt₂ with further stirring for 24 h at room temperature. The organic layer was washed with H₂O (300 mL x 3). The organic layer was concentrated by rotary evaporator and the product was purified by silica gel column chromatography using EtOAc/hexane (v/v = 1:1) to afford 11 as orange liquid. Yield = 0.26 g, 11 %. ¹H NMR (400 MHz, CDCl₃, 298 K) δ 7.96 (dd, *J* = 7.9, 1.5 Hz, 2H), 7.41 (ddd, *J* = 8.1, 7.2, 1.6 Hz, 2H), 7.33 (dd, *J* = 7.9, 0.9 Hz, 2H), 7.20 (ddd, J = 7.7, 7.2, 1.2 Hz, 2H), 7.07 (d, J = 8.7 Hz, 2H), 6.74 (d, J = 8.8 Hz, 2H), 5.97 (s, 2H), 3.91 (s, 6H), 3.71 (t, J=7.4 Hz, 4H), 3.18 (t, J=7.3 Hz, 4H), 2.54 (s, 6H), 1.48 (s, 6H).¹³C NMR (101 MHz, CDCl₃, 298 K) δ 166.98, 155.06, 147.09, 143.19, 142.63, 140.19, 132.49, 132.19, 131.53, 129.45, 128.67, 126.29, 124.68, 123.30, 121.08, 112.48, 52.34, 50.62, 29.60, 14.90, 14.70. ¹⁹F NMR (377 MHz, CDCl₃, 298 K) δ -146.17 (q, J = 33.0 Hz, 2F). HRMS (MALDI-TOF): calculated for $C_{39}H_{40}BF_2N_3O_4S_2Na [M+Na]^+ m/z 750.2420$, found 750.2386.

Synthesis of PS

Compound **11** (0.26 g, 0.36 mmol) was dissolved in 60 mL of MeOH/H₂O/THF mixture ($\nu/\nu/\nu = 1:1:1$). Then NaOH (0.19 g, 4.75 mmol) was added and the resulting mixture was stirred at room temperature overnight. The excess of solvent was removed by rotary evaporator and the residue was re-dissolved in water with the pH adjusted to around pH 3 by 2 M HCl solution. The precipitate was collected by suction filtration, washed with 50 mL of H₂O and 50 mL of diethyl ether. The product was dried in air to give dark green powder. Yield = 165 mg, 66 %. ¹H NMR (400 MHz, CD₃OD, 298 K, –O*H* proton signal missing) δ 11.43 (s, 2H), 7.89 (d, *J* = 7.9 Hz, 2H), 7.53 – 7.31 (m, 4H), 7.27 – 7.07 (m, 4H), 6.87 (d, *J* = 8.1 Hz, 2H), 6.34 (s, 2H), 3.80 (t, *J* = 6.1 Hz, 4H), 3.37 – 3.13 (m, 4H), 2.37 (s, 6H), 1.77 (s, 6H). ¹³C NMR (101 MHz, (CD₃)₂CO, 298 K) δ 167.63, 155.41, 148.52, 144.00, 141.54, 133.26, 132.16, 130.02, 129.61, 127.15, 125.07, 123.23, 121.73, 121.70, 121.53, 113.49, 68.05, 51.11, 26.16, 14.96. ¹⁹F NMR (377 MHz, CD₃OD, 298 K) δ -147.02 (q, *J* = 32.4 Hz, 2F). HRMS (+ESI): calculated for C₃₇H₃₇BF₂N₃O₄S₂ [M]⁺ *m/z* 700.2281, found 700.2274.

Compound 12

Compound 12 was prepared according to the literature.¹⁴

Synthesis of compound L

Compound 7 (3.89 g, 23.1 mmol), K₂CO₃ (15 g, 0.11 mol) and compound **12** (3.2 g, 10.4 mmol) in 150 mL of MeCN was refluxed overnight. Insoluble materials were filtered and the filtrate was collected. The filtrate was concentrated and purified by flash column chromatography using EtOAc/hexane ($\nu/\nu = 1:1$) to afford a yellow liquid. The yellow liquid was used directly by dissolving in 200 mL of EtOH with NaOH (10 g, 0.25 mol). The mixture was refluxed overnight and then acidified with concentrated HCl to give pale yellow precipitate. The precipitate was collected by suction filtration, washed with water and dried under vacuum to give a solid. The solid product was further recrystallized in EtOH to afford a pale yellow powder. Yield = 4.1 g, 87 %. ¹H NMR (400 MHz, CD₃OD, 298 K) δ 7.95 (dd, *J* = 7.8, 1.6 Hz, 2H), 7.69 – 7.62 (m, 4H), 7.63 – 7.54 (m, 1H), 7.49 (d, *J* = 7.8 Hz, 2H), 7.35 (d, *J* = 7.9 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 2H), 3.83 (d, *J* = 8.1 Hz, 4H), 3.07 (d, *J* = 8.1 Hz, 4H). ¹³C NMR (101 MHz, CD₃OD,

298 K) δ 170.28, 138.44, 138.12, 133.81, 132.53, 132.06, 131.74, 131.12, 128.93, 126.84, 57.33, 28.37. HRMS (MALDI–TOF): calculated for C₂₄H₂₄NO₄S₂ [M+H]⁺ *m/z* 476.1141, found 476.0284.

Fluorescent probes	Probe Concentration	Detection parameters	Applications
CI CI CI CI CI CI CI CI CI CI CI CI CI C	12.5–300 μM	DMSO-pH 7 buffer ($\nu/\nu = 1:4$) $\lambda_{ex} = 497 \text{ nm}$	Detection of total platinum content, different platinum species and cisplatin in serum samples (Ref ¹⁵)
	10 μΜ	Air-saturated DMF or degassed DMF $\lambda_{ex} = 400 \text{ nm or } 525 \text{ nm}$	Phosphorescence detection of different Pt(II) sources and cisplatin (Ref ¹⁶)
Me EtHN Rhodamine-Triazole Conjugate 1	5 μΜ	H ₂ O/DMSO ($\nu/\nu =$ 99:1) solution $\lambda_{ex} = 500 \text{ nm}$	Detection of Pt(II) species including K ₂ PtCl ₄ , Pt(COD)Cl ₂ , PtCl ₂ and cisplatin in aqueous solution (Ref ¹⁷)
HO FDCPt1	100 μM	HEPES buffer (100 mM, pH 7.4, 50 % DMF $\lambda_{ex} = 516$ nm	Detection of monofunctional platinum species in several cell lines treated with cisplatin and oxaliplatin (Caco-2, HT29 and A549) (Ref ¹⁸)
Et ₂ N, O, NEt ₂ N·O, S _T N, Rho-DDTC	20–30 μM	HEPES buffer (20 mM, pH 7.4, 30 % EtOH) λ _{ex} = 490 nm	Imaging of cisplatin and several Pt(IV) prodrugs in HeLa cells (Ref ¹⁹)
Ethn, O , NHEt S, O , N	20 μΜ	CH ₃ CN/HEPES buffer solution (ν/ν = 7:3, 5 mM, pH 7.4) $\lambda_{ex} = 400 \text{ nm}$	HeLa cells treated with various Pt(IV) complexes. Buthionine-sulfoximine (BSO) treated cells showed GSH is not the dominant cellular reductant of Pt(IV) prodrug complexes (Ref ²⁰)
PS This work	5–10 μM	DMF/HEPES buffer solution ($v/v = 3:7$, 10 mM, pH 7.2) DMF/water solution ($v/v = 1:9$, pH = 7) $\lambda_{ex} = 500$ nm	Imaging and detection of Pt ²⁺ , organoplatinum drugs like cisplatin and nedaplatin in A549 lung carcinomas

Table S1. Examples of small molecular fluorescence sensors for Pt^{2+} and Pt drugs in literature

Figure S1. UV–visible absorption spectra of **PS** (5 μ M) upon addition of Pt²⁺ (20 mol equiv.). Conditions: DMF–HEPES (ν/ν = 3:7, 10 mM, pH = 7.2, 25 °C).

Figure S2. (a) Emission spectra of **PS** (5 μ M) upon reacting with Pt²⁺ (20 mol equiv.) using different excitation wavelengths from 485 nm to 510 nm. Conditions: DMF–HEPES buffer ($\nu/\nu = 3.7$, 10 mM, pH = 7.2). (b) Excitation spectrum and emission spectrum of **PS** (5 μ M) upon reacting with Pt²⁺ (20 mol equiv.). $\lambda_{ex} = 500$ nm and $\lambda_{em} = 520$ nm.

Figure S3. Time dependent fluorescence response of **PS** (5 μ M) upon addition of Pt²⁺ (0–100 mol equiv.). Conditions: DMF–HEPES (ν/ν = 3:7, 10 mM, pH = 7.2, 25 °C), λ_{ex} = 500 nm.

Figure S4. Relative fluorescence response (*I*/*I*_o) of **PS** (5 μ M) to Pt²⁺ in the presence of various cations (20 mol equiv.). Conditions: DMF–HEPES buffer solution ($\nu/\nu = 3:7$, 10 mM, pH = 7.2, 25 °C), $\lambda_{ex} = 500$ nm, n = 3.

Figure S5. Fluorescence response (*I*/*I*_o) of **PS** (5 μ M) in the presence of Pt(II) complexes (20 mol equiv.). Conditions: DMF–HEPES ($\nu/\nu = 3:7$, 10 mM, pH = 7.2, 25 °C), $\lambda_{ex} = 500$ nm.

Figure S6. Fluorescence titration of **PS** (5 μ M) in the presence of Pt²⁺ (0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 22.0, 24.0, 26.0, 28.0, 30.0, 32.0, 34.0, 36.0, 38.0, 40.0, 42.0, 44.0, 46.0, 48.0, 50.0, 75.0, 100.0 mol equiv.). Inset: linear correlation between the fluorescence intensity at 520 nm and concentration of Pt²⁺ (0–40 mol equiv.). Condition: DMF–HEPES buffer (ν/ν = 3:7, 10 mM, pH = 7.2), λ_{ex} = 500 nm.

Figure S7. Effect of pH on the fluorescence intensity of **PS** (5 μ M) in the absence or presence of Pt²⁺ (20 mol equiv.). Conditions: DMF–water solution (v/v = 3:7, pH = 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0 and 14.0, 25 °C), $\lambda_{ex} = 500$ nm. The pH of aqueous solution was tuned with HCl and NaOH.

Figure S8. Job's plot of **PS** responding to Pt^{2+} . The total concentration of **PS** and Pt^{2+} is 10 µM. Conditions: DMF–HEPES buffer solution (v/v = 3:7, 10 mM, pH 7.2, 25 °C), $\lambda_{ex} = 500$ nm.

Figure S9. Absolute photoluminescence quantum yields of **PS** (5 μ M) upon addition of different Pt complexes (20 mol equiv.). Conditions: DMF–water solution (v/v = 1:9, pH = 7, 25 °C), incubation for 12 h, $\lambda_{ex} = 500$ nm. The corresponding complex structures and names are shown in index for reference.

Figure S10. Absolute photoluminescence quantum yields of **PS** (5 μ M) in the absence and the presence of Pt²⁺ (20 mol equiv.). Conditions: DMF–HEPES ($\nu/\nu = 3:7$, 10 mM, pH = 7.2, 25 °C), incubation for 6 h, $\lambda_{ex} = 500$ nm.

Figure S11. HRMS (ESI) spectrum of platinum complex ensemble $[L-H+Pt]^+$ and $[L-2H+Pt+Na]^+$ from reaction mixture of K₂PtCl₄ and compound L. Top: enlarged peaks of the mass spectrum and bottom: scan of the mass spectrum.

Figure S12. HRMS (MALDI–TOF) spectrum of platinum complex ensemble $[L-H+Pt]^+$ and $[L-2H+Pt+Na]^+$ from reaction mixture of cisplatin and compound L. Top: enlarged peaks of the mass spectrum with the isotopic patterns and bottom: scan of the mass spectra.

Figure S13. (a) ¹⁹⁵Pt NMR spectra of compound **L** in CD₃OD with the addition of 1 mol equiv. of K₂PtCl₄ in NaOD solution in D₂O ($\delta = -1582$ ppm); (b) ¹⁹⁵Pt NMR spectra of the sample in (a) with K₂PtCl₄ in D₂O ($\delta = -1617$ ppm) in sealed capillary tube as external reference; (c) ¹⁹⁵Pt NMR spectra of K₂PtCl₄ in D₂O.

Figure S14. Schematic energy profile of the three conformations of $PS+Pt^{2+}$ obtained at the PBE0 level of theory.

Figure S15. Spatial plots (isovalue = 0.03) of frontier molecular orbitals of the fluorescent sensor **PS** at the optimized PBE0 ground-state geometry.

Figure S16. Spatial plots (isovalue = 0.03) of frontier molecular orbitals of $PS+Pt^{2+}$, in the O^S^S^O binding mode, at the optimized PBE0 ground-state geometry.

Figure S17. MTT cytotoxicity assay of PS at different concentrations on A549 cells.

Figure S18. Confocal laser scanning microscopic images (CLSM) of A549 cells. Cells were exposed with different platinum species (10 μ M) for 4 h and then incubated with **PS** (10 μ M) for 30 min at 37 °C. (a) K₂PtCl₄; (b) cisplatin; (c) oxaliplatin; (d) nedaplatin and (e) carboplatin. Scale bar represents 50 μ m.

Figure S19. Confocal laser scanning microscopic images (CLSM) of A549 cells. Cells were exposed with different concentration of cisplatin (0.1–10 μ M) for 4 h and then incubated with **PS** (10 μ M) for 30 min at 37 °C. (a) 0.1 μ M; (b) 1 μ M; (c) 5 μ M and (d) 10 μ M of cisplatin. Scale bar represents 50 μ m.

NMR Spectra

Figure S20. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of compound 7.

Figure S21. ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, CDCl₃, 298 K) of compound 7.

Figure S23. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃, 298 K) of compound **8**.

Figure S25. ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, CDCl₃, 298 K) of compound 9.

Figure S26. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of compound 10.

Figure S27. ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, CDCl₃, 298 K) of compound 10.

Figure S29. ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, CDCl₃, 298 K) of compound 11.

Figure S30. ¹H NMR spectrum (400 MHz, CD₃OD, 298 K) of PS.

Figure S31. ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, (CD₃)₂CO, 298 K) of PS.

Figure S32. ¹H NMR spectrum (400 MHz, CD₃OD, 298 K) of compound L.

Figure S33. ¹³C{¹H} NMR spectrum (101 MHz, CD₃OD, 298 K) of compound L.

Figure S34. (a) ¹⁹F NMR spectrum (377 MHz, CDCl₃, 298K) of compound **11** and (b) ¹⁹F NMR spectrum (377 MHz, CD₃OD, 298K) of **PS**.

Mass spectra

Figure S35. HRMS (MALDI–TOF) spectrum of compound 9.

Figure S36. HRMS (MALDI-TOF) spectrum of compound 10.

Figure S37. HRMS (MALDI-TOF) spectrum of compound 11.

Figure S38. HRMS (+ESI) spectrum of PS.

Figure S39. HRMS (MALDI–TOF) spectrum of compound L.

Table S2. Cartesian coordinates of the optimized ground-state geometry of PS.

1	Ν	5.919229	1.239149	0.109586	54	Н	-1.029899	-2.618979	-0.547304
2	С	4.539673	1.218146	-0.084499	55	S	-2.921690	2.332338	0.910475
3	С	6.325736	2.519518	0.167409	56	S	-2.920923	-2.332706	0.910410
4	С	4.081958	2.570424	-0.148756	57	С	-3.817837	3.869798	1.040974
5	С	5.212140	3.362144	0.010466	58	С	-3.706136	4.543658	2.264089
6	Н	5.243291	4.443962	0.014920	59	С	-4.636868	4.390946	0.023267
7	Ν	5.919323	-1.238757	0.109415	60	С	-4.412421	5.718827	2.501410
8	С	6.325900	-2.519105	0.167201	61	Н	-3.048770	4.141123	3.030439
9	С	4.539759	-1.217825	-0.084610	62	С	-5.288224	5.606236	0.264354
10	С	5.212342	-3.361788	0.010295	63	С	-5.204684	6.258517	1.490537
11	С	4.082115	-2.570127	-0.148889	64	Н	-4.321704	6.220237	3.460942
12	Н	5.243558	-4.443605	0.014697	65	Н	-5.885494	6.031424	-0.538347
13	в	6.833550	0.000221	0.242365	66	Н	-5.744490	7.187693	1.652388
14	F	7.796259	0.000351	-0.769874	67	С	-3.816967	-3.870223	1.040873
15	- F	7.467296	0.000137	1.487255	68	C	-4.636246	-4.391228	0.023301
16	- C	7 747338	2 903880	0 369525	69	C	-3 704834	-4 544343	2 263809
17	ч	8 124794	2 498472	1 313241	70	C	-5 287401	-5 606647	0 264309
1.8	и	8 374538	2 491270	-0 426468	71	C	-4 410938	-5 719626	2 501081
19	и	7 850803	3 989753	0 380207	72	ч	-3 047265	-4 141922	3 030045
20	C	7 747517	-2 903388	0 369361	73	C	-5 203440	-6 259187	1 490320
21	ч	8 374912	-2 489639	-0 425875	74	ч	-5 884812	-6 031700	-0 538352
22	и	8 124529	-2 499073	1 313732	75	и и	-4 319886	-6 221239	3 460476
22	и	7 851225	-3 989250	0 378782	76	и и	-5 743096	-7 188455	1 652135
24	C	2 697077	-3 091338	-0 343651	70	C	-4 879604	3 722089	-1 334325
25	с ц	2.037077	-2 757643	0 449212	78	0	-4.603662	1 126796	-2 334845
20	п	2.020330	-2.752012	-1 299269	70	0	-5 252227	2 562426	-1 207000
20	п	2.202939	-2.752912	-1.289309	00	c	- 4 970552	-2 722126	-1.307998
27	п	2.710740	-4.103077	-0.344034	01	0	-4.879555	-3.722120	-1.334075
20		2.090900	0 750077	1 200477	0.0	0	-4.004020	-4.420897	1 207250
29	п	2.202904	2.753577	-1.289477	02	N	-1 027004	-2.302201	-1.307338
21	п	2.020205	2.757000	-0.2442002	00	IN	-1.02/004	0.000028	-0.923739
22	п	2.710480	4.104114	-0.344290					
22	c	2 202445	0.000139	-0.294110					
20	C	2.362443	0.000100	-0.384119					
34	c	1.519067	0.000067	0.713002					
35	C	1.846599	0.000096	-1.6/5635					
36	C	0.14000/	0.000041	0.519835					
37	н	1.92/134	0.000068	1./19/68					
38	С	0.468884	0.000069	-1.864290					
39	Н	2.512853	0.000114	-2.533851					
40	С	-0.400296	0.000043	-0.766820					
41	Η	-0.537573	0.000018	1.368436					
42	Η	0.067744	0.000069	-2.874269					
43	С	-2.332602	-1.214103	-1.562199					
44	Н	-3.411608	-1.104131	-1.705588					
45	Н	-1.878792	-1.381844	-2.556736					
46	С	-2.332599	1.214206	-1.562112					
47	Н	-3.411559	1.104121	-1.705753					
48	Н	-1.878622	1.382138	-2.556541					
49	С	-2.098313	2.453600	-0.719339					
50	Н	-1.030216	2.618916	-0.546609					
51	Н	-2.496202	3.326393	-1.241643					
52	С	-2.098047	-2.453625	-0.719683					
53	Н	-2.496067	-3.326341	-1.242021					

Table S3. Cartesian coordinates of the optimized ground-state geometry of $PS+Pt^{2+}$ in the O^S^SO binding mode.

1	Ν	7.068638	1.255464	0.277305	54	Н	-0.407867	-2.731095	-0.504691
2	С	5.703374	1.239011	0.000578	55	S	-2.280527	1.603483	0.442445
3	С	7.461961	2.532662	0.424449	56	S	-2.215715	-1.570447	0.498903
4	С	5.240506	2.591090	-0.021288	57	С	-3.319235	2.963526	0.949079
5	С	6.353303	3.377872	0.245992	58	С	-2.812505	3.731411	1.999708
6	Н	6.376585	4.458106	0.307811	59	С	-4.561565	3.262254	0.366245
7	N	7.090760	-1.218322	0.130953	60	С	-3.537374	4.811856	2.491345
8	С	7.504491	-2.497600	0.136961	61	н	-1.849713	3.475916	2.431870
9	C	5 724062	-1 193520	-0 138298	62	C	-5 262719	4 362387	0 872993
1.0	C	6 408015	-3 335868	-0 127948	63	C	-4 769459	5 124174	1 925567
11	C	5 281675	-2 542606	-0 303677	61	с ц	-3 139508	5 400163	3 312096
10	ц	6 117069	-4 415000	-0.192676	65	11 11	-6 212160	1 601911	0 410545
12	п	0.44/968	-4.415998	-0.182878	65	п	-0.213169	4.604844	0.410343
13	в	7.986266	0.016040	0.383787	66	н	-5.34/364	5.962785	2.301390
14	F.	8.99/961	0.082599	-0.5/6//8	6/	С	-3.206339	-2.935334	1.083131
15	F	8.556059	-0.054290	1.656854	68	С	-4.441076	-3.304152	0.525219
16	С	8.867354	2.911646	0.725003	69	С	-2.672245	-3.626699	2.172398
17	Н	9.198719	2.449977	1.660046	70	С	-5.107250	-4.393699	1.097340
18	Η	9.538347	2.552574	-0.061269	71	С	-3.362346	-4.698651	2.728622
19	Н	8.960796	3.995279	0.807813	72	Η	-1.716184	-3.317946	2.584207
20	С	8.916657	-2.885468	0.391003	73	С	-4.587006	-5.078979	2.188964
21	Н	9.580671	-2.424047	-0.346207	74	Н	-6.051909	-4.690260	0.654835
22	Н	9.241359	-2.533546	1.374890	75	Н	-2.943520	-5.226961	3.579241
23	Н	9.028433	-3.969540	0.344160	76	Н	-5.137949	-5.911376	2.615660
24	С	3.913613	-3.059961	-0.601441	77	С	-5.233083	2.544860	-0.787818
25	Н	3.186951	-2.754131	0.157390	78	0	-6.039790	3.181486	-1.459726
26	Н	3.538587	-2.693349	-1.561932	79	0	-5.002652	1.289739	-1.035976
27	Н	3.932146	-4.151815	-0.637020	80	С	-5.132593	-2.675063	-0.667387
28	С	3.865963	3.115838	-0.272624	81	0	-5.924062	-3.370940	-1.297363
29	н	3.482723	2.806614	-1.249772	82	0	-4.927924	-1.433927	-0.995752
30	н	3.149953	2.758179	0.473757	83	Pt	-3.678252	-0.026003	-0.266920
31	н	3.876369	4.207861	-0.239085	84	N	-0.562207	0.003623	-1.395682
32	С	5.037280	0.024879	-0.204664					
33	C	3 582063	0 028640	-0 511462					
34	C	2 637761	-0 008485	0 515354					
35	C	3 1/876/	0.065878	-1 840825					
26	c	1 276/09	-0.010914	0 217652					
27	ц	2 966556	-0.026217	1 550097					
20	п	2.900000	-0.030317	1.550087					
20		1.791216	0.062004	-2.135959					
39	н	3.8/9186	0.094613	-2.644231					
40	С	0.843234	0.022423	-1.10/164					
41	Н	0.538567	-0.039375	1.014075					
42	Н	1.465706	0.085879	-3.172694					
43	С	-1.035294	-1.249109	-1.983980					
44	Н	-1.959813	-1.043517	-2.528333					
45	Η	-0.319202	-1.674225	-2.703291					
46	С	-1.072153	1.220141	-2.025474					
47	Η	-1.989683	0.968358	-2.562266					
48	Н	-0.370756	1.644656	-2.759296					
49	С	-1.392126	2.308069	-1.010106					
50	Н	-0.489666	2.763383	-0.592541					
51	Н	-2.009767	3.088916	-1.459788					
52	С	-1.322879	-2.310628	-0.931505					
53	Н	-1.925728	-3.120039	-1.349593					

Table S4. Cartesian coordinates of the optimized ground-state geometry of $PS+Pt^{2+}$ in the O^S^N^O binding mode.

1	Ν	-6.484525	-1.411549	0.253778	54	С	3.906375	-3.173497	-0.140925
2	С	-5.116308	-1.391844	-0.006939	55	С	4.209192	-4.081144	-1.152623
3	С	-6.894558	-2.690949	0.301488	56	С	4.913117	-2.658124	0.696686
4	С	-4.669142	-2.744828	-0.124331	57	С	5.532452	-4.443604	-1.388862
5	С	-5.794058	-3.534661	0.071504	58	Н	3.426821	-4.517871	-1.762900
6	н	-5.830790	-4.616083	0.052905	59	С	6.228139	-3.066504	0.453567
7	Ν	-6.471927	1.065927	0.312804	60	С	6.546240	-3.929222	-0.588254
8	С	-6.869564	2.345553	0.420234	61	Н	5.759983	-5.135436	-2.193635
9	C	-5.104320	1.045234	0.048740	62	н	6.999351	-2.683862	1.113403
10	C	-5.761407	3.188548	0.226955	63	н	7.579792	-4.210111	-0.763502
11	C	-4.644599	2.397895	-0.007561	64	C	2.865036	4.378490	-0.561101
12	н	-5 787815	4 269981	0 258054	65	C	3 647778	3 583652	0 293081
13	B	-7 386962	-0 172261	0 453956	66	C	2 846709	5 765405	-0 376784
11	r r	-8 388560	-0 1/3508	-0 518551	67	c	1 374418	1 187726	1 320382
15	-	-7 968386	-0 199662	1 722831	68	c	3 595681	6 359017	0 634687
16	C	-9 206586	-2.074065	0 562200	60	с и	2 222449	6 279075	_1 021124
17		-0.300380	-3.074005	1 524510	70	п	2.233440	5.378073 E E 60000	1 400570
10	п	-0.034032	-2.093023	1.554519	70		4.337616	3.566909	1.490579
10	п	-0.909002	-2.033008	-0.190039	71	п	4.908900	7 427200	1.983983
19	п	-0.410114	-4.139223	0.34/332	72	п	3.366602	7.437209	0.760308
20		-8.2//491	2.729521	0./0111/	73	н	4.935160	6.023109	2.289868
21	н	-8.944641	2.334359	-0.070882	74	C	4./314/9	-1./51653	1.903/8/
22	Н	-8.608600	2.305670	1.654048	75	0	5.550478	-1.838173	2.810470
23	Н	-8.376349	3.815146	0.738742	76	0	3.741806	-0.902338	1.972808
24	С	-3.270095	2.920795	-0.262719	77	С	3.728626	2.090505	0.115853
25	Н	-2.550893	2.562995	0.480383	78	0	4.583761	1.584391	-0.605192
26	Н	-2.892854	2.614165	-1.243301	79	0	2.800643	1.466522	0.773158
27	Н	-3.279212	4.012703	-0.228990	80	Pt	2.485779	-0.521293	0.459476
28	С	-3.298550	-3.269572	-0.397187	81	Ν	1.219385	-0.217645	-1.210775
29	Н	-2.906817	-2.913613	-1.355061	82	С	1.032485	2.315304	-1.390386
30	Н	-2.582854	-2.962819	0.372004	83	Н	1.047656	2.315507	-0.300777
31	Н	-3.321108	-4.361494	-0.423925	84	Н	0.002200	2.461815	-1.721239
32	С	-4.434307	-0.173543	-0.108831					
33	С	-2.973781	-0.176832	-0.390370					
34	С	-2.050789	-0.207829	0.654363					
35	С	-2.508088	-0.151185	-1.707806					
36	С	-0.683560	-0.221043	0.388983					
37	Н	-2.396798	-0.222926	1.683238					
38	С	-1.144861	-0.165266	-1.976589					
39	Н	-3.215451	-0.119974	-2.530721					
40	С	-0.227319	-0.207851	-0.924406					
41	Н	0.035286	-0.244122	1.203402					
42	Н	-0.816082	-0.135311	-3.010641					
43	С	1.612980	1.026933	-1.968414					
44	Н	2.703892	1.048812	-1.963292					
45	Н	1.284705	0.913580	-3.008369					
46	С	1.562711	-1.387098	-2.097065					
47	Н	2.614032	-1.275302	-2.373979					
48	Н	0.963323	-1.350332	-3.012788					
49	С	1.329068	-2.705038	-1.396952					
50	Н	0.276879	-2.849688	-1.136170					
51	Н	1.631528	-3.547248	-2.019788					
52	S	2.193643	-2.745455	0.212648					
53	S	1.966150	3.774057	-1.979960					

Table S5. Cartesian coordinates of the optimized ground-state geometry of $PS+Pt^{2+}$ in the O^S^N^S binding mode.

1	Ν	-6.484525	-1.411549	0.253778	54	Н	3.906375	-3.173497	-0.140925
2	С	-5.116308	-1.391844	-0.006939	55	S	4.209192	-4.081144	-1.152623
3	С	-6.894558	-2.690949	0.301488	56	S	4.913117	-2.658124	0.696686
4	С	-4.669142	-2.744828	-0.124331	57	С	5.532452	-4.443604	-1.388862
5	С	-5.794058	-3.534661	0.071504	58	С	3.426821	-4.517871	-1.762900
6	Н	-5.830790	-4.616083	0.052905	59	С	6.228139	-3.066504	0.453567
7	N	-6.471927	1.065927	0.312804	60	С	6.546240	-3.929222	-0.588254
8	С	-6.869564	2.345553	0.420234	61	Н	5.759983	-5.135436	-2.193635
9	С	-5.104320	1.045234	0.048740	62	С	6.999351	-2.683862	1.113403
10	C	-5.761407	3.188548	0.226955	63	С	7.579792	-4.210111	-0.763502
11	C	-4.644599	2.397895	-0.007561	64	н	2.865036	4.378490	-0.561101
12	н	-5 787815	4 269981	0 258054	65	н	3 647778	3 583652	0 293081
13	B	-7 386962	-0 172261	0 453956	66	ц	2 846709	5 765405	-0 376784
11	r r	-8 388560	-0 1/3508	-0 518551	67	C	1 374418	1 187726	1 320382
15	r r	-7 069296	-0.199662	1 722021	607	c	2 505601	6 250017	0 624697
1 C	r C	- 7.900300	-0.199002	1.722031	60	c	2 222449	6 279075	1 021124
17		-0.300380	-3.074083	1 524510	70	C	2.233440	6.3/80/3	-1.031134
1 /	н	-8.634632	-2.693623	1.534519	70	C	4.35/616	5.568909	1.490579
18	н	-8.969062	-2.635668	-0.190039	/1	C	4.968966	3.565489	1.983985
19	н	-8.416114	-4.159225	0.54/532	72	н	3.568602	7.437209	0.760308
20	С	-8.2//491	2.729521	0./0111/	/3	С	4.935160	6.023109	2.289868
21	Н	-8.944641	2.334359	-0.070882	74	Н	4.731479	-1.751653	1.903787
22	Н	-8.608600	2.305670	1.654048	75	Н	5.550478	-1.838173	2.810470
23	Н	-8.376349	3.815146	0.738742	76	Н	3.741806	-0.902338	1.972808
24	С	-3.270095	2.920795	-0.262719	77	С	3.728626	2.090505	0.115853
25	Н	-2.550893	2.562995	0.480383	78	0	4.583761	1.584391	-0.605192
26	Н	-2.892854	2.614165	-1.243301	79	0	2.800643	1.466522	0.773158
27	Н	-3.279212	4.012703	-0.228990	80	С	2.485779	-0.521293	0.459476
28	С	-3.298550	-3.269572	-0.397187	81	0	1.219385	-0.217645	-1.210775
29	Н	-2.906817	-2.913613	-1.355061	82	0	1.032485	2.315304	-1.390386
30	Н	-2.582854	-2.962819	0.372004	83	Pt	1.047656	2.315507	-0.300777
31	Н	-3.321108	-4.361494	-0.423925	84	Ν	0.002200	2.461815	-1.721239
32	С	-4.434307	-0.173543	-0.108831					
33	С	-2.973781	-0.176832	-0.390370					
34	С	-2.050789	-0.207829	0.654363					
35	С	-2.508088	-0.151185	-1.707806					
36	С	-0.683560	-0.221043	0.388983					
37	Н	-2.396798	-0.222926	1.683238					
38	С	-1.144861	-0.165266	-1.976589					
39	Н	-3.215451	-0.119974	-2.530721					
40	С	-0.227319	-0.207851	-0.924406					
41	Н	0.035286	-0.244122	1.203402					
42	Н	-0.816082	-0.135311	-3.010641					
43	С	1.612980	1.026933	-1.968414					
44	Н	2.703892	1.048812	-1.963292					
45	Н	1.284705	0.913580	-3.008369					
46	С	1.562711	-1.387098	-2.097065					
47	Н	2.614032	-1.275302	-2.373979					
48	Н	0.963323	-1.350332	-3.012788					
49	С	1.329068	-2.705038	-1.396952					
50	Н	0.276879	-2.849688	-1.136170					
51	Н	1.631528	-3.547248	-2.019788					
52	С	2.193643	-2.745455	0.212648					
53	Н	1.966150	3.774057	-1.979960					

References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 2. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- 3. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1997, 78, 1396-1396.
- 4. C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-6170.
- 5. V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995-2001.
- 6. M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 2003, 24, 669-681.
- D. Andrae, U. Haussermann, M. Dolg, H. Stoll and H. Preuss, *Theor. Chim. Acta.*, 1990, 77, 123-141.
- A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp and G. Frenking, *Chem. Phys. Lett.*, 1993, 208, 111-114.
- 9. W. J. Hehre, Ditchfie.R and J. A. Pople, J. Chem. Phys., 1972, 56, 2257-2261.
- 10. P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta.*, 1973, **28**, 213-222.
- M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees and J. A. Pople, *J. Chem. Phys.*, 1982, 77, 3654-3665.
- 12. X. Zheng, C. Liang, L. Wang, B. Wang, Y. Liu, S. Feng, J. Z. Wu, L. Gao, L. Feng, L. Chen, T. Guo, H. C. Shen and H. Yun, *J. Med. Chem.*, 2018, **61**, 10228-10241.
- 13. M. K. Pola, M. V. Ramakrishnam Raju, C.-M. Lin, R. Putikam, M.-C. Lin, C. P. Epperla, H.-C. Chang, S.-Y. Chen and H.-C. Lin, *Dyes Pigm.*, 2016, **130**, 256-265.
- 14. Q. Dong, M. J. Rose, W.-Y. Wong and H. B. Gray, *Inorg. Chem.*, 2011, **50**, 10213-10224.
- 15. A. L. Garner and K. Koide, Chem. Commun., 2009, 83-85.

- 16. L. Zhou, Y. Feng, J. Cheng, N. Sun, X. Zhou and H. Xiang, *RSC Adv.*, 2012, **2**, 10529-10536.
- 17. H. Kim, S. Lee, J. Lee and J. Tae, Org. Lett., 2010, 12, 5342-5345.
- 18. C. Shen, B. D. W. Harris, L. J. Dawson, K. A. Charles, T. W. Hambley and E. J. New, *Chem. Commun.*, 2015, **51**, 6312-6314.
- 19. D. Montagner, S. Q. Yap and W. H. Ang, *Angew. Chem. Int. Ed.*, 2013, **52**, 11785-11789.
- 20. J. X. Ong, C. S. Q. Lim, H. V. Le and W. H. Ang, *Angew. Chem. Int. Ed.*, 2019, **58**, 164-167.