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General experimental details

All reactions were performed under an atmosphere of dry argon using standard Schlenk line
or glovebox techniques. Deuterated benzene was degassed by three freeze-pump-thaw cycles
and dried over molecular sieves. All other solvents were distilled and degassed from
appropriate drying agents. The solvents, both deuterated and non-deuterated, were then stored
under argon over activated 4 A molecular sieves. NMR spectra were obtained from a Bruker
Avance 500 NMR spectrometer (‘H and 1H{“B}: 500.1 MHz, 13C{IH}: 125.8 MHz; ''B:
160.5 MHz, '°F: 470.6 MHz) or a Bruker Avance 400 (‘H and 'H{''B}: 400.1 MHz, *C{'H}:
100.6 MHz; ''B: 128.4 MHz, "’F: 376.5 MHz) at 298 K. Chemical shifts (J) are given in ppm
and internally referenced to the carbon nuclei (“C{'H}) or residual protons (‘H) of the
solvent. "B and ’F NMR spectra were referenced to external standard [BF;-OEt,] or CFCls,
respectively. UV-vis spectra were measured on a JASCO V-660 UV-vis spectrometer. High-
resolution mass spectrometry was obtained from a Thermo Scientific Exactive Plus
spectrometer. IR spectra were recorded with a Bruker Alpha spectrometer with an apodised
resolution of 1 cm ™' in the attenuated total reflection (ATR) mode in the region of 4000—400

cm ' using a setup with a diamond crystal.

Diboranes(5) 1a' and lb,2 PhN3,3 p-NMez-C6H4N34 and p-CF3-C6H4N35 were synthesised
according to literature procedures. All other chemicals were purchased from either Sigma-
Aldrich, Acros Organics or TCI Chemical Co. and used as received unless otherwise

specified.

Note on ''B NMR spectra: The ''B NMR resonances of some of the compounds presented
herein are extremely broad. This is a common feature owed to quadrupolar coupling between
the two boron atoms through the inserted nitrogen. Usually, a high temperature ''B NMR
spectrum (ca 80 °C) could offer a better resolution but this was not an option because of the
thermal instability of these compounds. The assignments were conducted by picking the
centre of the broad resonances in accordance with the sign change observed in the derivatives

of the spectra.



Synthetic procedures

Synthesis of 2b"

Diborane(5) 1b (20.0 mg, 0.03 mmol) was suspended in benzene (0.6 mL) and PhN3 (7.6 mg,
0.06 mmol, 2.2 equiv) was added. Heating at 60 °C for four days afforded a yellow
suspension, which was dried in vacuo, washed with hexane (3 x 1.0 mL) and once with
benzene (0.5 mL) to yield 2b" as a yellow solid (12.6 mg, 0.01 mmol, 54%). Crystals suitable
for single-crystal X-ray diffraction were obtained during the reaction by cooling the reaction
mixture from 60 °C to room temperature. *H{*'B} NMR (500.1 MHz, C¢Ds): 5 = 8.36 (s, 1H,
Ar-CH), 8.18 (s, 1H, Ar-CH), 8.14 (br d, %Jus=8.3Hz, 1H, Ar-CH), 8.11 (br d,
Jun = 9.0 Hz, 1H, Ar-CH), 8.05 (br d, Jun = 8.3 Hz, 1H, Ar-CH), 7.86 (br d, J4y = 8.4Hz,
1H, Ar-CH), 7.71 (br d, *Jun = 8.4Hz, 1H, Ar-CH), 7.59 — 7.55 (m, 1H, Ar-CH), 7.54 — 7.51
(m, 2H, Ar-CH), 7.43 (dd, Jun = 8.2 Hz, %34 = 6.6 Hz, 1H, Ar-CH), 7.31 — 7.28 (m, 2H, Ar-
CH), 7.07 — 7.05 (m, 4H, Ar-CH), 6.97 — 6.93 (m, 2H, Ar-CH), 6.88 (ddd, 3J.4 = 8.3 Hz,
83un = 6.5 Hz, “Jun = 1.0 Hz, 1H, Ar-CH), 6.85 — 6.82 (m, 1H, Ar-CH), 6.67 (ddd, *Ju = 8.3
Hz, 3Jun=6.6 Hz, “Jun = 1.0 Hz, 1H, Ar-CH), 6.48 (ddd, *Juy=8.9 Hz, *Juy = 6.6 Hz,
*Jun = 1.3 Hz, 1H, Ar-CH), 6.21 — 6.16 (m, 3H, Ar-CH), 4.38 (s, 1H, BH), 3.08 — 2.93 (m,
4H, NCH,CH;,N), 2.17 (s, 6H, CH3), 2.04 (s, 6H, CHs), 1.75 (br s, 6H, CHs) ppm. BC{*H}
NMR (125.8 MHz, CsDg): & = 190.3 (br, Ccarhene, Observed by HMBC), 151.8 (Cg), 146.9 (br,
Cq), 140.5 (Cy), 139.7 (br, Cy), 138.7 (C,), 137.3 (Cy), 137.1 (Cy), 136.1 (Cy), 135.2 (Cy),
134.8 (C,), 133.8 (Ar-CH), 133.6 (Cy), 132.4 (Ar-CH), 132.1 (Ar-CH), 131.8 (Cy), 131.5 (C),
131.5 (Cy), 130.6 (Ar-CH), 130.3 (Ar-CH), 130.1 (Ar-CH), 129.5 (Ar-CH), 129.3 (Ar-CH),
128.6 (Ar-CH), 128.6 (Ar-CH), 128.6 (Ar-CH), 128.6 (Ar-CH), 127.0 (Ar-CH), 126.4 (Ar-
CH), 126.1 (Ar-CH), 125.4 (Ar-CH), 124.7 (Ar-CH), 124.5 (Ar-CH), 124.4 (Ar-CH), 124.3
(Ar-CH), 123.3 (Ar-CH), 122.3 (Ar-CH), 50.6 (CH,), 21.1 (CH3), 19.1 (CH3), 18.7 (CHs)
ppm. B NMR (160.5 MHz, C¢Dg): & = 50.4 (br), —12.0 (s, NHC-B) ppm. HRMS (LIFDI) for

[CssHagB2Ns] caled.: 801.4169; found: 801.4160. FT-IR (solid state): v = 2384 cm™ (B—H
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stretch). Note: In solution 2b™ slowly decomposed to the diborylaniline product 5b" through
loss of N,. The extremely slow rate of conversion to 5b™ at rt and the fact that heating or
irradiation resulted in decomposition to complex mixtures of products prevented the isolation
of 5b". The latter was, however, detected by HRMS. HRMS (LIFDI) for [CssHaeB2N3] calcd.:
773.4113; found: 773.4089.

Synthesis of 2p"M*2

NM92

Diborane(5) 1b (22.8 mg, 0.03 mmol) was suspended in benzene (0.6 mL) and
p-NMe,-CeHsN3 (11.9 mg, 0.07 mmol, 2.2 equiv) was added in one portion. The reaction
mixture was heated at 60 °C for seven days prior to removal of all volatiles in vacuo. A solid
precipitated upon addition of a mixture of benzene (0.2 mL) and hexane (0.6 mL) to the
residual dark red oil, which was isolated and washed with hexane (3 x 0.8 mL) and benzene (1
x 0.6 mL) to afford 2b"™*? as an orange-brown solid (18.2 mg, 0.02 mmol, 65%). *H{"'B}
NMR (400.6 MHz, C¢Ds): & = 8.36 (br, 1H, Ar-CH), 8.22 — 8.20 (m, 2H, Ar-CH), 8.11 — 8.09
(m, 2H, Ar-CH), 7.88 (br d, *Jun = 7.9 Hz, 1H, Ar-CH), 7.72 (br d, *Juy = 8.2 Hz, 1H, Ar-
CH), 7.61 — 7.56 (m, 3H, Ar-CH), 7.45 — 7.42 (m, 1H, Ar-CH), 7.37 (br d, *Jun = 8.5 Hz, 1H,
Ar-CH), 7.29 (br d, *Juy =6.7 Hz, 1H, Ar-CH), 7.11 — 7.07 (m, 4H, Ar-CH), 6.91 — 6.87 (m,
1H, Ar-CH), 6.71 — 6.69 (m, 1H, Ar-CH), 6.49 — 6.46 (m, 1H, Ar-CH), 6.32 (br d,
Jun = 8.2 Hz, 2H, Ar-CH), 6.20 (m, 3H, Ar-CH), 4.41 (br s, 1H, BH), 3.10 — 3.04 (m, 4H,
NCH,CH;N), 2.33 (s, 6H, CH3), 2.23 (s, 6H, CH3), 2.05 (s, 6H, CH3), 1.82 (s, 6H, CH3) ppm.
BC{*H} NMR (125.8 MHz, C¢De): & = 150.0 (Cy), 148.6 (C,), 142.4 (C,), 140.5 (C,), 139.9
(Cy), 138.8 (Cy), 138.6 (Cy), 137.7 (Cq), 137.2 (Cy), 137.0 (Cy), 136.2 (Cq), 135.6 (br Cy),
135.3 (Cy), 135.0 (Cq), 134.9 (Cy), 134.7 (Cy), 134.5 (Cy), 132.1 (Ar-CH), 130.3 (Ar-CH),
129.6 (Ar-CH), 129.6 (Ar-CH), 129.4 (Ar-CH), 129.0 (Ar-CH), 126.7 (Ar-CH), 125.8 (Ar-
CH), 125.4 (Ar-CH), 124.5 (Ar-CH), 124.3 (Ar-CH), 124.2 (Ar-CH), 123.3 (Ar-CH), 112.5
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(Ar-CH), 50.4 (CH,), 40.1 (CHj3), 21.1 (CHj3), 19.2 (CHj3), 18.9 (CH3) ppm. Two resonances
are overlaid by the solvent signal at 128.5 ppm. *B NMR (160.5 MHz, C¢Ds): & = 50.8 (br), —
11.9 (s, NHC-B) ppm. HRMS (LIFDI) for [Cs7Hs4B2Ng] calcd.: 844.4591; found: 844.4576.
FT-IR (solid state): » = 2360 cm * (B—H stretch). Note: In solution 2b"™®? slowly
decomposed to the diborylaniline product 5b"™¢? through loss of N,. The extremely slow rate
of conversion to 5b"V2 at rt and the fact that heating or irradiation resulted in decomposition
to complex mixtures of products prevented the isolation of 5b"®2. The latter was, however,
detected by HRMS. HRMS (LIFDI) for [Cs7Hs4B2Ng4] caled.: 816.4535; found: 816.4510.

Synthesis of 2b°™
CF,

Diborane(5) 1b (20.9 mg, 0.03 mmol) was suspended in benzene (0.6 mL) and p-CF3-CgHsN3
(12.6 mg, 0.07 mmol, 2.2 equiv) was added in one portion. The reaction mixture was heated
at 60 °C for six days prior to removal of all volatiles in vacuo. The orange residue was
washed once with toluene at —30 °C (0.4 mL) and with hexane at room temperature (3 x 0.8
mL) to afford 2b°" as a yellow solid (16.8 mg, 0.02 mmol, 63%). Crystals suitable for
single-crystal X-ray diffraction were obtained during the reaction by cooling the reaction
mixture from 60 °C to room temperature. *H{**B} NMR (500.1 MHz, C¢Ds): 5 = 8.36 (s, 1H,
Ar-CH), 8.20 (s, 1H, Ar-CH), 8.11 (d, *Jun = 8.9 Hz, 1H, Ar-CH), 8.05 (t, *Jun = 8.1 Hz, 2H,
Ar-CH), 7.87 (br d, *Jun = 8.1 Hz, 1H, Ar-CH), 7.71 (br d, Ju = 8.4Hz, 1H, Ar-CH), 7.56 —
7.53 (m, 2H, Ar-CH), 7.50 — 7.47 (m, 1H, Ar-CH), 7.44 — 7.41 (m, 1H, Ar-CH), 7.29 (br d,
$Jun = 6.4Hz, 1H, Ar-CH), 7.25 (br d, *Ju = 8.8 Hz, 1H, Ar-CH), 7.04 (m, 2H, Ar-CH), 6.91
—6.88 (m, 3H, Ar-CH), 6.69 — 6.66 (m, 1H, Ar-CH), 6.50 — 6.47 (m, 1H, Ar-CH), 6.22 — 6.19
(m, 3H, Ar-CH), 4.36 (br s, 1H, BH), 3.06 — 2.93 (m, 4H, NCH,CH;N), 2.12 (s, 6H, CH3),
2.05 (s, 6H, CH3), 1.71 (s, 6H, CH3) ppm. Note: Two Ar-CH signals are overlaid by the
solvent resonance, but were detected by HSQC experiments and found to correlate with a *C
NMR resonance at 126.2 ppm. *C{*H} NMR (125.8 MHz, CgDg): & = 190.1 (br Ccarene),
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154.3 (Cy), 154.3 (Cy), 146.5 (br Cy), 145.6 (br Cg), 140.6 (Cy), 139.2 (br Cg), 138.8 (Cy),
137.4 (Cy), 136.9 (Cy), 136.1 (Cy), 135.1 (Cy), 134.6 (Cy), 133.5 (C,), 133.4 (Ar-CH), 132.6
(Ar-CH), 132.1 (Cy), 131.7 (Cy), 131.5 (s. Cy), 131.1 (Ar-CH), 130.3 (Ar-CH), 130.0 (Ar-
CH), 129.6 (Ar-CH), 129.4 (Ar-CH), 128.6 (Ar-CH), 128.6 (Ar-CH), 126.6 (Ar-CH), 126.2
(Ar-CH), 125.8 (g, “Jcr = 3.8 Hz, CF3), 125.4 (Ar-CH), 124.8 (Ar-CH), 124.7 (Ar-CH), 124.6
(Ar-CH), 124.6 (Ar-CH), 1245 (Ar-CH), 1235 (Ar-CH), 122.2 (Ar-CH), 50.6 (s,
NCH,CH;N), 21.1 (CHs), 19.0 (CH3), 18.6 (CHs) ppm. B NMR (160.5 MHz, CgDg): & =
49.9 (br), —-12.3 (s, NHC-B) ppm. “F{*H} NMR (376.9 MHz, C¢D¢): & = —61.7 ppm. HRMS
(LIFDI) for [CsgH4gB2F3Ns] caled.: 869.4042; found: 869.4030. FT-IR (solid state): v = 2386
cm* (B—H stretch). Note: In solution 2b°™ slowly decomposed to the diborylaniline product
5b°" through loss of N,. The extremely slow rate of conversion to 5b°" at rt and the fact that
heating or irradiation resulted in decomposition to complex mixtures of products prevented
the isolation of 5b°". The latter was, however, detected by HRMS. HRMS (LIFDI) for
[CssHasB2F3N3] caled.: 841.3986; found: 841.3965.

Synthesis of 3a"

Diborane(5) 1a (50.0 mg, 0.09 mmol) was dissolved in benzene (0.6 mL) and PhN3 (12.6 mg,
0.11 mmol, 1.2 equiv) was added. Heating at 60 °C for four days afforded a yellow solution
containing 2a"™ and 3a" in a 1:2 ratio as determined by NMR spectroscopic analysis. An
increase of the temperature to 80 °C for three days resulted in almost quantitative conversion
of 2a" into 3a". Upon concentration of the reaction mixture to 0.1 mL pale yellow crystals
formed. The supernatant solution was removed and the crystals were washed once with
benzene to yield 3a™ as an off-white solid in 45% yield (27.2 mg, 0.04 mmol). Crystals
suitable for single-crystal X-ray diffraction were obtained by slow evaporation of a saturated
hexane solution at room temperature. *"H NMR (500.1 MHz, C¢D¢): & = 7.54 — 7.52 (m, 2H,
Ar-CH), 7.05 (br, 1H, Ar-CH), 6.97 — 6.94 (m, 2H, Ar-CH), 6.90 — 6.87 (m, 2H, Ar-CH), 6.82
(br, 1H, Ar-CH), 6.76 (s, 1H, Ar-CH), 6.71 (br, 1H, Ar-CH), 6.67 (s, 1H, Ar-CH), 6.56 (s,
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1H, Ar-CH), 6.45 (s, 1H, Ar-CH), 4.41 (br t, *J4y=3.4Hz, 1H, BCH), 3.64 (ddd,
3Jun = 12.9 Hz, 34 = 10.7 Hz, 2y = 3.5Hz, 1H, CH,), 3.34 — 3.29 (m, 2H, CH,), 2.92
(ddd, 3Jun = 12.9 Hz, 2Jnn = 4.0 Hz, “Jun = 1.9 Hz, 1H, CH,), 2.68 (br d, *Juy = 11.7 Hz, 1H,
CHy), 2.62 (dd, ®Jun = 14.0 Hz, 23y = 2.8 Hz, 1H, CH,), 2.42 (s, 3H, CHs), 2.31 (s, 3H,
CHj3), 2.27 (s, 3H, CH3), 2.23 (s, 3H, CH3), 2.21 (s, 3H, CHg), 2.16 (s, 6H, CH3), 2.09 (s, 3H,
CHs), 1.99 (s, 3H, CHs), 1.95 (s, 3H, CHs), 1.90 (s, 3H, CHs) ppm. *C{*H} NMR (125.8
MHz, CsDe): 5 = 149.9 (Cy), 145.8 (Cy), 144.9 (Cy), 144.6 (C,), 140.9 (Cy), 140.8 (Cy), 140.1
(Cy), 139.1 (br, Cyq), 139.0 (Cq), 138.4 (Cy), 137.3 (Cy), 136.5 (Cy), 136.2 (br, Cy), 135.8 (Cy),
135.3 (Cy), 135.2 (Cy), 134.4 (Cy), 130.8 (Ar-CH), 129.9 (Ar-CH), 129.8 (Ar-CH), 129.8 (Ar-
CH), 129.7 (Ar-CH), 129.2 (Ar-CH), 129.1 (Ar-CH), 128.7 (Ar-CH), 122.3 (Ar-CH), 58.1 (B-
CH), 51.6 (CH,), 50.5 (CH,), 37.5 (CHy), 22.9 (CHj3), 22.8 (CHg), 22.4 (CHg), 21.4 (CHs),
21.4 (CHg3), 21.0 (CHj3), 20.8 (CH3), 20.5 (CH3), 19.8 (CHs), 18.4 (CHg3), 17.6 (CH3) ppm.
Two Ar-CH signals are overlaid by the solvent signal. *'B NMR (160.5 MHz, C¢D¢): & = 51.4
(br), 39.6 (br) ppm. HRMS (LIFDI) for [Cs4Hs3B2Ns] caled.: 685.4482; found: 685.4471.
Synthesis of 32"
Me,N

Diborane(5) 1a (50.0 mg, 0.09 mmol) was dissolved in benzene (5 mL) and p-Me;N-CgHsN3
(47.2 mg, 0.29 mmol, 3.2 equiv) was added. Heating at 80 °C for two days afforded a red
solution, which was dried in vacuo and washed with hexane (3 x 2 mL). The resulting solid

was washed with hot hexane once to afford 3a"™2

as a pale yellow solid in 53% yield (34.0
mg, 0.05 mmol). Single crystals suitable for X-ray diffraction were grown by slow
evaporation of a saturated benzene/hexane solution (1:1) at room temperature. *H NMR
(500.1 MHz, CgDg): & = 7.58 (m, 2H, Ar-CH), 7.05 (s, 1H, Ar-CH), 6.98 (s, 1H, Ar-CH), 6.81
(s, 1H, Ar-CH), 6.78 (s, 1H, Ar-CH), 6.75 (s, 1H, Ar-CH), 6.72 (s, 1H, Ar-CH), 6.61 (s, 1H,
Ar-CH), 6.46 (s, 1H, Ar-CH), 6.27 (m, 2H, Ar-CH), 4.46 (br t, *Juy = 3.3 Hz, 1H, BCH), 3.72
(ddd, 3Jun = 13.9 Hz, 2Juy = 10.7 Hz, 2Jun = 3.3 Hz, 1H, CH,), 3.41-3.33 (m, 2H, CH,), 2.95
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(ddd, 3Jun = 12.9 Hz, 2Jpn = 4.0 Hz, Jun = 1.9 Hz, 1H, CH,), 2.74 (br d, 3Jun = 11.7 Hz, 1H,
CH,), 2.62 (dd, *Jun =14.1 Hz, 2Jun = 2.8 Hz, 1H, CH,), 2.44 (s, 3H, CHs), 2.35 (s, 3H, CH3),
2.33 (s, 6H, CHg), 2.32 (s, 3H, CH3), 2.27 (s, 3H, CHs), 2.25 (s, 3H, CH3), 2.21 (s, 3H, CHs),
2.17 (s, 3H, CHs), 2.11 (s, 3H, CHa), 2.05 (s, 3H, CHs), 2.02 (s, 3H, CHs), 1.95 (s, 3H, CHs)
ppm. BC{*H} NMR (125.8 MHz, C¢Ds): & = 150.9 (Ar-Cy), 145.9 (Ar-Cg), 145.0 (Ar-C,),
144.4 (Ar-Cg), 141.2 (Ar-Cy), 141.0 (Ar-C,), 140.2 (Ar-Cg), 140.1 (Ar-C,), 138.5 (Ar-Cy),
138.5 (Ar-Cg), 136.9 (Ar-Cy), 136.6 (Ar-C,), 135.6 (Ar-Cg), 135.4 (Ar-C,), 134.3 (Ar-Cy),
134.2 (Ar-C,), 130.8 (Ar-CH), 129.8 (Ar-CH), 129.7 (Ar-CH), 129.7 (Ar-CH), 129.7 (Ar-
CH), 129.0 (Ar-CH), 128.0 (Ar-CH), 127.8 (Ar-CH), 123.6 (Ar-CH), 112.4 (Ar-CH), 58.8
(CH), 51.7 (CH,), 50.5 (CH,), 39.9 (N(CHs),), 37.7 (CH,), 23.0 (CH3), 22.8 (CH3), 22.4
(CHs), 21.5 (CHs), 21.4 (CHs), 21.0 (CH3), 20.8 (CHs), 20.6 (CHs), 19.8 (CH3), 18.6 (CHa),
17.7 (CHs) ppm. *'B NMR (160.5 MHz, C¢Dg): & = too broad to be observed. HRMS (LIFDI)
for [C47HsgB2Ng] calcd.: 728.4904; found: 728.4891.

Synthesis of 3a“F
F3C

Mes
N=—N N
M /N—B\
es—p?”
B H~C N\
Mes

Diborane(5) 1a (41.0 mg, 0.07 mmol) was dissolved in benzene (0.6 mL) and p-CF3-CgHsN3
(16.3 mg, 0.09 mmol, 1.2 equiv) was added. Heating at 60 °C for three days afforded a yellow

solution, which was analyzed by multinuclear NMR spectroscopy and found to contain 2a°"

CF3

and 3a~ ° in a 2:1 ratio. An increase of the temperature to 80 °C for four days resulted in a ca.

70% conversion of 2a°™

into 3a“">. Pale yellow crystals formed upon concentration of the
reaction mixture to 0.1 mL. The supernatant solution was removed and the crystals were
washed once with benzene to yield 3a“F as an off-white solid in 39% yield (21.1 mg, 0.03
mmol). *"H NMR (500.1 MHz, CgDg): & = 7.29 (br d, *Juy = 8.3 Hz, 2H, Ar-CH), 7.08 (s, 1H,
Ar-CH), 7.05 (br s, 2H, Ar-CH), 6.92 (s, 1H, Ar-CH), 6.83 (s, 1H, Ar-CH), 6.76 (s, 1H, Ar-
CH), 6.71 (s, 1H, Ar-CH), 6.69 (s, 1H, Ar-CH), 6.57 (s, 1H, Ar-CH), 6.43 (s, 1H, Ar-CH),
4.36 (br, 1H, BCH), 3.63 (ddd, *Jun = 14.5 Hz, Jun = 10.9 Hz, 24y = 3.4Hz, 1H, CH,), 3.29
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(m, 2H, CH,), 2.93 — 2.89 (m, 1H, CH,), 2.67 — 2.60 (m, 2H, CH,), 2.42 (s, 3H, CHs), 2.29 (s,
3H, CHs), 2.28 (s, 3H, CH3), 2.21 (s, 3H, CHs), 2.19 (s, 3H, CHs), 2.15 (s, 3H, CHs3), 2.15 (s,
3H, CHs), 2.10 (s, 3H, CHs), 2.00 (s, 3H, CHs), 1.90 (s, 6H, CH3) ppm. *C{*H} NMR (125.8
MHz, CsDe): 6 = 152.1 (Cy), 145.7 (Cy), 144.7 (Cy), 144.6 (C,), 140.7 (Cy), 140.6 (Cy), 140.1
(Cy), 139.4 (Cy), 138.4 (Cy), 137.6 (Cy), 136.4 (Cy), 136.0 (Cy), 135.2 (Cy), 135.0 (Cy), 134.5
(Cy), 130.9 (Ar-CH), 130.0 (Ar-CH), 129.9 (Ar-CH), 129.9 (Ar-CH), 129.7 (Ar-CH), 129.2
(Ar-CH), 126.4 (q, Jcr = 3.7 Hz, CF3), 122.3 (Ar-CH), 57.7 (br, B-CH), 51.5 (CH,), 50.4
(CHy), 37.6 (CHy), 22.9 (CHs), 22.7 (CH3), 22.3 (CHs), 21.4 (CHs), 21.4 (CHs3), 21.0 (CH3),
20.8 (CHs), 20.5 (CHs), 19.8 (CHj3), 18.2 (CHs), 17.5 (CHs) ppm. B NMR (160.5 MHz,
CsDs): & = 50.8 (br), 38.8 (br) ppm. *F{*H} NMR (376.6 MHz, C¢Ds): 5 = —62.2 ppm.
HRMS (LIFDI) for [C4sHs52B2F3Ns] caled.: 753.4355; found: 753.4346.

Synthesis of 4a"

In a J.-Young NMR tube 3a"™ (20 mg, 0.03 mmol) was dissolved in CgDg (0.6 mL) and heated
at 100 °C for 15 days, after which the 'H NMR spectrum of the reaction mixture showed
clean conversion to 4a". After removal of all volatiles in vacuo and washing with hexane (1 x
0.1 mL) 4a" was isolated as a colourless solid in 97% vyield (18.5 mg, 0.03 mmol). Crystals
suitable for single-crystal X-ray diffraction were obtained by slow evaporation of a saturated
hexane solution at room temperature. *H NMR (500.1 MHz, C¢Dg): & = 7.05 (s, 1H, Ar-CH),
6.87-6.83 (m, 4H, Ar-CH), 6.79 (s, 1H, Ar-CH), 6.78-6.70 (m, 5H, Ar-CH), 6.63 (s, 1H, Ar-
CH), 6.45 (s, 1H, Ar-CH), 6.44 (s, 1H, Ar-CH), 4.23 (dd, 3Jun = 4.5 Hz, 3Juy = 2.7 Hz, 1H,
BCH), 3.83 (dd, ®Jun = 13.7 Hz, 23y = 5.1 Hz, 1H, CHy), 3.37-3.30 (m, 1H, CH,), 3.22 (dt,
$Jun = 11.2 Hz, 23un = 3.9 Hz, 1H, CHy), 2.84 (ddd, *Jun = 12.6 Hz, Iy = 4.0 Hz, 20y = 2.2
Hz, 1H, CH,), 2.80 (dd, Jun = 13.9 Hz, 2Juy = 2.8 Hz, 1H, CH,), 2.46-2.43 (m, 1H, CH,),
2.36 (s, 3H, CHj3), 2.35 (s, 3H, CH3), 2.32 (s, 3H, CH3), 2.29 (s, 3H, CHg), 2.25 (s, 3H, CHjy),
2.22 (s, 3H, CHj3), 2.18 (s, 3H, CH3), 2.17 (s, 3H, CH3), 2.13 (s, 3H, CHg), 1.94 (s, 3H, CHj),
1.52 (s, 3H, CHs) ppm. *C{*"H} NMR (125.8 MHz, CsD¢): & = 146.0 (s, Cy), 145.7 (s, Cy),
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144.8 (s, Cy), 144.1 (s, Cy), 142.3 (s, Cy), 139.1 (s, Cy), 139.1 (s, Cy), 138.9 (s, Cq), 137.7 (s,
Cy), 136.7 (s, Cy), 136.1 (s, Cg), 136.0 (s, Cg), 136.0 (s, Cy), 135.2 (s, Cy), 134.5 (s, Cy), 130.6
(s, Ar-CH), 130.3 (s, Ar-CH), 129.8 (s, Ar-CH), 129.5 (s, Ar-CH), 129.4 (s, Ar-CH), 129.3 (s,
Ar-CH), 127.6 (s, Ar-CH), 127.3 (s, Ar-CH), 125.2 (s, Ar-CH), 60.4 (br, B-CH), 52.0 (s,
CHy), 51.0 (s, CHy), 37.2 (s, CHy), 25.2 (s, CH3), 23.0 (s, CH3), 22.4 (s, CHs), 21.2 (s, CH3),
21.1 (s, CH3), 21.0 (s, CHg3), 20.4 (s, CH3), 19.8 (s, CHg3), 17.9 (s, CH3), 17.5 (s, CH3) ppm.
B NMR (128.4 MHz, C¢Dg¢): & = too broad to be observed. HRMS (LIFDI) for
[C4sHs3B2N3] caled.: 657.4420; found: 657.4397.

Synthesis of 43"
MesN

N
/I/
py
MES\B,

Mes

In a J.-Young NMR tube 3a"™*? (20 mg, 0.03 mmol) was dissolved in C¢Dg (0.6 mL) and
heated at 100 °C for 20 days, after which the *H NMR spectrum of the reaction mixture
showed clean conversion to 4a"™®. After removal of all volatiles in vacuo the orange residue
was extracted with hexane. Slow evaporation of the hexane solution yielded 4a"™®
crystals in 74% yield (14.2 mg, 0.02 mmol). *H NMR (400.3 MHz, CgDs): & = 7.06 (s, 1H,
Ar-CH), 6.89 (s, 1H, Ar-CH), 6.86 (s, 1H, Ar-CH), 6.85 (s, 1H, Ar-CH), 6.80 (s, 1H, Ar-CH),
6.75-6.72 (m, 2H, Ar-CH), 6.66 (s, 1H, Ar-CH), 6.49 (s, 1H, Ar-CH), 6.46 (s, 1H, Ar-CH),
6.29-6.27 (m, 2H, Ar-CH), 4.31 (br, 1H, BCH), 3.90 (dd, J4n = 13.9 Hz, 2Juy = 5.1 Hz, 1H,
CHy), 3.42-3.35 (m, 1H, CHy), 3.26 (td, *Jun = 11.0 Hz, 2up = 4.1 Hz, 1H, CHy), 2.89-2.86
(br m, 1H, CH,), 2.82 (dd, 3Jun = 13.9 Hz, 23y = 2.6 Hz, 1H, CH,), 2.49 (br d, 3Jyn = 11.8
Hz, 1H, CH,), 2.41 (s, 3H, CH3), 2.38 (s, 3H, CHs), 2.36 (s, 3H, CH3), 2.30 (s, 6H, CHs), 2.29
(s, 3H, CH3), 2.28 (s, 3H, CHs), 2.25 (s, 3H, CHa), 2.20 (s, 9H, CH3), 1.92 (s, 3H, CHs), 1.69
(s, 3H, CHs) ppm. *C{*H} NMR (125.8 MHz, C¢Ds): & = 148.2 (s, C,), 145.9 (s, C), 145.0
(s, Cq), 143.9 (s, Cy), 142.6 (s, Cy), 139.2 (s, Cy), 138.9 (s, Cy), 137.5 (s, Cy), 136.7 (5, Cy),
136.3 (s, Cyg), 135.9 (s, Cy), 135.8 (s, Cy), 135.4 (s, Cy), 135.2 (s, Cy), 134.4 (s, Cy), 130.6 (s,
Ar-CH), 130.2 (s, Ar-CH), 129.8 (s, Ar-CH), 129.5 (s, Ar-CH), 129.4 (s, Ar-CH), 129.3 (s,

Ar-CH), 127.4 (s, Ar-CH), 112.3 (s, Ar-CH), 60.3 (br, B-CH), 52.0 (s, CH,), 51.0 (s, CH,),
10
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40.1 (s, CH3), 37.3 (s, CHy), 25.0 (s, CH3), 23.0 (s, CH3), 22.5 (s, CH3), 21.2 (s, CH3), 21.1 (s,
CHj3), 21.1 (s, CH3), 21.0 (s, CH3), 20.5 (s, CH3), 19.8 (s, CHg3), 17.9 (s, CHs), 17.9 (s, CH3)
ppm. B NMR (128.4 MHz, C¢Dg): & = 45.3 (br), 30.2 (br) ppm. HRMS (LIFDI) for
[C47Hs8B2Ny4] caled.: 700.4842; found: 700.4833.

Synthesis of 4a“F
F3C

In a J.-Young NMR tube 3a“" (30 mg, 0.04 mmol) was dissolved in C¢Dg (0.6 mL) and
heated at 80 °C for 12 days and finally at 100 °C for one day, after which the *H and *°F NMR
spectra of the reaction mixture showed clean conversion to 4a“™. After removal of all

volatiles in vacuo and washing with hexane (2 x 0.2 mL) 4a°"

was isolated as a pale yellow
solid in 95% yield (27.4 mg, 0.04 mmol). Crystals suitable for single-crystal X-ray diffraction
were obtained by evaporation of a saturated hexane solution at room temperature. *H NMR
(500.1 MHz, C¢Ds): & = 7.10 (s, 1H, Ar-CH), 7.09 (s, 1H, Ar-CH), 7.05 (s, 1H, Ar-CH), 6.88
(s, 1H, Ar-CH), 6.81 (s, 1H, Ar-CH), 6.77 (s, 1H, Ar-CH), 6.73 (s, 1H, Ar-CH), 6.71 (s, 1H,
Ar-CH), 6.64 (s, 1H, Ar-CH), 6.60 (s, 1H, Ar-CH), 6.42 (s, 2H, Ar-CH), 4.15 (br, 1H, BCH),
3.74 — 3.70 (dd, *Jun = 13.8 Hz, Iy = 4.9 Hz, 1H, CH,), 3.34 — 3.29 (br m, 1H, N-CH,),
3.18 (dt, *Jun = 11.4Hz, %y =4.2 Hz, 1H, N-CH,), 2.82 (br m, 1H, CH,), 2.78 (dd,
33 = 14.2 Hz, Jun = 2.4Hz, 1H, CH,), 2.40 (s, 3H, CHg), 2.37 (br d, %34y = 12.0 Hz, 1H, N-
CH,), 2.31 (s, 3H, CHs), 2.30 (s, 3H, CHa), 2.22 (s, 3H, CH3), 2.21 (s, 3H, CHs), 2.19 (s, 3H,
CHs), 2.17 (s, 3H, CHs), 2.11 (s, 3H, CHs), 2.06 (s, 3H, CH3), 1.92 (s, 3H, CH3), 1.37 (s, 3H,
CHs) ppm. *C{*H} NMR (125.8 MHz, C¢De): & = 149.5 (Cy), 149.5 (C,), 145.6 (C,), 144.6
(Cy), 144.2 (C,), 141.8 (Cy), 139.5 (br Cg), 138.9 (C,), 138.9 (Cy), 138.9 (Cy), 138.1 (Cy),
136.6 (Cy), 136.6 (Cy), 136.3 (C,), 136.1 (br Cy), 135.7 (Cy), 135.1 (Cy), 134.7 (Cy), 130.6
(Ar-CH), 130.5 (Ar-CH), 129.9 (Ar-CH), 129.6 (Ar-CH), 129.5 (Ar-CH), 129.4 (Ar-CH),
127.4 (Ar-CH), 125.3 (q, YJce = 3.7 Hz, CF3), 60.3 (br, B-CH), 51.9 (CH,), 50.9 (CH,), 37.0
(CH,), 25.1 (CHs), 23.0 (CH3), 22.3 (CHs), 21.2 (CHs), 21.0 (CH3), 21.0 (CHs), 21.0 (CHa),

20.4 (CHs), 19.7 (CH3), 17.8 (CH3), 17.2 (CHs) ppm. !B NMR (160.5 MHz, C¢Dg): & = 45.9
11



(br), 36.2 (br) ppm. *F{*H} NMR (376.6 MHz, C¢Ds): & = —61.9 ppm. HRMS (LIFDI) for
[CasHs52B2F3N3] caled.: 725.4294; found: 725.4278.
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NMR spectra of isolated compounds
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Figure S1. 'H{"B} NMR spectrum of 2b" in C¢Ds. Resonances marked with § correspond to the diborylaniline decomposition product 5b"™.
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Figure S2. B NMR spectrum of 2b™ in CgDe.
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Figure S3. *C{*H} NMR spectrum of 2b" in C¢Ds.
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Figure S4. *H{11B} NMR spectrum of 2b"™®? in C¢Ds shortly after isolation. The resonances marked with § correspond to the diborylaniline

decomposition product 5b™™*2 (ca. 10%).
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Figure S7. B NMR spectrum of 2b™M®? in C¢Ds.
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Figure S11. **B NMR spectrum of 2b°" in C¢Ds.
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Figure S12. *C{*H} NMR spectrum of 2b°™ in C¢Ds. Resonances marked with * correspond to residual hexane.
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Figure S13. “*F{"H} NMR spectrum of 2b°" in C¢De.
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Figure S15. *'B NMR spectrum of 3a" in CgDe.
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Figure S17. *H NMR spectrum of 3a"™*? in CgDe.
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Figure S21. 1*B NMR spectrum of 3a°7 in CgDe.
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Figure S31. 1*B NMR spectrum of 4a“F in C6D6.
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Rearrangement and decomposition series of 2a” and 2b"

25 [1

e =1a

After workup

30h@ 80°C

15h @ 80°C

5h@80°C

75h @ 60 °C

60 h @ 60 °C

15h @ 60 °C

-y

10 min @ 60 °C S

: - . : ; : ; ; - . : ; ; ; : . . : : ; : ; : -
150 100 50 0 -50 ppm]

Figure S34. Stack-plot of B NMR spectra of the reaction of 1a (e) with phenylazide, showing the intermediate formation of 2a™ (m) and its

rearrangement to 3a" (¢).
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Figure S35. Stack-plot of 'H NMR spectra of the reaction of 1a with phenylazide, showing the intermediate formation of 2a" (m) and its

rearrangement to 3a™ (¢).
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Figure S36. Stack-plot of the *H and *H{*'B} NMR spectra of the reaction of 1a with phenylazide after 60 h at 60 °C, revealing the position of the

BH resonance of the intermediate 2a" (m).
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Figure S37. Stack-plot of *B NMR spectra of the reaction of 1a (e) with p-dimethylaminophenylazide, showing the intermediate formation of

2aNMeZ NMe2 (

(m) and its rearrangement to 3a ).
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Figure S39. Stack-plot of "H NMR spectra of the reaction of 1a with p-trifluoromethylphenylazide, showing the intermediate formation of 2a“"

CF3

(m) and its rearrangement to 3a°" (4) and ultimately its decomposition to 4a°7> (+).
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Figure S40. Stack-plot of *H and *H{*'B} NMR spectra of the very slow rt decomposition of 2b" (m) into 5b* ().
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Figure S41. *H and 'H{**B} NMR spectrum between 2 and 6 ppm of the decomposition of 2b" into 5b" after 5 days at rt, showing the BH

resonances.
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Figure S42. Stack-plot of *H{*'B} NMR spectra of the very slow rt decomposition of 2b"" (m) into 5bN"¢2 (+).
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Figure S43. Stack-plot of *H and *H{"'B} NMR spectra between 3 and 6 ppm of the very slow rt decomposition of 2b"™*? (m) into 5b"™e2 (),

showing the BH resonances and indications of further decomposition.
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Figure S44. Stack-plot of "H{"'B} NMR spectra of the very slow rt decomposition of 2b°"* (m) into 5b°" ().
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Figure S45. Stack-plot of "H and 'H{*'B} NMR spectra between 3 and 5 ppm of the very slow rt decomposition of 2b°™ (m) into 50" (=),

showing the BH resonances and indications of further decomposition.

57



UV/Vis spectroscopy
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Figure S46. UV/Vis absorption spectrum of 2b™ in benzene at rt. Wavelengths (nm) of
absorption maxima: 336, 356, 375, 396, 411, 435.
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Figure S47. UV/Vis absorption spectrum of 2 in benzene at rt. Wavelengths (nm) of

absorption maxima: 357, 376, 402, 431.
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Figure S48. UV/Vis absorption spectrum of 2bF

absorption maxima: 335, 355, 374, 395, 417, 440.

in benzene at rt. Wavelengths (nm) of
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IR spectroscopy
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Figure S49. Solid-state IR spectrum of 2b".
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Figure S50. Solid-state IR spectrum of 2b"NM¢2,
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Figure S51. Solid-state IR spectrum of 2b°™2,
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X-ray crystallographic details

The crystal data of 3a" and 4a"™?

were collected on a BRUKER D8 QUEST diffractometer
with a CCD-area or a CMOS area detector and multi-layer mirror monochromated Mok,
radiation. The crystal data of 2b™ and 3a“™®? were collected on a Bruker X8-APEX Il
diffractometer with a CCD area detector and multi-layer mirror monochromated Mok,
radiation. The crystal data of 3a°™%, 2b°™ 4a™ and 4a°™ were collected on a XtaLAB
Synergy diffractometer with a Hybrid Pixel Array detector and multi-layer mirror

monochromated Cuk,, radiation.

The structures were solved using the intrinsic phasing method,® refined with the SHELXL
program,” and expanded using Fourier techniques. All non-hydrogen atoms were refined
anisotropically. Hydrogen atoms were included in structure factor calculations. All Hydrogen
atoms except those attached to boron were assigned to idealised positions. The coordinates of

the latter were refined freely.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre
as supplementary publication nos. CCDC 1993145-1993152. These data can be obtained free
of charge from  The  Cambridge  Crystallographic ~ Data  Centre  via

www.ccdc.cam.ac.uk/data request/cif.

Refinement details for 2b™: The asymmetric unit contains two benzene molecules located
close to each other, each with an occupation factor of 88% and modelled as twofold
disordered in a 56:32 ratio, as well as a hexane molecules with an occupation factor of 12%
spanning the two sites. The benzene rings were modelled with AFIX 66 and the 1,2- and 1,3-
distances in the hexane molecule restrained to 1.53 and 2.55 Angstrom, respectively, with
DFIX. All ADPs within these disordered solvents were restrained with SIMU 0.003. The
asymmetric unit also contains two crystallographically distinct molecules of 2b"™, one of
which displays a twofold disorder in one of the Mes groups (RESI 12 and 13 Mes, atoms C13
> C21) in a 55:45 ratio. 1,2- and 1,3-distances within the 2 parts of the disorder were
restrained to similarity using SAME C13 > C21 and ADPs were restrained with SIMU 0.002.

Crystal data for 2b™: CssHa9B,Ns, 0.878 (CgHs), 0.061 (CsH1s), M, = 879.72, yellow block,

0.181x0.178x0.111 mm?®, Triclinic space group P 1, a=16.155(4) A, b=17.629(3) A,
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c=18.200(4) A, «=76.749(8)°, B =T76.424(9)°, y=74.29(2)°, V=4773.7(18) A3, Z =4,
pealed = 1.224 g-cm ™3, 1= 0.071 mm™*, F(000) = 1864, T = 100 K, R; = 0.0867, wR* = 0.1416,
18816 independent reflections [26<52.044°] and 1386 parameters.

Figure S52. Crystallographically-derived molecular structures of 2b™ (only one of the two
crystallographically distinct molecules of 2b™ present in the asymmetric unit shown). Thermal
ellipsoids at 50% probability. Thermal ellipsoids of ligand periphery and hydrogen atoms
omitted for clarity, except for H1. Selected bond lengths (A) and angles (°): B1-H1 1.120(19),
B1-N1 1.557(3), B2-N1 1.417(3), N1-N2 1.382(2), N2-N3 1.258(2), B1-C4 1.645(3), X4
359.31(17), torsion angles B1-N1-N2-N3 13.4(2), B2-N1-N2-N3 —-177.94(15).

Refinement details for 2b: The unit cell contains five benzene molecules which have
been treated as a diffuse contribution to the overall scattering without specific atom positions
using the Platon program SQUEEZE 2

Crystal data for 2b°™: 2 (CsgHs:BoFsNs), CeHs [+ squeezed solvent], M, = 1817.33,
yellow plate, 0.138x0.101x0.068 mm?®, monoclinic space group P 2i/n, a =20.8855(2) A,
b=17.84136(11) A, ¢=29.1284(3) A, 5 =109.8873(11)°, V =10206.70(16) A, Z =4,
pealed = 1.183 g-cm™>, £ =0.610mm™*, F(000)=3816, T=100(2) K, R;=0.0769,
WR? = 0.1569, 20046 independent reflections [26<144.254°] and 1264 parameters.
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Crystal data for 3a"™: CusHssBoNs, M, =685.54, yellow block, 0.373x0.195x0.15 mm?®,
triclinic space group P 1, a=10.776(4)A, b=12867(4)A, c=15.077(4)A,
a=99.007(10)°,  B=108.967(15)°, y=90.735(9)°, V=1948.1(10)A3,  Z=2,
peated = 1.169 g-cm 3, 4 =0.068mm™,  F(000)=736, T=100(2)K, R;=0.0785,
WR? = 0.1449, 7667 independent reflections [26<52.042°] and 480 parameters.

Refinement details for 3a""**: The asymmetric unit contains a benzene molecule which was
modelled as threefold disordered, using three FVAR summed up to 1.0 and refined to a
29:33:38 ratio. The rings were modelled with AFIX 66 and ADPs restrained with SIMU

0.003.
Crystal data for 3a™™*%: C,HssBNs, CsHe, M; = 806.72, yellow block,

0.202x0.149%0.105 mm?®, Triclinic space group P 1, a=13.097(5) A, b=14.799(7) A,
c=14.975(5) A, a=63.842(16)°, B=85.29(2)°, »=64.034(18)°, V =2319.9(17) A3, z=2,
Dealed = 1.155 g-cm 3, 7= 0.067 mm*, F(000) = 868, T = 100 K, R; = 0.0678, wR? = 0.1258,
9500 independent reflections [26<52.744°] and 638 parameters.
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Figure S53. Crystallographically-derived molecular structures of 3a"™¢2. Thermal ellipsoids
at 50% probability. Thermal ellipsoids of ligand periphery and hydrogen atoms omitted for
clarity, except for H1. Selected bond lengths (A) and angles (°): B1-N1 1.506(2), B2-N1

1.416(2), N1-N2 1.3867(17), N2-N3 1.2548(18), B1-N4 1.387(2), B1-C1 1.569(2), C1-N5
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1.4623(18), C1-C16 1.534(2), g1 359.75(13), X2, 359.97(14), torsion angles B1-N1-N2-
N3 3.70(16), B2-N1-N2-N3 -165.65(12).

CF3 CF3

Refinement details for 3a°™: The asymmetric unit contains 3a“~ and 4a°™ overlapping,
with all atoms in common except the N,Ph™ (RESI AZI) / Ph" (RESI ANIL) moieties. The
two parts were refined to a 93:7 ratio. The phenyl rings in each were modelled with AFIX 66
and all ADPs within these two parts were restrained with SIMU 0.005.

Crystal data for 3a°™%: 0.93 (CusHs2B2F3Ns), 0.7 (CasHs:B2FsNs), CeHs, M, = 829.78,
yellow block, 0.276x0.193x0.083 mm?®, triclinic space group P 1, a=10.5695(2) A,
b=15.3466(3) A, ¢=16.2221(3) A, «a=65.195(2)°, S =87.805(2)°, y=72.0887(19)°,
V =2260.22(8) A%, Z = 2, peaic = 1.222 g-cm™>, 1= 0.633 mm*, F(000) = 884, T = 100(2) K,

R1 = 0.0555, WR? = 0.1452, 8844 independent reflections [26<144.254°] and 637 parameters.
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Figure S54. Crystallographically-derived molecular structures of 3a~"" (left) and overlay of

CF3 and 4aCF3

the two molecules of 3a (p-CF3CgH4 group in light grey and dashed bonds)
overlapping in a 93:7 ratio in the asymmetric unit. Thermal ellipsoids at 50% probability.
Thermal ellipsoids of ligand periphery and hydrogen atoms omitted for clarity, except for H1.
Selected bond lengths (A) and angles (°): B1-N1 1.512(2), B2-N1 1.432(2), N1-N2
1.3736(19), N2-N3 1.2548(18), B1-N4 1.385(2), B1-C1 1.579(2), C1-N5 1.4717(18), C1-C16
1.530(2), X2£p; 359.93(13), X£p, 359.90(13), torsion angles B1-N1-N2-N3 —-9.8(2), B2-N1-

N2-N3 —169.4(2).
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Crystal data for 4a"": CssHs3B2oNs, M, = 657.52, colourless plate, 0.300x0.107x0.025 mm?®,
triclinic space group P 1, a=104340(3)A, b=12.8967(5)A, c=15.2156(5)A,
a=71.824(3)°, B =84.929(2), y=86.835(3)°,  V =1936.87(11) A®, Z=2,
peated = 1.127 g-cm 3, 1 =0.483 mm™, F(000) = 708.000, T =100.01(10)K, R;=0.0542,
WR? = 0.1346, 8114 independent reflections [20<155.716°] and 462 parameters.

Figure S55. Crystallographically-derived molecular structures of 4a™. Thermal ellipsoids at
50% probability. Thermal ellipsoids of ligand periphery and hydrogen atoms omitted for
clarity, except for H1. Selected bond lengths (A) and angles (°): B1-N1 1.4949(17), B2-N1
1.4184(18), B1-N4 1.3949(18), B1-C1 1.5829(19), C1-N5 1.4694(16), C1-C16 1.5296(17),

251 359.97(11), S8, 359.75(11).

Crystal data for 42" C,HssBoNs, M, = 700.59, yellow block, 0.432x0.38x0.185 mm?®,
Triclinic space group P 1, a=8538(2 A, b=11.12013)A, ¢=21.468(6) A,
a = 98.920(10)°, £ =91.290(16)°, y = 96.808(12)°, V =1997.6(9) A®, Z=2,
peated = 1.165g-cm3,  m=0.067mm™, F(000)=756, T=1002)K, R;=0.0641,
WR? = 0.1349, 7886 independent reflections [26<52.044°] and 491 parameters.

Crystal data for 4a°": CysHs2B2FsNs, M, = 725.52, yellow block, 0.189x0.149x0.120 mm?,
triclinic space group P 1, a=8.36154(12) A, b=13.32837(19) A, ¢=18.5663(2) A,
a=T74.6571(12)°, B =78.6214(12)°, y=85.0559(11)°, V=195491(5)A3 z=2,
peated = 1.233 g-cm 3, 1 =0.641 mm™, F(000) = 772.000, T =100.00(10) K, R; = 0.0400,
WR? = 0.1017, 7701 independent reflections [20 <144.25°] and 498 parameters.
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Figure S56. Crystallographically-derived molecular structures of 4a°™. Thermal ellipsoids at
50% probability. Thermal ellipsoids of ligand periphery and hydrogen atoms omitted for
clarity, except for H1. Selected bond lengths (A) and angles (°): B1-N1 1.4999(15), B2-N1
1.4222(16), B1-N4 1.3953(16), B1-C1 1.5839(16), C1-N5 1.4684(14), C1-C16 1.5261(15),
Yzp; 359.77(10), £, 359.70(10).
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