Supporting Information

A Terbium(III) luminescent ATCUN-based peptide sensor for selective and reversible detection of Copper(II) in biological media.

Enrico Falcone,^a Paulina Gonzalez,^a Lucie Lorusso,^a Olivier Sénèque,^b Peter Faller*^a and Laurent Raibaut*^a

^a Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal 67000, Strasbourg, France

^b Univ. Grenoble Alpes, CNRS, CEA, BIG, LCBM (UMR 5249), F-38000 Grenoble, France

Contents

Abbreviations2
Material and methods2
2.1. Peptide synthesis2
2.2. Preparation of stock solutions
2.3. UV-vis titration
2.4. Luminescence spectroscopy
Figures
S1. Synthetic pathway4
S2. HPLC chromatograms and ESI-MS spectra5
S3. UV-vis titration5
S4. Excitation spectrum6
S5. Luminescence decay curves and lifetime6
S6. Limit of detection7
S7. Selectivity diagrams7
S8. Effect of Ni ²⁺ binding on ATCUN ^{Trp/Tb} luminescence8
S9. Cu ²⁺ transfer from PSA to ATCUN^{Trp/Tb} 8

1. Abbreviations

Fmoc, 9-fluorenylmethoxycarbonyl; *t*Bu, *tert*-Butyl; HBTU, 3-[Bis(dimethylamino)methyliumyl]-3H-benzotriazol-1-oxide hexafluorophosphate; DIEA, N,Ndiisopropylethylamine; DMF, N,N-dimethylformamide; TNBS, 2,4,6-Trinitrobenzenesulfonic acid; Boc, tert-butyloxycarbonyl; Alloc, allyloxycarbonyl; Trt, Trityl; DCM, dichloromethane; DOTA, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; PyBOP, (Benzotriazol-1yloxy)tripyrrolidino-phosphonium-hexafluorophosphate; TFA, trifluoroacetic acid; TIS, triisopropylsilane; HPLC, High Performance Liquid Chromatography; ESI, electrospray ionization; MS, Mass Spectrometry; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; PSA, pig serum albumin; LB, Luria-Bertani; Trt, trityl.

2. Materials and methods

2.1 Peptide Synthesis

ATCUN^{Trp/Tb} (GNHWK^{DOTA(Tb)}GK-NH₂) was synthesized manually through a standard Fmoc/tBu solid-phase peptide synthesis. In order to obtain C-terminal-amidated peptides, a Fmoc-Rink amide aminomethyl-polystyrene resin (Fmoc-Rink-Amid AM Resin from Iris Biotech, 0.74 mmol/g loading, 100-200 mesh) was used as solid support. HBTU was used as coupling agent, DIEA as the base and DMF as the solvent. The coupling reactions were performed in a syringe with filter frit by using a 4-fold excess of protected amino acid, a 3.9-fold excess of HBTU and 8-fold excess of DIEA for 1 hour under mixing. After coupling, the presence of unreacted Nterminal free amine was checked with TNBS reagent, and the coupling was repeated in case of a positive test. Capping of the unreacted free amine group was carried out using 5% acetic anhydride and 10% DIEA in DMF for 5 min. N-terminal Fmoc deprotection was carried out using 20% piperidine in DMF. The peptide N-terminus was Boc-protected adding Boc₂O (4 eq.) and DIEA (2 eq.) in DMF for 1 hour. Removal of the N-Alloc protecting group of the Lys5 residue was performed using Pd(PPh₃)₄ (0.05 mmol, 0.5 eq., 58 mg) and phenylsilane (2.4 mmol, 24 eq., 0.3 mL) in degassed anhydrous DCM in the dark (2x1h). The resin was then washed with DCM (2×2 min), DMF (2×2 min), 1% H₂O in DMF (2×2 min), DMF (2×2 min), 1% DIEA in DMF (2×2 min), DMF (2×2 min), sodium diethyldithiocarbamate in DMF (0.12 M, 2×5 min) and DMF (2×2 min). DOTA coupling was performed overnight adding DOTA-tris(tBu) ester (0.1 mmol, 57 mg, 1 eq.), PyBOP (0.2 mmol, 104 mg, 2 eq.) and then DIEA (0.8 mmol, 140 µL, 8 eq.) in DMF. Resin cleavage and side-chain deprotection were performed at the same time by treatment with 95% TFA, 2.5% H₂O and 2.5% TIS for 90 min. Crude was precipitated with cold ether and purified by HPLC on a C18 column (XBridge Peptide BEH C18 OBD Prep Column from Waters, 19 mm x 150 mm, pore size 130 Å, particle size 5 µm) using preparative HPLC with UV-vis detection at 214 nm. The Tb³⁺ complex was prepared by overnight incubation of a solution of the peptide in H_2O with a solution of $TbCl_3 \cdot 6H_2O$ in H_2O (5 eq.) at pH \approx 6.3. Purity and identity of the peptides were assessed by analytical HPLC and ESI-MS ([ATCUN^{Trp}+H⁺]: experimental m/z = 1211.77, calculated m/z = 1211.63; [ATCUN^{Trp/Tb}+H⁺]: experimental m/z = 1367.55, calculated m/z = 1367.52. Yield: **ATCUN**^{Trp}·(CF₃COO⁻)₃ = 12%.

2.2 Preparation of stock solutions

All stock solutions were prepared in Milli-Q water. The concentration of peptide solution was determined by tryptophan UV-vis absorption ($\epsilon_{280} = 5690 \text{ M}^{-1}\text{cm}^{-1}$) and UV-vis titration with Cu²⁺. A stock solution of HEPES buffer (500 mM, pH 7.4) was prepared dissolving free acids in Milli-Q water and adjusting the pH with NaOH. The metal salts used were CuCl₂·2H₂O, NiCl₂·6H₂O, ZnSO₄·7H₂O, Fe(NO₃)₃·9H₂O, CoCl₂, MnCl₂·4H₂O, MgSO₄, CaCl₂, KCl. The concentration of CuCl₂·2H₂O stock solution was verified by UV-Vis spectroscopy ($\epsilon_{780} = 12 \text{ M}^{-1} \text{ cm}^{-1}$). The concentration of the PSA solution was determined by UV-vis absorption spectroscopy ($\epsilon_{280} = 43824 \text{ M}^{-1}\text{cm}^{-1}$).

2.3 UV-vis titration

Peptide solution (500 μ M) in HEPES (pH 7.4) was titrated adding 1 μ l aliquots of a Cu²⁺ solution. UV-vis spectra were recorded on a Cary 60 spectrophotometer using a 1 cm path quartz cuvette.

2.4 Luminescence Spectroscopy

Luminescence spectra were recorded on a Fluorolog FL3-22 or a FluoroMax-4 spectrometer from HORIBA JobinYvon using a 1 cm path quartz cuvette. All samples were excited at λ_{ex} =280 nm. Time-delayed luminescence spectra were acquired with 100 µs time delay.

Luminescence lifetimes (τ) were determined by fitting a single-exponential decay curve (Eq. 1) to the data.

$$y = A_1 e^{(-x/\tau)} + y_0$$
 (Eq. 1)

The values reported are averages of three independent measurements.

Cu²⁺ titrations were conducted adding small aliquots of Cu²⁺ solution into a peptide solution (10 μ M) in HEPES (pH 7.4).

For selectivity experiments, physiologically relevant divalent cations (Zn^{2+} , Fe^{3+} , Co^{2+} , Mn^{2+} 10 μ M, Mg^{2+} and Ca^{2+} 2 mM) were individually added to the peptide in HEPES, and also Cu^{2+} was added to the peptide in presence of all the above-mentioned cations and 5 mM K⁺. Due to slow binding kinetics, the effect of Ni²⁺ binding on the peptide luminescence was measured on different samples obtained by incubating the peptide (10 μ M) and NiCl₂·6H₂O in HEPES 100 mM (pH 8.2) at different molar ratios for 3 h.

The Cu²⁺ transfer between PSA and the sensor was followed adding the peptide (10 μ M) to a solution of Cu-PSA complex (0.9:1, [PSA] = 10 μ M) in HEPES 50 mM (pH 7.4) and acquiring luminescence spectra at several time points.

The limit of detection (LOD) was evaluated at 10 μ M **ATCUN**^{Trp/Tb} in HEPES buffer (100 mM, pH 7.4). Luminescence spectra were acquired with the following parameters: λ_{ex} = 280 nm, excitation slit = 4 nm, emission slit = 3 nm. The LOD was calculated according to Eq. 2

$$LOD = 3\sigma/k$$
 (Eq. 2)

where σ is the standard deviation of the blank measurements (over three different samples of **ATCUN**^{Trp/Tb}) and *k* is the slope of the linear regression line between the luminescence quenching ($\Delta I = I_0$ -I) versus Cu²⁺ ion concentration.

3. Figures

Figure S1. Synthetic pathway of **ATCUN**^{Trp/Tb}. Amino acids are labelled in bold. * denotes standard side chain protecting groups (Boc for Lysine and Tryptophan, Trt for Histidine).

Figure S2. HPLC chromatograms (*left*) and ESI-MS spectra (*right*) of (A) ATCUN^{Trp} and (B) ATCUN^{Trp/Tb}.

Figure S3. UV-vis titration **ATCUN**^{Trp/Tb} with Cu²⁺. Conditions: [**ATCUN**^{Trp/Tb}] = 500 μ M, HEPES 100 mM pH 7.4. In the inset, Abs_{800 nm} values were subtracted from Abs_{525 nm}.

Figure S4. Time-delayed excitation spectrum of **ATCUN**^{Trp/Tb} (λ_{em} = 544 nm). Conditions: [**ATCUN**^{Trp/Tb}] = 10 µM, HEPES 50 mM pH 7.4.

Figure S5. Luminescence decay curves of **ATCUN**^{Trp/Tb} and **Cu**²⁺-**ATCUN**^{Trp/Tb} complex (three replicates are shown). Conditions: [**ATCUN**^{Trp/Tb}] = [Cu²⁺] = 10 μ M, HEPES 50 mM pH 7.4. Inset table shows lifetime values obtained by single-exponential decay fitting.

Figure S6. Calibration curve in the range 0.05–10 μ M of Cu²⁺ concentration. The derived LOD (3 σ /k) was 560 nM.

Figure S7. Selectivity diagrams at $\lambda_{em} = 487 \text{ nm}$ (A) and 544 nm (B). Conditions: [**ATCUN**^{Trp/Tb}] = 10 μ M, [Cu²⁺] = [Zn²⁺] = [Fe³⁺] = [Co²⁺] = [Mn²⁺] = 10 μ M, [Mg²⁺] = [Ca²⁺] = 2 mM, HEPES 100 mM, pH 7.4 (M = mix of all the cations).

Figure S8. Luminescence of **ATCUN**^{Trp/Tb} after 3 h incubation with Ni²⁺ at different molar ratios (**GNH**^{W/Tb}:Ni²⁺ 1:0.25, 1.0.5, 1:0.75, 1:1). Conditions: [**ATCUN**^{Trp/Tb}] = 10 μ M, HEPES 100 mM, pH 8.2.

Figure S9. Cu²⁺ transfer from PSA to **ATCUN**^{Trp/Tb} and following signal recovery upon EDTA treatment monitored by steady-state (A) and time-delayed (B) luminescence. Conditions: [PSA] = 10 μ M, [Cu²⁺] = 9 μ M, [**ATCUN**^{Trp/Tb}] = 10 μ M, [EDTA] = 35 μ M, HEPES 50 mM pH 7.4. Insets: kinetics profile of Cu²⁺ transfer.