Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

# **Electronical Supplementary Information**

# Cyclodextrins: from solute to solvent

Tracy El Achkar,<sup>ab</sup> Tarek Moufawad,<sup>a</sup> Steven Ruellan,<sup>a</sup> David Landy,<sup>a</sup> Hélène Greige-Gerges<sup>b</sup> and Sophie Fourmentin\*<sup>a</sup>

<sup>a</sup> Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), SFR Condorcet FR CNRS 3417, ULCO, F-59140 Dunkerque, France.

<sup>b</sup> Bioactive Molecules Research Laboratory, Faculty of Sciences, Lebanese University, Lebanon.

\* Corresponding author e-mail address: <a href="mailto:lamotte@univ-littoral.fr">lamotte@univ-littoral.fr</a> (Sophie Fourmentin)

Number of Pages: 4

Number of Table: 1

Number of Figures: 2

## **Experimental Details**

## Preparation of the solvent

The solvent was prepared by mixing RAMEB and levulinic acid (30:70 %wt). The mixture was then stirred at 60 °C until the formation of a clear homogenous liquid. The water content of the prepared solvent was determined using Karl Fisher titration method (Mettler Toledo DL31).

#### Density and viscosity measurements

Density measurements were conducted using a U-shaped vibrating-tube densimeter (Anton Paar, model DMA 5000 M) operating in a static mode. The factory calibration was used and verified before and after each measurement with air and tri distilled degassed water.

The viscosity was determined using a falling-ball-based microviscosimeter (Lovis 2000 M/ME from Anton Paar). The temperature was controlled to within 0.005 K and measured with an accuracy better than 0.02 K. A capillary tube of 1.8 mm diameter, previously calibrated as the function of temperature and angle of measurement with reference oils, was used for the measurements.

#### DSC

DSC experiments were carried out using a Q1000 DSC (TA Instruments, New Castle DE) at a temperature range going from -100 °C to 40 °C and at a thermal scanning rate of 5 °C.min<sup>-1</sup>. The samples were encapsulated in aluminum pans (sample weight ~ 10-15 mg), sealed with hermetic lids and characterized. Experiments were performed under nitrogen flow (50 mL.min<sup>-1</sup>).

# Static Headspace-Gas Chromatography (SH-GC)

All measurements were carried out with an Agilent G1888 headspace sampler coupled with a Perkin Elmer Autosystem XL gas chromatography equipped with a flame ionization detector and a DB624 column using nitrogen as carrier gas. The GC column temperature was fixed at 160 °C. Solubility of AN in RAMEB:Lev was determined using the method described by Moufawad et al<sup>1</sup>.

#### NMR

All NMR experiments have been recorded on a Bruker Avance III spectrometer operating at 400 MHz for the proton nucleus, equipped with a multinuclear z-gradient BBFO probe head. In all experiments, the probe temperature was maintained at 303 K and standard 5 mm NMR tubes with  $D_2O$  insert were used.

The <sup>1</sup>H spectra were recorded with the following acquisition parameters: time domain 55 K with a digital resolution of 0.20 Hz, relaxation delay: 2 s, and 16 scans.

2D-ROESY spectrum of RAMEB/AN complex in RAMEB:Lev solvent was acquired with a mixing time of 800 ms during spin-lock, using off resonance pulse program troesyph, and States-TPPI method with a 2048 K time domain in F2 and 512 experiments in F1 with 200 scans.

2D-DOSY spectra have been performed using the bipolar longitudinal eddy current delay (BPPLED – Bipolar Pulsed Field Gradient Longitudinal Eddy Delay) pulse sequence. In each DOSY experiment, a series of 16 spectra with 20 K points were collected, with 16 scans. The pulse gradients have been incremented in 16 steps from 2 to 98 % of the maximum gradient strength in a linear ramp. Diffusion times ( $\Delta$ ) and gradient pulse durations ( $\delta$ ) were optimized for each experiment in order to achieve a 95 % decrease in resonance intensity at the largest gradient amplitude; typically,  $\delta$  between 3 and 1.4 ms,  $\Delta$  between 300 and 75 ms. After Fourier transformation, phase and baseline correction, the diffusion dimension of the 2D-DOSY spectra was processed by means of MestRenova software (version 11.0.2). The diffusion constants were calculated by Peak Heights Fit method with 128 points in diffusion dimension.

# **Figures**



Figure S1. DSC curve of the new supramolecular solvent RAMEB:Lev.



**Figure S2.** Plot of diffusion coefficients obtained from NMR spectroscopy versus DES content (in wt%) in DES-H<sub>2</sub>O binary mixtures.

# Table

**Table S1.** Experimental values of the density ( $\rho$ ) and viscosity ( $\eta$ ) of RAMEB:Lev between 303.15 and 333.15 K.

| т (к)  | ρ (kg m <sup>-3</sup> ) | η (mPa s) |
|--------|-------------------------|-----------|
| 303.15 | 1184.5                  | 212.9     |
| 313.15 | 1176.4                  | 111.2     |
| 323.15 | 1168.2                  | 63.6      |
| 333.15 | 1159.8                  | 39.3      |

Reference

1. T. Moufawad, L. M. Moura, M. Ferreira, H. Bricout, S. Tilloy, E. Monflier, M. C. Gomes, D. Landy and S. Fourmentin, *ACS Sustain. Chem. Eng.*, 2019, **7**, 6345–6351.