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Scheme S1. The synthesis and experimental section of 1
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Experimental

Materials and instrumentation

All chemical reagents and solvents were of analytical grade and commercially available. The 

fluorescence spectra were carried out on a Jasco FP-6500 spectrofluorimeter. The absorbance 

spectra were recorded on an Agilent 8453 UV-Vis spectrophotometer. Mass spectra were 

obtained on a Fisons instrument. 1H NMR was measured by Varian 500MHz. Infrared spectra 

were recorded on a Perkin Elmer 883 spectrometer. Surface morphology of the powdered 

microcapsules was observed using a scanning electron microscope (SEM, Tescan, Prague, 

Czech Republic) with the particles mounted on the stubs and sprayed with gold. Particle size 

distribution analysis was measured by dynamic light scattering (DLS) experiments using a 

Malvern Zetasizer Nano ZS instrument. TEM Images were acquired using an transmission 

electron microscope Zeiss-EM10C-100 KV. The diluted solution was dropped onto carbon-

coated copper grids and then dried at environmental conditions.

Synthesis of N,N'-(pyridine-2,6-diyl)bis(2-(2,4-dichlorophenoxy)acetamide) 1.

A solution of 2,6-diaminopyridine (109 mg, 1 mmol) and 2-(2,4-dichlorophenoxy)acetic acid 

(442 mg, 2 mmol) in MeOH (15 mL) was refluxed for 3h. After cooling down to room 
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temperature, the solvent was evaporated and the crude product was recrystallized from water 

to afford the green needle solid in 80% yield.

Compound 1: C21H15O4N3Cl4, m.p. 140 C (decomposed), IR (KBr, cm-1): 3444 (N-H 

stretch), 1721 (C=O), 1649 (NH bend), 1483 (C=C), 1222 (C-N); 1H NMR (500 MHz, 

DMSO-d6) δ 7.55 (d, J = 2.6 Hz, 2H), 7.35 – 7.30 (m, 2.6, 8.9 Hz, 2H), 7.27 (t, J = 8.0 Hz, 

1H), 7.02 (d, J = 8.9 Hz, 2H), 5.74 (d, J = 8.0 Hz, 2H), 4.72 (s, 4H); 13C NMR (125 MHz, 

DMSO-d6) δ 170.98, 155.60, 153.11, 142.47, 129.72, 128.31, 124.90, 122.59, 115.35, 95.38, 

66.37.; MS (EI), m/z (rel. intensity %) 515 (M+, 10%), 220 (61%, dichlorophenoxy acetamide 

moeity), 162 (100%, dichlorophenol moeity), 109 (80%, diaminopyridine moeity). 

Fluorescence and UV-vis titration measurements of 1 with NaCN

Caution: Cyanide solutions are also very toxic! The addition of cyanide in solutions of low 

pH can produce the very toxic cyanhydric acid gas! All the experiments are strongly 

recommended to do with personal protective equipment and respiratory protection under 

good fume hood. Generously keep any remaining residue in alkaline solution of ferrous 

sulfate in dedicated container (to maintain pH at 9 or higher). 

Receptor 1 (5.15 mg, 0.01 mmol) was dissolved in 100 mL buffer solution pH 7.4 of water to 

make the final concentration of 0.1 mM. NaCN (2.45 mg, 0.05 mmol) was dissolved in 100 

mL buffer solution pH 7.4 of water. 0–400 µL of the NaCN solution (0.5 mM) was 

transferred to the receptor 1 solution (0.1 mM) prepared above. After mixing them, 

Fluorescence and UV-vis spectra were immediately taken at room temperature.
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Determination of the detection limit 

To determine the signal-to-noise ratio (S/N), the absorbance and emission intensities of 1 in 

the presence of 1 equiv. of NaCN were measured 5 times and the standard deviation of the 

blank measurements was determined. The measurement of the absorbance was performed in 

the presence of NaCN ions, and the mean intensity was plotted as a concentration of NaCN to 

determine the slope. The detection limit (DL) was calculated using the following equation:

DL = 3σ/m

where σ is the standard deviation of the intensity of 1 in the presence of 1 equiv of NaCN and 

m is the slope between the intensity (A0/A) or (I0/I) and concentration (Ct). 

1H NMR titrations of 1 with NaCN 

Compound 1 (0.02 mmol) was added to NMR tube and then dissolved in DMSO-d6. 

Therefore, 0.5 and 1 equivalents of NaCN were added to 1 and after shaking the mixture for 2 

minutes, the 1H NMR spectra of each sample was taken.

The extraction of cyanide-containing solutions of bitter seeds 

The well pulverized pieces of bitter seeds (4 g of each) were sonicated and stirred in 100 mL 

MeOH for 1h. The filtrated MeOH solutions were evaporated. The residue was dissolved in 

25 mL water. The obtained cyanide-containing solutions of bitter seeds were then detected by 

optical methods in buffer solutions pH 5.5 and 7.4 with similar data.
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Theoretical calculation

To identify stable structures of 1, an extensive conformational search with frequency 

calculations was performed by some hybrid density functionals (B3LYP, CAM-B3LYP, and 

PBE1PBE) together with 6-31G(d) basis set. All conformers found at the above levels were 

reoptimized by the larger basis set 6-311++G(d,p) with three DFT methods, and then the 

nature of minima for the optimized structures were validated by performing harmonic 

vibrational calculations at the same level of theory. 

Table S1. The quantum yield calculation

𝜙𝐹

𝜙𝑠
=  

𝐼𝑠

𝐼𝐹
×

𝐴𝐹

𝐴𝑠
×

𝑛2
𝑠

𝑛2
𝐹

ɸF = quantum yield , I = area under the corrected emission curve, A = absorbance density of 
the compound at the excitation wavelength (330 nm) and n = refractive index . Subscripts s 
and F refer to the standard (phenanthrene) and to compound 1, respectively.

Sample A I n ɸ

phenanthrene in DMF 0.059 19.4193 1.359 0.125

Compound 1  in DMF 0.0424 104.066 1.427 0.015

phenanthrene in DMF – H2O 0.074 19.6963 1.36 0.125

Compound 1 in DMF – H2O 1.0461 337.885 1.36 0.1
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Fig.S1. 1H NMR of 1 and its expantion spectrum

Fig.S2. 13C NMR (125 MHz, DMSO-d6) spectrum of 1
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Fig.S3. Mass spectrum of 1
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Acquisition

System: ACME 9000 (97-11-17)

Injection: 50 µl

Mobile Phase:  MeOH : ACN(85 : 15)

Flow: Isocratic, 1.000 ml/min, 20:80:0

Column: Nova-pak C18  4 um  30 * 0.39

Temperature: Ambient

Detector: 330 nm

Fig.S5. HPLC of 1
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Fig.S6.The effect of pH on the fluorescence of 1 with and without CN¯ ions in aq. Buffer 

solution                                                                                        

Fig.S7. pH dependence of 1 on CN¯ measured by UV-vis experiment
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Fig.S8. Competition of CN¯ (1 eqiv.) with various an ions (10 eqiv.) under UV-vis 

measurement.

Fig.S9. Photographs of CN¯ ion with other competing ions by naked eye under 365 nm 

UV light
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Fig.S10. Competition of CN¯ (1 eqiv.) with various metal ions (10 eqiv.) under UV-vis 

measurement.

Fig.S11. UV-vis spectra of 1 (0.1 μM) upon addition of extracted cyanide-containing 

solution from apricot, peach and bitter almond solutions (0.3 μM) 
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Fig.S12. UV-vis spectra of 1 (0.1 μM) in DMF, upon increasing volume percentages of 

water from 0% to 58%
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Fig.S13. 1H NMR titration of 1 under addition of water (A) and then CN¯ ions (B) to 

DMSO-d6
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Fig.S14. 13C NMR titration of 1(A) with CN¯ ions (B) in DMSO-d6
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Fig.S15. Morphology of 1 before (left) and after (right) the addition of CN¯ in H2O 

measured by SEM

Fig.S16. Morphology of 1 before (left) and after (right) the addition of CN¯ measured 

by TEM
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Fig. S17. Dynamic light scattering measurements of 1in the absence (up) and presence 

(down) of 1 eq. of cyanide in water                                                                                               
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Fig.S18. Self-assembly behavior of 1: (left) in H2O; (Right) in DMF

Fig.S19. The UV–vis spectral changes of 1 (1 equivalent) after the sequential addition of   

CN¯ and HCl solutions. The time after each addition of HCl in 30 seconds
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Scheme S2. Proposed optical sensing mechanism of 1
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Table S2. Comparison of 1 with other AIE based probes for detection of cyanide ions

Sensor Mechanism Sensing Solvent 

(response time)

LOD Ref.

Turn-on

nucleophilic 

addition Water (fast) 7.74 µM [1]

Turn-on

nucleophilic 

addition

Water (-) 91 nM [2]

Turn-off nucleophilic 

addition

DMSO – Water

(100 sec)

0.2 µM [3]

Turn-off

nucleophilic 

addition DMSO – H2O 0.29 µM [4]

Turn-on

nucleophilic 

addition

DMSO – H2O

(20 sec) 0.1 µM [5]

Turn-off

nucleophilic 

addition

DMSO- H2O

(5 min) 9.88 nM [6]

Turn-off nucleophilic 

addition

DMF-H2O 0.11 µM [7]

Turn-off

nucleophilic 

addition H2O 55 nM [8]

Turn-off

nucleophilic 

addition CH3CN - H2O 0.22 µM [9]
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Turn-on

nucleophilic 

addition THF- H2O 5.70 µM [10]

Turn-on

oxidative 

cyclization Water 0.592 µM [11]

Turn-off

nucleophilic 

addition CH3CN - [12]

Color 

changes

Intermolecular 

hydrogen bonds

Glycerol 3.02 µM [13]

turn-on Intermolecular 

hydrogen bonds

THF-H2O

(40 s)

0.81 µM [14]

    turn‐on

&

Color 

changes

Complex with 

Co

H2O - MeOH 2.69 µM [15]

pillar[5]arene turn‐on coordinating 

interactions

DMF-H2O 0.0771 µM [16]

turn‐on Deprotonation DMSO 0.745 µM [17]

turn‐off nucleophilic 

addition

99% aqueous 

DMSO solution

67.4 nM [18]

N

NH HN

OO

OO

ClCl

ClCl

1

turn‐off Intramolecular 

hydrogen bonds

H2O

(5 sec)

PL (8.2 nM) 

and UV-vis 

(53 nM)

This 

work
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