Electronic Supplementary information

# An arene-stabilized $\eta^5$ -pentamethylcyclopentadienyl antimony dication acts as a source of Sb<sup>+</sup> or Sb<sup>3+</sup> cations

Jiliang Zhou, Hyehwang Kim, Liu Leo Liu, Levy L. Cao and Douglas W. Stephan\*

This PDF file includes:

| 1. | General Information              | S3  |
|----|----------------------------------|-----|
| 2. | Syntheses and Spectroscopic Data | S4  |
| 3. | Crystallographic Details         | S23 |
| 4. | Computational Details            | S26 |
| 5. | References                       | S52 |

### 1. General Information

All manipulations were performed in a MB Unilab glove box produced by MBraun or using standard Schlenk techniques under an inert atmosphere of anhydrous N<sub>2</sub>. All glassware was oven-dried and cooled under vacuum before use. Dry, oxygenfree solvents (toluene (tol), dichloromethane, *n*-pentane) were prepared using an Innovative Technologies solvent purification system. 1,2-Difluorobenzene (DFB) was degassed and stored over molecular sieves (4 Å) for at least two days prior to use. Deuterated dichloromethane (CD<sub>2</sub>Cl<sub>2</sub>) purchased from Cambridge Isotope Laboratories Inc. were degassed and stored over molecular sieves (4 Å) for at least two days prior to use. Commercial reagents were used without further purification unless indicated otherwise. Cp\*SbCl<sub>2</sub><sup>[S1]</sup> and bis(diisopropylamino) cyclopropenylidenes (BAC)<sup>[S2]</sup> were prepared according to literature procedures. NMR spectra were obtained on a Bruker AvanceIII-400 MHz spectrometer, an Agilent DD2 600 MHz spectrometer or an Agilent DD2 500 MHz spectrometer. <sup>1</sup>H, <sup>13</sup>C{<sup>1</sup>H} NMR chemical shifts ( $\delta$ /ppm) are referenced to the residual solvent resonance of the deuterated solvent. <sup>31</sup>P, <sup>19</sup>F and <sup>11</sup>B{<sup>1</sup>H} NMR chemical shifts  $(\delta/ppm)$  are referenced to H<sub>3</sub>PO<sub>4</sub>, CFCl<sub>3</sub> and BF<sub>3</sub>·OEt<sub>2</sub>, respectively. Mass spectroscopy (MS) studies were performed on an Agilent 6538 Q-TOF (ESI) or a JMS-T100LC JOEL (DART). For dicationic compounds **1**, **2** and **5**, and tricationic compound **6**, no targeted cationic peak for the antimony species could be detected by either of the two machines, due to their multiply charged nature. For compound **4**, only the cationic peak of [(BAC)H]<sup>+</sup> was detected, due to the vulnerable Sb-C bonds. For compounds 5 and 6, only cationic peaks of [bipyH]<sup>+</sup> (ESI-MS(+) of  $[C_{10}H_8N_2]H^+$  calc. 157.08 m/z; found 157.08 m/z) could be observed. Elemental analyses were carried out by staff at ANALEST at the University of Toronto on a Flash 2000 CHNS Analyzer. Satisfactory elemental analyses of compounds 1, 2, and 5 could also not be obtained due to their significant sensitivity to air and

moisture. However, satisfactory elemental analysis of compound **6** was obtained, and is reported herein. We propose that the strong Lewis acidity and significant sensitivity to air and moisture of most of these compounds prevent obtaining the satisfactory MS and EA results. These results are in accordance with what has been recently observed in the literature for an analogous compound, Cp\*Sb(OTf)<sub>2</sub>, for which microanalyses could also not be obtained due to its high sensitivity.<sup>[S3]</sup>

#### 2. Preparation and Spectroscopic Data

**Generation of 1.tol:** Toluene (1 mL) solution of Et<sub>3</sub>SiH (56 mg, 0.48 mmol) was added into toluene (3 mL) solution of  $[Ph_3C][B(C_6F_5)_4]$  (369 mg, 0.40 mmol), and the mixture was stirred at room temperature for 5 minutes to give colorless solution and pale yellow oil on the bottom. The supernatant was removed, and the oil residue was washed with toluene (4 mL  $\times$  3). To the oil residue, toluene (2 mL) was added. Then to the mixture, toluene (1 mL) solution of Cp\*SbCl<sub>2</sub> (66 mg, 0.20 mmol) was added, and the mixture was stirred at room temperature for 30 minutes to give pale yellow precipitate. The supernatant was removed and the yellow solid was washed with toluene (3 mL  $\times$  3) and then *n*-pentane (3 mL) and dried under vacuum to give **1** tol ( $[(\eta^5-Cp^*)Sb(tol)][B(C_6F_5)_4]_2$  tol) as a pale yellow solid (343) mg, 95% yield). Single crystals of **1**·2tol were obtained by layering of *n*-pentane on a toluene/DFB solution at room temperature. <sup>1</sup>H NMR (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  (ppm) 7.35 (t,  ${}^{3}J_{H-H} = 7$  Hz, 4H, Ar<sup>toluene</sup>-H), 7.30 (d,  ${}^{3}J_{H-H} = 7$  Hz, 4H, Ar<sup>toluene</sup>-H), 7.25 (t,  ${}^{3}J_{H-H} = 7 \text{ Hz}, 2H, \text{Ar}^{\text{toluene}}-H), 2.46 \text{ (s, 15H, } C_{5}Me_{5}), 2.39 \text{ (s, 6H, } Me^{\text{toluene}}-H). {}^{13}C{}^{1}H}$ **NMR** (126 MHz,  $CD_2Cl_2$ ):  $\delta$  (ppm) 148.5 (d(m),  ${}^{1}J_{C-F}$  = 241 Hz,  $C_6F_5$ ), 140.7 (m, Ar<sup>toluene</sup>-C), 138.7 (d(m),  ${}^{1}J_{C-F}$  = 242 Hz,  $C_{6}F_{5}$ ), 136.7 (d(m),  ${}^{1}J_{C-F}$  = 240 Hz,  $C_{6}F_{5}$ ), 133.7 (b(m), C<sub>5</sub>Me<sub>5</sub>), 130.6 (m, Ar<sup>toluene</sup>-C), 129.6 (m, Ar<sup>toluene</sup>-C), 126.5 (m, Ar<sup>toluene</sup>-C), 124.1 (b(m), C<sub>6</sub>F<sub>5</sub>), 21.6 (s, Me<sup>toluene</sup>-C), 10.2 (s, C<sub>5</sub>Me<sub>5</sub>). <sup>19</sup>F NMR (377 MHz,  $CD_2CI_2$ ):  $\delta$  (ppm) -133.1 (m,  $C_6F_5$ ), -163.7 (t,  ${}^{3}J_{F-F}$  = 20 Hz,  $C_6F_5$ ), -167.6 (t,  ${}^{3}J_{F-F}$  = 18 Hz, C<sub>6</sub>*F*<sub>5</sub>). <sup>11</sup>B{<sup>1</sup>H} NMR (128 MHz, CD<sub>2</sub>Cl<sub>2</sub>): δ (ppm) -16.7 (s).



Figure S1. <sup>1</sup>H NMR spectrum of 1 (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>).



Figure S2. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 1 (126 MHz, CD<sub>2</sub>Cl<sub>2</sub>).



Figure S3. <sup>19</sup>F NMR spectrum of 1 (377 MHz, CD<sub>2</sub>Cl<sub>2</sub>).



Figure S4. <sup>11</sup>B{<sup>1</sup>H} NMR spectrum of 1 (128 MHz,  $CD_2CI_2$ ).

**Gutmann-Beckett tests:** The dicationic compound (0.01 mmol; **1**·tol (18.0 mg), or  $[(η^5-Cp^*)As(tol)][B(C_6F_5)_4]_2$ ·tol (17.5 mg), or  $[(η^5-Cp^*)P(tol)][B(C_6F_5)_4]_2$ ·tol (17.1 mg)) and Et<sub>3</sub>PO (1.3 mg, 0.01 mmol) were mixed in DFB (0.6 mL) to give a yellow solution. The reaction solution was sealed in an NMR tube and monitored by <sup>31</sup>P{<sup>1</sup>H} NMR spectroscopy. <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, DFB): δ (ppm) **1**·tol, 89.0 (s);  $[(η^5-Cp^*)As(tol)][B(C_6F_5)_4]_2$ ·tol, 99.6 (s);  $[(η^5-Cp^*)As(tol)][B(C_6F_5)_4]_2$ ·tol, 99.6 (s);  $[(η^5-Cp^*)P(tol)][B(C_6F_5)_4]_2$ ·tol, 114.7 (d, <sup>2</sup>J<sub>P-P</sub> = 42 Hz), -79.1 (d, <sup>2</sup>J<sub>P-P</sub> = 42 Hz). At the same time, DFB (0.6 mL) solution of

Et<sub>3</sub>PO (1.3 mg, 0.01 mmol) was monitored by  ${}^{31}P{}^{1}H$  NMR spectroscopy.  ${}^{31}P{}^{1}H$  NMR (162 MHz, DFB):  $\delta$  (ppm) 47.6 (s).



**Figure S5.** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of reaction solution of  $1 \cdot \text{tol}$  and Et<sub>3</sub>PO (1:1) (162 MHz, DFB).



 $Cp^*$ )As(tol)][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]<sub>2</sub>·tol and Et<sub>3</sub>PO (1:1) (162 MHz, DFB).



**Figure S7.** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of reaction solution of  $[(\eta^5 - Cp^*)P(tol)][B(C_6F_5)_4]_2$ ·tol and Et<sub>3</sub>PO (1:1) (162 MHz, DFB).



Figure S8. <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of Et<sub>3</sub>PO (162 MHz, DFB).

**Generation of 2:** 1 ·tol (36.0 mg, 0.02 mmol) and  $[Bu_4N][SbF_6]$  (19.1 mg, 0.04 mmol) were mixed in DFB (1 mL), and the mixture was stirred at room temperature for 2 hours to give a pale yellow turbid solution. The mixture was filtered, and the residue was washed with DFB (0.5 mL) and dried under vacuum to give **2** ([(Cp\*)Sb][SbF\_6]\_2) as a white solid (11.8 mg, 81% yield). <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>CN):  $\delta$  (ppm) 2.24 (s, 15H, C<sub>5</sub>Me<sub>5</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CD<sub>3</sub>CN):  $\delta$  (ppm) 129.0 (s, C<sub>5</sub>Me<sub>5</sub>), 10.0 (s, C<sub>5</sub>Me<sub>5</sub>). <sup>19</sup>F NMR (377 MHz, CD<sub>3</sub>CN):  $\delta$  (ppm) -123.0

 $(b(m), SbF_6).$ 



Figure S9. <sup>1</sup>H NMR spectrum of 2 (500 MHz, CD<sub>3</sub>CN).



Figure S10.  $^{13}C{^{1}H}$  NMR spectrum of 2 (126 MHz, CD<sub>3</sub>CN).



Figure S11. <sup>19</sup>F NMR spectrum of 2 (377 MHz, CD<sub>3</sub>CN).

**Generation of 3:** Toluene (1 mL) solution of Et<sub>3</sub>SiH (14 mg, 0.12 mmol) was added into toluene (1 mL) solution of  $[Ph_3C][B(C_6F_5)_4]$  (92 mg, 0.10 mmol), and the mixture was stirred at room temperature for 5 minutes to give colorless solution and pale yellow oil on the bottom. The supernatant was removed, and the oil residue was washed with toluene (2 mL  $\times$  3). To the oil residue, toluene (1 mL) was added. Then to the mixture, toluene (1 mL) solution of Cp\*SbCl<sub>2</sub> (33 mg, 0.10 mmol) was added, and the mixture was stirred at room temperature for 15 minutes. To the mixture, *n*-pentane (4 mL) was added with rigorous stirring to give pale yellow precipitate. The supernatant was removed, and the pale yellow solid was washed with *n*-pentane (2 mL) and dried under vacuum to give **3** ([Cp\*Sb(µ-CI)]<sub>2</sub>[B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]<sub>2</sub>) as a pale yellow solid (88 mg, 91% yield). Single crystals of **3** were obtained by layering of *n*-pentane on a dichloromethane solution at room temperature. <sup>1</sup>H NMR (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>): δ (ppm) 2.32 (s, 15H, C<sub>5</sub>Me<sub>5</sub>). <sup>13</sup>C{<sup>1</sup>H} **NMR** (126 MHz,  $CD_2CI_2$ ):  $\delta$  (ppm) 148.5 (d(m),  ${}^{1}J_{C-F}$  = 240 Hz,  $C_6F_5$ ), 138.6 (d(m),  ${}^{1}J_{C-F}$  = 244 Hz, C<sub>6</sub>F<sub>5</sub>), 136.7 (d(m),  ${}^{1}J_{C-F}$  = 244 Hz, C<sub>6</sub>F<sub>5</sub>), 131.1 (s, C<sub>5</sub>Me<sub>5</sub>), 124.3 (b(m), C<sub>6</sub>F<sub>5</sub>), 10.5 (s, C<sub>5</sub>Me<sub>5</sub>). <sup>19</sup>F NMR (377 MHz, CD<sub>2</sub>Cl<sub>2</sub>): δ (ppm) -133.0 (m,  $C_6F_5$ ), -163.6 (t,  ${}^{3}J_{F-F}$  = 20 Hz,  $C_6F_5$ ), -167.5 (t,  ${}^{3}J_{F-F}$  = 18 Hz,  $C_6F_5$ ). <sup>11</sup>B{<sup>1</sup>H} NMR (128 MHz, CD<sub>2</sub>Cl<sub>2</sub>): δ (ppm) -16.6 (s). MS (DART) [M] C<sub>10</sub>H<sub>15</sub>SbCl<sup>+</sup> calc.

290.99005 m/z; found 290.98937 m/z.



Figure S12. <sup>1</sup>H NMR spectrum of 3 (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>).



Figure S13.  $^{13}C{^1H}$  NMR spectrum of 3 (126 MHz,  $CD_2CI_2$ ).





Figure S14. <sup>19</sup>F NMR spectrum of **3** (377 MHz, CD<sub>2</sub>Cl<sub>2</sub>).

**Figure S15.** <sup>11</sup>B{<sup>1</sup>H} NMR spectrum of **3** (128 MHz, CD<sub>2</sub>Cl<sub>2</sub>).

The reaction of 1·tol with Ph<sub>3</sub>CCI: 1·tol (18.0 mg, 0.01 mmol) and Ph<sub>3</sub>CCI (4.2 mg, 0.015 mmol) were mixed in DFB (1 mL) to give clear yellow solution immediately. To the solution, *n*-pentane (3 mL) was added with rigorous stirring to give yellow precipitate. The supernatant was removed, and the residue was washed with *n*-pentane (2 mL) and dried under vacuum to give a yellow solid (14.5 mg) containing **3** ([Cp\*Sb(µ-Cl)]<sub>2</sub>[B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]<sub>2</sub>) and [Ph<sub>3</sub>C][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]. <sup>1</sup>H NMR (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  (ppm) 8.27 (tt, <sup>3</sup>J<sub>H-H</sub> = 7.5 Hz, <sup>4</sup>J<sub>H-H</sub> = 1.3 Hz, [Ph<sub>3</sub>C]<sup>+</sup>-H), 7.87 (dd, <sup>3</sup>J<sub>H-H</sub> = 8.4 Hz, <sup>3</sup>J<sub>H-H</sub> = 7.5 Hz, [Ph<sub>3</sub>C]<sup>+</sup>-H), 7.66 (dd, <sup>3</sup>J<sub>H-H</sub> = 8.4 Hz, <sup>4</sup>J<sub>H-H</sub> = 1.3 Hz, [Ph<sub>3</sub>C]<sup>+</sup>-H), 2.32 (s, 15H, C<sub>5</sub>Me<sub>5</sub>). <sup>13</sup>C{<sup>1</sup>H</sup> NMR (126 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  (ppm) 211.2 (s, [Ph<sub>3</sub>C]<sup>+</sup>), 148.5 (d(m), <sup>1</sup>J<sub>C-F</sub> = 243 Hz, C<sub>6</sub>F<sub>5</sub>), 144.0 (s, [Ph<sub>3</sub>C]<sup>+</sup>), 143.0 (s, [Ph<sub>3</sub>C]<sup>+</sup>), 140.3 (s, [Ph<sub>3</sub>C]<sup>+</sup>), 138.6 (d(m), <sup>1</sup>J<sub>C-F</sub> = 244 Hz, C<sub>6</sub>F<sub>5</sub>), 136.7 (d(m), <sup>1</sup>J<sub>C-F</sub> = 244 Hz, C<sub>6</sub>F<sub>5</sub>), 131.1 (s, C<sub>5</sub>Me<sub>5</sub>), 131.0 (s, [Ph<sub>3</sub>C]<sup>+</sup>), 124.3 (b(m), C<sub>6</sub>F<sub>5</sub>), 10.5 (s, C<sub>5</sub>Me<sub>5</sub>).



Figure S16. <sup>1</sup>H NMR spectrum of crude reaction product of 1 tol with Ph<sub>3</sub>CCI (500





**Figure S17.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of crude reaction product of  $1 \cdot \text{tol}$  with Ph<sub>3</sub>CCI (126 MHz, CD<sub>2</sub>Cl<sub>2</sub>).

**The reaction of 1·tol with 1,2-Bis(diphenylphosphino)ethane (dppe): 1**·tol (18.0 mg, 0.01 mmol) and dppe (6.0 mg, 0.015 mmol) were mixed in DFB (0.6 mL) to give a clear pale yellow solution. The reaction solution was sealed in an NMR tube and monitored by <sup>31</sup>P NMR spectroscopy. Black precipitate was generated from the reaction solution at room temperature overnight. After 20 hours, the <sup>31</sup>P NMR spectra didn't change dramatically. After 2 days, the mixture was filtered, and

to the filtrate, *n*-pentane (3 mL) was added with rigorous stirring to give pale yellow precipitate. The supernatant was removed, and the pale yellow solid was washed with *n*-pentane (2 mL) and dried under vacuum to give a pale yellow solid containing  $[(Cp^*)_2(dppe)][B(C_6F_5)_4]_2,$  $[(Cp^*)(dppe)][B(C_6F_5)_4]$ and  $[(dppe)H][B(C_6F_5)_4]$ . <sup>31</sup>P{<sup>1</sup>H} NMR (243 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  (ppm) 36.7 (s,  $[(Cp*Sb)(dppe)][B(C_6F_5)_4]_2$  (proposed)); 29.9 (s,  $[(Cp*)_2(dppe)][B(C_6F_5)_4]_2$ ); 31.0, -12.1 (d,  ${}^{2}J_{P-P}$  = 42 Hz, [(Cp\*)(*dppe*)][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]); 10.1, -14.9 (d,  ${}^{2}J_{P-P}$  = 45 Hz,  $[(dppe)H][B(C_6F_5)_4]$ ). <sup>31</sup>P NMR (243 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  (ppm) 36.7 (m,  $[(Cp*Sb)(dppe)][B(C_6F_5)_4]_2$  (proposed)); 29.9 (m,  $[(Cp*)_2(dppe)][B(C_6F_5)_4]_2$ ); 31.0, -12.1 (m, [(Cp\*)(*dppe*)][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]); 10.2 (d(m), <sup>1</sup>J<sub>P-H</sub> = 478 Hz), -14.9 (m)  $([(dppe)H][B(C_6F_5)_4])$ . MS (ESI)  $[(Cp^*)(dppe)]^+$ : [M]  $C_{36}H_{39}P_2^+$  calc. 533.2522 m/z; found 533.2516 m/z; [(dppe)H]<sup>+</sup>: [M] C<sub>26</sub>H<sub>25</sub>P<sub>2</sub><sup>+</sup> calc. 399.1426 m/z; found 399.1423 m/z.



**Figure S18.** <sup>31</sup>P{<sup>1</sup>H} NMR spectra of reaction solution of **1**·tol with dppe (1:1.5) at different time (126 MHz, DFB).



**Figure S19.** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of crude reaction product of **1**·tol with dppe (1:1.5) (243 MHz, CD<sub>2</sub>Cl<sub>2</sub>).



**Figure S20.** <sup>31</sup>P NMR spectrum of crude reaction product of  $1 \cdot \text{tol}$  with dppe (1:1.5) (243 MHz, CD<sub>2</sub>Cl<sub>2</sub>).



**Figure S21.** Comparison <sup>1</sup>H NMR spectra of crude reaction product of **1**·tol with dppe (1:1.5) and pure  $[(Cp^*)_2(dppe)][B(C_6F_5)_4]_2$  (600 MHz,  $CD_2Cl_2$ ).

The reaction of 1·tol with BAC: DFB (0.5 mL) solution of 1·tol (18.0 mg, 0.01 mmol) and toluene (0.5 mL) solution of BAC (7.1 mg, 0.03 mmol) were mixed at room temperature. The reaction solution was layered by 3 mL of pentane and stood at -35 °C overnight to give yellow crystals in red oil. The supernatant was removed. It was difficult to sperate clean crystals from the oil. The residue was washed with *n*-pentane (2 mL) and dried under vacuum to give a yellow solid containing **4** ([(BAC)<sub>2</sub>Sb][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]), [(BAC)H][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] and some unidentified byproducts. Attempts to isolate pure **4** failed, and more work-up led to more decompostion of **4** to [(BAC)H][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]. <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>CN): δ (ppm) [(BAC)H][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]: 7.23 (s, (BAC)H), 3.99 (sept, <sup>3</sup>J<sub>H-H</sub> = 8 Hz, CHMe<sub>2</sub>), 3.89 (sept, <sup>3</sup>J<sub>H-H</sub> = 8 Hz, CHMe<sub>2</sub>), 1.31 (d, <sup>3</sup>J<sub>H-H</sub> = 8 Hz, CHMe<sub>2</sub>), 1.30 (d, <sup>3</sup>J<sub>H-H</sub> = 8 Hz, CHMe<sub>2</sub>), 4.09 (sept, <sup>3</sup>J<sub>H-H</sub> = 8 Hz, CHMe<sub>2</sub>), 1.41-1.23 (m, CHMe<sub>2</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, Che MHz, C

CD<sub>3</sub>CN):  $\delta$  (ppm) [B( $C_6F_5$ )<sub>4</sub>]: 149.1 (d(m),  ${}^1J_{C-F}$  = 239 Hz), 139.3 (d(m),  ${}^1J_{C-F}$  = 246 Hz), 137.3 (d(m),  ${}^1J_{C-F}$  = 242 Hz,  $C_6F_5$ ), 126.2 (t,  ${}^2J_{F-C}$  = 5 Hz); toluene-C: 138.9, 129.9, 129.2, 126.3, 12.8; [(BAC)H]<sup>+</sup>-C: 135.2, 58.5, 49.1, 20.9, 20.6; **4**<sup>+</sup>-C: 145.0, 109.7, 53.4 (br), 21.8, 21.6. MS (ESI) [(BAC)H]<sup>+</sup>: [M] C<sub>15</sub>H<sub>29</sub>N<sub>2</sub><sup>+</sup> calc. 237.2325 m/z; found 237.2334 m/z.



**Figure S22.** <sup>1</sup>H NMR spectrum of crude product of the reaction of **1** tol with BAC (500 MHz, CD<sub>3</sub>CN).



S17

**Figure S23.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of crude product of the reaction of  $1 \cdot \text{tol}$  with BAC (500 MHz, CD<sub>3</sub>CN).

Generation of 5: DFB (0.5 mL) solution of 1 tol (36.0 mg, 0.02 mmol) was added into toluene (0.5 mL) solution of bipy (6.2 mg, 0.04 mmol) at room temperature, and the mixture was stirred for 3 hours. To the reaction solution, *n*-pentane (4 mL) was added with rigorous stirring to give a pale yellow precipitate. The supernatant was removed, and the residue was washed with *n*-pentane (2 mL  $\times$  2) and dried under vacuum to give **5** as a pale yellow solid (35.8 mg, 93%). <sup>1</sup>**H NMR** (500 MHz, CD<sub>3</sub>CN):  $\delta$  (ppm) 8.68 (d(m),  ${}^{3}J_{H-H}$  = 5 Hz, 4H, bipy-H), 8.51 (d(m),  ${}^{3}J_{H-H}$  = 8 Hz, 4H, bipy-*H*), 8.26 (td,  ${}^{3}J_{H-H}$  = 8 Hz,  ${}^{4}J_{H-H}$  = 2 Hz, 4H, bipy-*H*), 7.77 (ddd,  ${}^{3}J_{H-H}$  = 8 Hz,  ${}^{3}J_{H-H} = 5$  Hz,  ${}^{4}J_{H-H} = 1$  Hz, 4H, bipy-H), 2.20-1.97 (br, 15H, C<sub>5</sub>Me<sub>5</sub>).  ${}^{13}C{}^{1}H{}$ **NMR** (126 MHz, CD<sub>3</sub>CN):  $\delta$  (ppm) 152.0 (s, bipy-C), 149.1 (d(m),  ${}^{1}J_{C-F}$  = 239 Hz,  $C_6F_5$ ), 148.4 (s, bipy-C), 142.7 (s, bipy-C), 139.3 (d(m),  ${}^1J_{C-F}$  = 244 Hz,  $C_6F_5$ ), 137.3  $(d(m), {}^{1}J_{C-F} = 245 \text{ Hz}, C_{6}F_{5}), 128.3 \text{ (s, bipy-C)}, 127.6 \text{ (s, } C_{5}Me_{5}), 127.4 \text{ (s, } C_{5}Me_{5}),$ 126.1 (t,  ${}^{2}J_{F-C} = 5$  Hz,  $C_{6}F_{5}$ ), 124.4 (s, bipy-C), 10.7 (s,  $C_{5}Me_{5}$ ), 10.1 (s,  $C_{5}Me_{5}$ ), 34.9, 23.1, 14.3 (pentane-C). <sup>19</sup>F NMR (377 MHz, CD<sub>3</sub>CN): δ (ppm) -133.8 (m,  $C_6F_5$ ), -163.9 (t,  ${}^{3}J_{F-F}$  = 20 Hz,  $C_6F_5$ ), -168.3 (t,  ${}^{3}J_{F-F}$  = 17 Hz,  $C_6F_5$ ). <sup>11</sup>B{<sup>1</sup>H} NMR (128 MHz, CD<sub>3</sub>CN): δ (ppm) -16.8 (s).



Figure S24. <sup>1</sup>H NMR spectrum of 5 (500 MHz, CD<sub>3</sub>CN).



Figure S25. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 5 (128 MHz, CD<sub>3</sub>CN).







Figure S27. <sup>11</sup>B $^{1}$ H} NMR spectrum of 5 (128 MHz, CD<sub>3</sub>CN).

The synthesis of 6: DFB (0.5 mL) solution of 1 tol (36.0 mg, 0.02 mmol) was added into DFB (0.5 mL) solution of bipy (6.9 mg, 0.044 mmol) at room temperature, and the mixture was stirred for 10 minutes. To the reaction solution, DFB (1 mL) solution of [Bu<sub>4</sub>N][OTf] (23.5 mg, 0.06 mmol) was added at room temperature, and the mixture was stirred for 2 hours to give a pale yellow turbid solution. The mixture was filtered, and the residue was washed with DFB (0.5 mL) and dried under vacuum to give **6** ([(bipy)<sub>2</sub>Sb][OTf]<sub>3</sub>) as a white solid (9.8 mg, 56% yield). Single crystals of **6** were obtained by slow diffusion of diethyl ether into a acetonitrile solution at room temperature. <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>CN): δ (ppm) 8.85 (m, 4H, bipy-*H*), 8.75 (m, 4H, bipy-*H*), 8.59 (t, <sup>3</sup>J<sub>H-H</sub> = 7 Hz, 4H, bipy-*H*), 8.03 (m, 4H, bipy-*H*). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CD<sub>3</sub>CN): δ (ppm) 149.3 (br, bipy-*C*), 149.1 (m, bipy-*C*), 146.9 (m, bipy-*C*), 131.2 (m, bipy-*C*), 126.9 (m, bipy-*C*), 121.2 (q, <sup>1</sup>J<sub>F-C</sub> = 320 Hz, CF<sub>3</sub>SO<sub>3</sub>). <sup>19</sup>F NMR (377 MHz, CD<sub>3</sub>CN): δ (ppm) -79.3 (s, CF<sub>3</sub>SO<sub>3</sub>). Elem. Anal. Found (Calc'd) for C<sub>23</sub>H<sub>16</sub>N<sub>4</sub>O<sub>9</sub>F<sub>9</sub>S<sub>3</sub>Sb: C 31.19 (31.34), H 1.81 (1.83), N 6.34 (6.36).



Figure S28. <sup>1</sup>H NMR spectrum of 6 (500 MHz, CD<sub>3</sub>CN).



Figure S29. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 6 (128 MHz,  $CD_3CN$ ).



Figure S30. <sup>19</sup>F NMR spectrum of 6 (377 MHz, CD<sub>3</sub>CN).

### 3. Crystallographic Details

Single crystals were coated with Paratone-N oil, mounted using a glass fibre pin and frozen in the cold nitrogen stream of the goniometer. Data sets were collected on a Siemens Smart System CCD diffractometer which was equipped with a rotation anode using graphite-monochromated MoK $\alpha$  radiation ( $\lambda$  = 0.71073 Å). Data reduction was performed using the Bruker SMART software package. Data sets were corrected for absorption effects using SADABS routine (empirical multiscan method). The structures were solved by direct methods and refined on *F*<sup>2</sup> by full-matrix least-squares techniques with anisotropic thermal parameters for nonhydrogen atoms. Hydrogen atoms were placed at calculated positions and were included in the structure calculation. Calculations were carried out using the SHELXL-97, SHELXL-2014 or Olex2 program.<sup>[S4]</sup> CCDC deposition numbers for **1**, **4** and **6** are CCDC 1993358-1993360. The crystallography data of **3** is consistent with literature.<sup>[S4]</sup> For the crystallography data of **6**, a level B alert was flagged by checkCIF for short distance of O4 and N1. We contribute this alert were caused from the electrostatic interaction between the triflate anion and the cation.



**Figure S31.** POV-ray depictions of the cation of **3**; C: black; Sb: brown; CI: aquamarine. All H atoms and the  $[B(C_6F_5)_4]^-$  anions are omitted for clarity.

|                                            | 1.2toluene                | 0.5 <b>3</b>              |
|--------------------------------------------|---------------------------|---------------------------|
| formula                                    | $C_{79}H_{39}B_2F_{40}Sb$ | $C_{34}H_{15}BF_{20}SbCI$ |
| formula Mass                               | 1891.47                   | 971.47                    |
| color                                      | yellow                    | yellow                    |
| cryst system                               | Monoclinic                | Triclinic                 |
| space group                                | P2 <sub>1</sub> /c        | PĪ                        |
| <i>a</i> , Å                               | 16.5682(4)                | 10.6109(7)                |
| b, Å                                       | 15.2566(4)                | 12.6652(9)                |
| <i>c</i> , Å                               | 28.2917(7)                | 12.8705(8)                |
| α, deg                                     | 90                        | 90.720(3)                 |
| β, deg                                     | 90.0060(10)               | 96.504(2)                 |
| γ, deg                                     | 90                        | 104.570(2)                |
| <i>V</i> , Å <sup>3</sup>                  | 7151.4(3)                 | 1661.74(19)               |
| Z                                          | 4                         | 2                         |
| $D_{\text{calcd}}$ , (mg/m <sup>3</sup> )  | 1.757                     | 1.942                     |
| <i>F</i> (000)                             | 3736                      | 944                       |
| <i>T</i> (K)                               | 150(2)                    | 150(2)                    |
| heta range, deg                            | 2.316 to 26.737           | 3.163 to 30.678           |
| no. of independent reflns                  | 15155                     | 10203                     |
| No. of params                              | 1095                      | 519                       |
| final $R_1$ , $wR$ (I > 2 $\sigma$ (I))    | 0.0484, 0.0992            | 0.0341, 0.0740            |
| goodness of fit on <i>F</i> <sup>2</sup>   | 1.022                     | 1.022                     |
| $\Delta  ho_{max, min}$ , eÅ <sup>-3</sup> | 1.012, -1.242             | 0.873, -1.076             |

Table S1 Crystallographic data and refinement parameters for 1, 3, 4 and 6.

|                                           | 4-toluene                  | <b>6</b> ∙0.5Et <sub>2</sub> O   |
|-------------------------------------------|----------------------------|----------------------------------|
| formula                                   | $C_{61}H_{64}BF_{20}N_4Sb$ | $C_{25}H_{21}S_3F_9N_4O_{9.5}Sb$ |
| formula Mass                              | 1365.72                    | 918.39                           |
| color                                     | yellow                     | colorless                        |
| cryst system                              | Monoclinic                 | Triclinic                        |
| space group                               | P2/n                       | PĪ                               |
| <i>a</i> , Å                              | 19.218(3)                  | 9.1010(4)                        |
| b, Å                                      | 8.3161(12)                 | 13.2750(6)                       |
| <i>c</i> , Å                              | 20.922(3)                  | 13.8328(6)                       |
| α, deg                                    | 90                         | 81.615(2)                        |
| β, deg                                    | 111.897(4)                 | 86.390(2)                        |
| γ, deg                                    | 90                         | 84.352(2)                        |
| <i>V</i> , Å <sup>3</sup>                 | 3102.5(7)                  | 1643.32(13)                      |
| Z                                         | 2                          | 2                                |
| D <sub>calcd</sub> , (mg/m <sup>3</sup> ) | 1.462                      | 1.856                            |
| <i>F</i> (000)                            | 1388                       | 910                              |
| <i>Т</i> (К)                              | 150(2)                     | 150(2)                           |
| heta range, deg                           | 1.816 to 26.371            | 2.619 to 27.103                  |
| no. of independent reflns                 | 6332                       | 7241                             |
| No. of params                             | 422                        | 485                              |
| final $R_1$ , $wR$ (I > 2 $\sigma$ (I))   | 0.0385, 0.0944             | 0.0325, 0.0900                   |
| goodness of fit on <i>F</i> <sup>2</sup>  | 1.086                      | 1.029                            |
| Δρ <sub>max, min</sub> , eÅ <sup>-3</sup> | 0.468, -0.725              | 2.212, -1.143                    |

### 4. Computational Details

All geometry optimizations were performed using the Gaussian 09 package<sup>[S5]</sup> with the functional M06-2X with the basis set of def2-SVP.<sup>[S5]</sup> Frequency calculations at the same level of theory were performed to identify the number of imaginary frequencies (zero for local minimum and one for transition states) and provide the thermal corrections of Gibbs free energy. Transition states were submitted to intrinsic reaction coordinate (IRC) calculations to determine two corresponding minima. The single-point energy calculations were performed at the M06-2X/def2-TZVP level of theory for solution-phase (fluorobenzene). The gas-phase geometry was used for all the solution phase calculations. The SMD method was used with the corresponding solvent, while Bondi radii<sup>[S7]</sup> were chosen as the atomic radii to define the molecular cavity. The corrections of Gibbs free energy or enthalpy from frequency calculations were added to the single-point energies to obtain the Gibbs free energy or enthalpy in solution, respectively. All the energies reported in the paper correspond to the reference state of 1 mol/L, 298K.

Intrinsic bond orbitals (IBOs) were carried out using ORCA program at the PBE/def2-TZVP level.<sup>[S8]</sup> The EDA-NOCV and dual descriptor calculations were carried out with the M06-2X/TZP level using ADF/2019.103 on Graham.<sup>[S9]</sup> The relativistic scalar effect was included by using the zeroth-order regular approximation (ZORA) and the integration grid of Becke Good was employed. NBO calculations were carried out using NBO 6.0 program<sup>[S10]</sup> at the M06-2X/def2-TZVP level of theory. Optimized structures with orbitals were visualized by the Chemcraft<sup>[S11]</sup> or IBOview program.<sup>[S12]</sup>

A relaxed potential energy surface scan was performed with a step size of 0.1 angstroms for the dissociation of a BAC molecule from **IN1** or **IN2**. The energies increase continually, suggesting the dissociation/approach of the BAC ligand with  $[(\eta^{5}-Cp^{*})Sb(tol)]^{2+}$  or **IN1** has no transition state.



Figure S32. Free energy profile (kcal mol<sup>-1</sup>) for the formation of **4**.

| Species                                      | Thermal Corrections of | Solvation Energies |
|----------------------------------------------|------------------------|--------------------|
|                                              | Gibbs Free Energies    | (Hartree)          |
|                                              | (Hartree)              |                    |
| [(η <sup>5</sup> -Cp*)Sb(tol)] <sup>2+</sup> | 0.300628               | -901.4079561       |
| BAC                                          | 0.359036               | -697.8068152       |
| tol                                          | 0.09867                | -271.5440405       |
| IN1                                          | 0.562965               | -1327.738085       |
| IN2                                          | 0.955728               | -2025.618476       |
| TS1                                          | 1.329665               | -2723.399282       |
| [(BAC)₂Sb]⁺                                  | 0.738876               | -1635.735192       |
| [(BAC)H]⁺                                    | 0.372694               | -698.2948355       |
| tetramethylfulvene                           | 0.17261                | -389.4269247       |

 Table S2. Energies of Intermediates and Transition States.

Cartesian Coordinates:

[(η<sup>5</sup>-Cp\*)Sb(tol)]<sup>2+</sup>:

| 51 | -3.394018 | -2.959029 | -1.823535 |
|----|-----------|-----------|-----------|
| 6  | -2.805591 | -4.694484 | -0.193434 |

| 6 | -2.209192 | -5.103971 | -1.436244 |
|---|-----------|-----------|-----------|
| 6 | -1.247341 | -4.102390 | -1.828664 |
| 6 | -1.246474 | -3.058084 | -0.818120 |
| 6 | -2.216059 | -3.425519 | 0.195640  |
| 6 | -3.751995 | -5.501852 | 0.632658  |
| 1 | -4.385493 | -4.875092 | 1.271909  |
| 1 | -3.161418 | -6.157692 | 1.293514  |
| 1 | -4.390537 | -6.146363 | 0.016517  |
| 6 | -2.450401 | -6.400870 | -2.138051 |
| 1 | -3.462747 | -6.783661 | -1.961058 |
| 1 | -1.741160 | -7.149071 | -1.748312 |
| 1 | -2.284171 | -6.322372 | -3.219195 |
| 6 | -0.299960 | -4.203983 | -2.978154 |
| 1 | -0.732020 | -4.758671 | -3.819810 |
| 1 | 0.592169  | -4.757781 | -2.641835 |
| 1 | 0.035927  | -3.221200 | -3.329886 |
| 6 | -0.289809 | -1.912926 | -0.739887 |
| 1 | 0.038109  | -1.579667 | -1.732127 |
| 1 | 0.606434  | -2.244794 | -0.190551 |
| 1 | -0.710526 | -1.059902 | -0.192957 |
| 6 | -2.432690 | -2.717463 | 1.493547  |
| 1 | -2.262158 | -1.637173 | 1.406456  |
| 1 | -1.708956 | -3.106648 | 2.228275  |
| 1 | -3.437690 | -2.892829 | 1.896269  |
| 6 | -5.261202 | -0.602146 | -1.211113 |
| 6 | -3.946061 | -0.131039 | -1.416843 |
| 1 | -3.400018 | 0.309956  | -0.578092 |

| 6 | -3.363333 | -0.140776 | -2.697647 |
|---|-----------|-----------|-----------|
| 1 | -2.365537 | 0.280238  | -2.842268 |
| 6 | -4.079766 | -0.643410 | -3.792470 |
| 1 | -3.643133 | -0.623916 | -4.792675 |
| 6 | -5.379313 | -1.132131 | -3.597473 |
| 1 | -5.953247 | -1.506477 | -4.447578 |
| 6 | -5.957214 | -1.116950 | -2.324522 |
| 1 | -6.980273 | -1.478087 | -2.193591 |
| 6 | -5.927065 | -0.486255 | 0.129268  |
| 1 | -6.621779 | -1.315674 | 0.315200  |
| 1 | -6.521181 | 0.441305  | 0.154372  |
| 1 | -5.198414 | -0.424762 | 0.947639  |

# BAC:

| 6 | 5.226360 | 0.750853  | 17.644298 |
|---|----------|-----------|-----------|
| 1 | 5.080184 | 0.223550  | 18.599698 |
| 6 | 6.716774 | 2.480174  | 16.861324 |
| 6 | 7.484748 | 3.448127  | 16.288736 |
| 6 | 8.712868 | 5.116796  | 15.050921 |
| 1 | 9.538580 | 5.806609  | 15.283643 |
| 6 | 5.598881 | -0.277650 | 16.579454 |
| 1 | 4.788010 | -1.009469 | 16.452981 |
| 1 | 6.514501 | -0.816985 | 16.862478 |
| 1 | 5.771041 | 0.226104  | 15.617576 |
| 6 | 3.934070 | 1.487680  | 17.300166 |
| 1 | 4.058696 | 2.040414  | 16.358160 |
| 1 | 3.670328 | 2.201026  | 18.094316 |

| 1 | 3.106587  | 0.773277  | 17.182536 |
|---|-----------|-----------|-----------|
| 6 | 10.728427 | 4.314582  | 17.267961 |
| 1 | 11.173757 | 4.960488  | 16.495912 |
| 1 | 10.844480 | 3.268809  | 16.950868 |
| 1 | 11.297635 | 4.465114  | 18.196544 |
| 6 | 6.964947  | 1.760173  | 19.191069 |
| 1 | 7.741811  | 2.531945  | 19.097325 |
| 6 | 5.983470  | 2.210701  | 20.271885 |
| 1 | 5.176272  | 1.474893  | 20.408052 |
| 1 | 5.529291  | 3.174887  | 20.004149 |
| 1 | 6.498099  | 2.321318  | 21.237173 |
| 6 | 7.495675  | 5.943675  | 14.643030 |
| 1 | 7.719572  | 6.536314  | 13.744295 |
| 1 | 7.204192  | 6.630180  | 15.450968 |
| 1 | 6.648041  | 5.278752  | 14.424314 |
| 6 | 9.253634  | 4.650181  | 17.485161 |
| 1 | 8.863097  | 3.972299  | 18.256968 |
| 6 | 9.056765  | 6.083357  | 17.977198 |
| 1 | 9.606363  | 6.246692  | 18.915357 |
| 1 | 7.991815  | 6.287846  | 18.155215 |
| 1 | 9.430278  | 6.812442  | 17.242073 |
| 6 | 7.652755  | 0.443976  | 19.550507 |
| 1 | 8.179848  | 0.535305  | 20.511046 |
| 1 | 8.380707  | 0.164460  | 18.776208 |
| 1 | 6.921919  | -0.373230 | 19.648369 |
| 6 | 9.168985  | 4.180732  | 13.934165 |
| 1 | 8.368252  | 3.466366  | 13.695641 |

| 1 | 10.062718 | 3.617050 | 14.239039 |
|---|-----------|----------|-----------|
| 1 | 9.410342  | 4.754756 | 13.027944 |
| 6 | 6.495970  | 2.818973 | 15.517814 |
| 7 | 6.330113  | 1.696819 | 17.875851 |
| 7 | 8.454011  | 4.371547 | 16.293683 |

tol:

| 6 | -0.294043 | 0.343601  | -0.015159 |
|---|-----------|-----------|-----------|
| 6 | 1.105514  | 0.364481  | -0.000695 |
| 6 | 1.804917  | 1.569656  | 0.012079  |
| 6 | 1.114458  | 2.781053  | 0.008663  |
| 6 | -0.279278 | 2.774938  | -0.008957 |
| 6 | -0.974006 | 1.566292  | -0.021670 |
| 1 | 1.654998  | -0.580043 | -0.001986 |
| 1 | 2.896198  | 1.562527  | 0.021199  |
| 1 | 1.661095  | 3.725232  | 0.015920  |
| 1 | -0.831049 | 3.716554  | -0.016475 |
| 1 | -2.066413 | 1.570100  | -0.039594 |
| 6 | -1.046276 | -0.961769 | 0.002348  |
| 1 | -0.508658 | -1.739150 | -0.557410 |
| 1 | -1.173059 | -1.326349 | 1.033618  |
| 1 | -2.047382 | -0.850859 | -0.435284 |

# **IN1**:

| 51 | -3.032036 | -1.527381 | -1.398180 |
|----|-----------|-----------|-----------|
| 6  | -2.774970 | -4.263516 | -0.474475 |
| 6  | -2.106768 | -4.139829 | -1.688389 |

| 6 | -1.185734 | -2.997325 | -1.612216 |
|---|-----------|-----------|-----------|
| 6 | -1.269584 | -2.468842 | -0.257851 |
| 6 | -2.308014 | -3.227433 | 0.412483  |
| 6 | -3.827624 | -5.256474 | -0.095595 |
| 1 | -4.778168 | -4.761030 | 0.152086  |
| 1 | -3.515252 | -5.829052 | 0.790076  |
| 1 | -4.018591 | -5.971457 | -0.903368 |
| 6 | -2.234325 | -5.000324 | -2.900327 |
| 1 | -3.123294 | -5.639067 | -2.857559 |
| 1 | -1.352231 | -5.655839 | -2.982571 |
| 1 | -2.280284 | -4.403046 | -3.821331 |
| 6 | -0.054352 | -2.782358 | -2.570847 |
| 1 | -0.374867 | -2.910214 | -3.612823 |
| 1 | 0.721340  | -3.538564 | -2.368177 |
| 1 | 0.406419  | -1.793905 | -2.460768 |
| 6 | -0.269510 | -1.566173 | 0.400893  |
| 1 | 0.159181  | -0.846713 | -0.308934 |
| 1 | 0.554391  | -2.176437 | 0.802403  |
| 1 | -0.712603 | -1.008171 | 1.235827  |
| 6 | -2.675225 | -3.126921 | 1.853135  |
| 1 | -2.388520 | -2.167704 | 2.299829  |
| 1 | -2.137319 | -3.921478 | 2.398087  |
| 1 | -3.747464 | -3.301418 | 2.011725  |
| 7 | -1.187737 | 2.238460  | -2.958886 |
| 7 | -3.198255 | 2.497098  | 0.135835  |
| 6 | -1.841008 | 1.689074  | -1.973642 |
| 6 | -2.615397 | 1.794984  | -0.795318 |

| 6 | -2.343131 | 0.548789  | -1.353363 |
|---|-----------|-----------|-----------|
| 6 | -1.197710 | 3.711974  | -3.174292 |
| 1 | -1.816985 | 4.109114  | -2.359564 |
| 6 | -2.981447 | 3.964432  | 0.264217  |
| 1 | -2.204538 | 4.198668  | -0.475338 |
| 6 | -4.116224 | 1.826660  | 1.092487  |
| 1 | -4.461236 | 2.625579  | 1.761007  |
| 6 | -3.378214 | 0.792300  | 1.932596  |
| 1 | -3.020466 | -0.044633 | 1.309122  |
| 1 | -4.054762 | 0.376531  | 2.691329  |
| 1 | -2.513467 | 1.236638  | 2.444420  |
| 6 | -4.252940 | 4.728128  | -0.080804 |
| 1 | -4.602600 | 4.487211  | -1.094838 |
| 1 | -4.061189 | 5.808268  | -0.029856 |
| 1 | -5.061487 | 4.506750  | 0.631771  |
| 6 | -1.887035 | 4.053912  | -4.491273 |
| 1 | -1.301060 | 3.727469  | -5.362312 |
| 1 | -1.996025 | 5.144127  | -4.567858 |
| 1 | -2.888561 | 3.605730  | -4.548803 |
| 6 | 0.203282  | 4.297370  | -3.066843 |
| 1 | 0.668216  | 4.060601  | -2.099575 |
| 1 | 0.149170  | 5.390005  | -3.163513 |
| 1 | 0.856160  | 3.932982  | -3.873700 |
| 6 | -5.332717 | 1.258878  | 0.372651  |
| 1 | -5.849404 | 2.033179  | -0.209909 |
| 1 | -6.042712 | 0.845170  | 1.101066  |
| 1 | -5.052512 | 0.444513  | -0.316204 |

| 6 | -2.425568 | 4.313692  | 1.640328  |
|---|-----------|-----------|-----------|
| 1 | -3.161276 | 4.149768  | 2.440372  |
| 1 | -2.163835 | 5.380131  | 1.659288  |
| 1 | -1.517659 | 3.737552  | 1.865867  |
| 6 | -0.416732 | 1.387616  | -3.900492 |
| 1 | -0.150721 | 2.052873  | -4.732073 |
| 6 | 0.862721  | 0.900781  | -3.229858 |
| 1 | 1.515156  | 1.737932  | -2.950796 |
| 1 | 1.423085  | 0.240406  | -3.906044 |
| 1 | 0.621923  | 0.339328  | -2.313105 |
| 6 | -1.262076 | 0.252917  | -4.465765 |
| 1 | -1.430943 | -0.533318 | -3.711233 |
| 1 | -0.730960 | -0.217368 | -5.304260 |
| 1 | -2.231273 | 0.616061  | -4.835707 |

### **IN2**:

| 6 | 6.364164 | -0.818767 | -1.642978 |
|---|----------|-----------|-----------|
| 6 | 5.991786 | -1.253590 | -2.874048 |
| 6 | 6.752211 | -0.517078 | -3.903946 |
| 6 | 7.619348 | 0.339754  | -3.306215 |
| 6 | 7.460493 | 0.197195  | -1.818312 |
| 6 | 5.963528 | -1.346055 | -0.298884 |
| 1 | 5.641949 | -0.549134 | 0.396790  |
| 1 | 6.796736 | -1.875110 | 0.191182  |
| 1 | 5.131478 | -2.056638 | -0.378110 |
| 6 | 5.077238 | -2.385783 | -3.220860 |
| 1 | 4.581611 | -2.808490 | -2.338716 |

| 1 | 5.649418  | -3.196592 | -3.698365 |
|---|-----------|-----------|-----------|
| 1 | 4.305864  | -2.083045 | -3.945289 |
| 6 | 6.588863  | -0.772796 | -5.368067 |
| 1 | 5.563677  | -0.537686 | -5.697211 |
| 1 | 6.761672  | -1.833162 | -5.606615 |
| 1 | 7.281309  | -0.170700 | -5.969856 |
| 6 | 8.714676  | 1.125977  | -3.967808 |
| 1 | 8.369798  | 2.086175  | -4.381611 |
| 1 | 9.154402  | 0.556128  | -4.798383 |
| 1 | 9.529013  | 1.351819  | -3.262699 |
| 6 | 8.755891  | -0.275626 | -1.137142 |
| 1 | 9.608904  | 0.379268  | -1.358000 |
| 1 | 8.994287  | -1.276604 | -1.529710 |
| 1 | 8.657874  | -0.356893 | -0.043623 |
| 7 | 3.894072  | 4.948014  | -0.164138 |
| 7 | 10.309067 | 4.439229  | -1.785274 |
| 7 | 7.545038  | 4.937278  | -4.140046 |
| 7 | 2.428128  | 2.072733  | -1.819244 |
| 6 | 4.067036  | 3.767821  | -0.713619 |
| 6 | 3.510018  | 2.656264  | -1.372489 |
| 6 | 4.876873  | 2.702947  | -1.099548 |
| 6 | 7.880421  | 3.505764  | -1.974534 |
| 6 | 9.085526  | 4.166124  | -2.167724 |
| 6 | 2.617142  | 5.686202  | -0.344956 |
| 1 | 2.099528  | 5.163610  | -1.160135 |
| 6 | 10.752859 | 4.121134  | -0.404788 |
| 1 | 11.753528 | 4.565129  | -0.325995 |

| 6 | 8.021558  | 4.347525  | -3.071180 |
|---|-----------|-----------|-----------|
| 6 | 1.092195  | 2.681300  | -1.583031 |
| 1 | 1.263011  | 3.467512  | -0.837684 |
| 6 | 6.173118  | 4.649286  | -4.620692 |
| 1 | 6.106723  | 5.139390  | -5.600946 |
| 6 | 2.487651  | 0.790884  | -2.562073 |
| 1 | 1.485469  | 0.674290  | -2.995652 |
| 6 | 8.359480  | 5.941040  | -4.873937 |
| 1 | 9.212105  | 6.150396  | -4.215520 |
| 6 | 11.248389 | 5.154927  | -2.685622 |
| 1 | 10.759600 | 5.144748  | -3.669081 |
| 6 | 12.556871 | 4.385465  | -2.834287 |
| 1 | 13.141552 | 4.368189  | -1.903759 |
| 1 | 13.176913 | 4.876547  | -3.596162 |
| 1 | 12.374526 | 3.351560  | -3.158484 |
| 6 | 2.748202  | -0.367848 | -1.610667 |
| 1 | 3.741436  | -0.269689 | -1.150465 |
| 1 | 2.720950  | -1.317206 | -2.161596 |
| 1 | 1.989958  | -0.411182 | -0.818207 |
| 6 | 10.874006 | 2.622790  | -0.175408 |
| 1 | 9.881227  | 2.148604  | -0.155007 |
| 1 | 11.341620 | 2.429539  | 0.799440  |
| 1 | 11.483551 | 2.141597  | -0.952858 |
| 6 | 0.560234  | 3.306244  | -2.866741 |
| 1 | 1.263641  | 4.051286  | -3.267926 |
| 1 | -0.400464 | 3.803513  | -2.675813 |
| 1 | 0.388719  | 2.543302  | -3.640802 |

| 6 | 2.868570  | 7.111079  | -0.828451 |
|---|-----------|-----------|-----------|
| 1 | 3.355276  | 7.735072  | -0.065618 |
| 1 | 1.905417  | 7.583444  | -1.064074 |
| 1 | 3.483232  | 7.118042  | -1.739617 |
| 6 | 1.768197  | 5.627687  | 0.918702  |
| 1 | 1.572166  | 4.588448  | 1.221795  |
| 1 | 0.804493  | 6.127358  | 0.749958  |
| 1 | 2.263265  | 6.141284  | 1.756380  |
| 6 | 5.147476  | 5.282161  | -3.685066 |
| 1 | 5.294104  | 4.915345  | -2.658510 |
| 1 | 4.127231  | 5.025356  | -4.006046 |
| 1 | 5.240176  | 6.376792  | -3.677051 |
| 6 | 9.853224  | 4.799795  | 0.621774  |
| 1 | 9.792424  | 5.881681  | 0.438297  |
| 1 | 10.255517 | 4.642457  | 1.631558  |
| 1 | 8.834997  | 4.379286  | 0.599110  |
| 6 | 7.609856  | 7.255527  | -5.060388 |
| 1 | 6.751131  | 7.157116  | -5.739188 |
| 1 | 8.291441  | 7.991273  | -5.507912 |
| 1 | 7.262331  | 7.657862  | -4.098785 |
| 6 | 5.948953  | 3.160471  | -4.833477 |
| 1 | 6.672153  | 2.750759  | -5.552221 |
| 1 | 4.942980  | 2.999503  | -5.242270 |
| 1 | 6.028950  | 2.593153  | -3.892827 |
| 6 | 3.481994  | 0.881373  | -3.707848 |
| 1 | 3.234446  | 1.730226  | -4.360788 |
| 1 | 3.437872  | -0.036578 | -4.309402 |

| 1  | 4.513722  | 0.990803 | -3.341804 |
|----|-----------|----------|-----------|
| 6  | 0.119145  | 1.687667 | -0.956946 |
| 1  | -0.131928 | 0.860030 | -1.634744 |
| 1  | -0.817302 | 2.211969 | -0.723563 |
| 1  | 0.517573  | 1.272947 | -0.021092 |
| 6  | 11.449209 | 6.595266 | -2.233047 |
| 1  | 10.491625 | 7.133785 | -2.174703 |
| 1  | 12.101628 | 7.124532 | -2.940741 |
| 1  | 11.932199 | 6.640212 | -1.245404 |
| 6  | 4.918120  | 5.539713 | 0.731095  |
| 1  | 4.431907  | 6.425591 | 1.158910  |
| 6  | 8.867350  | 5.350643 | -6.183370 |
| 1  | 9.452945  | 4.436994 | -6.003702 |
| 1  | 9.507267  | 6.076293 | -6.703371 |
| 1  | 8.034585  | 5.101128 | -6.858250 |
| 6  | 5.252209  | 4.601619 | 1.884054  |
| 1  | 4.344918  | 4.318402 | 2.435283  |
| 1  | 5.934886  | 5.101117 | 2.584761  |
| 1  | 5.747618  | 3.683030 | 1.535605  |
| 6  | 6.141412  | 6.002949 | -0.047723 |
| 1  | 6.651762  | 5.151587 | -0.522954 |
| 1  | 6.856581  | 6.488265 | 0.630591  |
| 1  | 5.862909  | 6.720907 | -0.831625 |
| 51 | 6.920613  | 2.040179 | -0.680574 |

## **TS1**:

| -0.897555 | -1.489105 |
|-----------|-----------|
|           | -0.897555 |

| 6 | 6.252530  | -1.315232 | -2.729632 |
|---|-----------|-----------|-----------|
| 6 | 7.018585  | -0.554812 | -3.748019 |
| 6 | 7.860998  | 0.312331  | -3.126597 |
| 6 | 7.708394  | 0.104768  | -1.660698 |
| 6 | 6.191563  | -1.412132 | -0.150417 |
| 1 | 5.874494  | -0.602266 | 0.528746  |
| 1 | 7.018321  | -1.937730 | 0.352985  |
| 1 | 5.354465  | -2.117208 | -0.235548 |
| 6 | 5.314329  | -2.420903 | -3.098991 |
| 1 | 4.845105  | -2.877922 | -2.218026 |
| 1 | 5.854823  | -3.216985 | -3.635315 |
| 1 | 4.516490  | -2.076571 | -3.777012 |
| 6 | 6.862609  | -0.805955 | -5.213614 |
| 1 | 5.824241  | -0.629910 | -5.538639 |
| 1 | 7.095833  | -1.853905 | -5.458828 |
| 1 | 7.518286  | -0.165035 | -5.816429 |
| 6 | 8.957103  | 1.140073  | -3.717668 |
| 1 | 8.903179  | 2.192560  | -3.403309 |
| 1 | 8.933373  | 1.111912  | -4.814651 |
| 1 | 9.941190  | 0.757676  | -3.402206 |
| 6 | 8.912649  | -0.064199 | -0.878244 |
| 1 | 9.729171  | 0.638652  | -1.089478 |
| 1 | 9.328694  | -1.236023 | -1.384013 |
| 1 | 8.785696  | -0.255060 | 0.196368  |
| 7 | 3.683895  | 5.383573  | -0.299420 |
| 7 | 10.135536 | 4.770142  | -0.845228 |
| 7 | 7.817897  | 5.181184  | -3.658378 |

| 7 | 2.490618  | 2.262280  | -1.848841 |
|---|-----------|-----------|-----------|
| 6 | 3.916766  | 4.165517  | -0.736220 |
| 6 | 3.455951  | 2.986791  | -1.334709 |
| 6 | 4.788376  | 3.106410  | -0.963028 |
| 6 | 7.861669  | 3.673622  | -1.511192 |
| 6 | 9.029482  | 4.423535  | -1.465019 |
| 6 | 2.382183  | 6.039910  | -0.561405 |
| 1 | 1.898780  | 5.413284  | -1.323474 |
| 6 | 10.336334 | 4.408408  | 0.579355  |
| 1 | 11.246363 | 4.945781  | 0.877079  |
| 6 | 8.137060  | 4.572487  | -2.537403 |
| 6 | 1.088152  | 2.735310  | -1.857698 |
| 1 | 1.085293  | 3.633316  | -1.225030 |
| 6 | 6.616190  | 4.790713  | -4.432723 |
| 1 | 6.736237  | 5.284908  | -5.406481 |
| 6 | 2.813302  | 0.935309  | -2.421913 |
| 1 | 1.893444  | 0.611525  | -2.927605 |
| 6 | 8.665952  | 6.280837  | -4.178409 |
| 1 | 9.343293  | 6.532782  | -3.352553 |
| 6 | 11.140354 | 5.629064  | -1.512620 |
| 1 | 10.864423 | 5.616835  | -2.575984 |
| 6 | 12.539295 | 5.029109  | -1.412818 |
| 1 | 12.923340 | 5.034986  | -0.383125 |
| 1 | 13.231279 | 5.627201  | -2.020873 |
| 1 | 12.554818 | 3.997464  | -1.790054 |
| 6 | 3.149516  | -0.058154 | -1.317493 |
| 1 | 4.036984  | 0.276266  | -0.757472 |

| 1 | 3.384838  | -1.039367 | -1.751650 |
|---|-----------|-----------|-----------|
| 1 | 2.314010  | -0.175295 | -0.614643 |
| 6 | 10.577752 | 2.915919  | 0.751186  |
| 1 | 9.681573  | 2.338047  | 0.481849  |
| 1 | 10.812353 | 2.692521  | 1.800672  |
| 1 | 11.415369 | 2.573488  | 0.127839  |
| 6 | 0.659291  | 3.119301  | -3.269124 |
| 1 | 1.326761  | 3.885997  | -3.689070 |
| 1 | -0.364379 | 3.517473  | -3.259342 |
| 1 | 0.668438  | 2.246693  | -3.939620 |
| 6 | 2.573451  | 7.422613  | -1.176026 |
| 1 | 3.024200  | 8.133464  | -0.469030 |
| 1 | 1.594480  | 7.829106  | -1.463777 |
| 1 | 3.200581  | 7.371375  | -2.077175 |
| 6 | 1.517771  | 6.059927  | 0.693459  |
| 1 | 1.365923  | 5.043758  | 1.085834  |
| 1 | 0.534827  | 6.497132  | 0.470970  |
| 1 | 1.978701  | 6.669759  | 1.484984  |
| 6 | 5.353427  | 5.324305  | -3.766290 |
| 1 | 5.274202  | 4.926971  | -2.745060 |
| 1 | 4.463702  | 5.012673  | -4.332590 |
| 1 | 5.363540  | 6.421353  | -3.714888 |
| 6 | 9.185564  | 4.924311  | 1.436765  |
| 1 | 9.051196  | 6.006924  | 1.300437  |
| 1 | 9.396635  | 4.732832  | 2.497538  |
| 1 | 8.242293  | 4.413773  | 1.187306  |
| 6 | 7.852749  | 7.535069  | -4.481496 |

| 1 | 7.149814  | 7.387986 | -5.313813 |
|---|-----------|----------|-----------|
| 1 | 8.537171  | 8.342718 | -4.773643 |
| 1 | 7.291646  | 7.868028 | -3.597117 |
| 6 | 6.568137  | 3.290522 | -4.680731 |
| 1 | 7.472239  | 2.955570 | -5.206124 |
| 1 | 5.699000  | 3.049108 | -5.307841 |
| 1 | 6.478877  | 2.720542 | -3.742757 |
| 6 | 3.915885  | 1.045437 | -3.467380 |
| 1 | 3.683455  | 1.833510 | -4.198306 |
| 1 | 4.009819  | 0.092045 | -4.004642 |
| 1 | 4.893413  | 1.254631 | -3.003916 |
| 6 | 0.151120  | 1.723132 | -1.206855 |
| 1 | 0.076412  | 0.793326 | -1.788851 |
| 1 | -0.858312 | 2.151868 | -1.147669 |
| 1 | 0.477851  | 1.477542 | -0.187252 |
| 6 | 11.068911 | 7.058520 | -0.988626 |
| 1 | 10.059217 | 7.477919 | -1.114338 |
| 1 | 11.780458 | 7.698067 | -1.528642 |
| 1 | 11.328911 | 7.102820 | 0.079804  |
| 6 | 4.681002  | 6.079706 | 0.546270  |
| 1 | 4.165461  | 6.980338 | 0.905350  |
| 6 | 9.487769  | 5.802444 | -5.369382 |
| 1 | 10.098317 | 4.927912 | -5.100073 |
| 1 | 10.157584 | 6.601516 | -5.715250 |
| 1 | 8.840745  | 5.524058 | -6.214725 |
| 6 | 5.058326  | 5.239502 | 1.760771  |
| 1 | 4.165776  | 4.951614 | 2.333583  |

| 1  | 5.718165  | 5.817893  | 2.421925  |
|----|-----------|-----------|-----------|
| 1  | 5.595040  | 4.324080  | 1.466598  |
| 6  | 5.892639  | 6.508556  | -0.271806 |
| 1  | 6.419875  | 5.623833  | -0.659122 |
| 1  | 6.591156  | 7.075274  | 0.359591  |
| 1  | 5.595127  | 7.141723  | -1.119199 |
| 51 | 6.712727  | 2.116626  | -0.510955 |
| 6  | 8.641238  | -4.906098 | -0.043884 |
| 1  | 8.560079  | -5.901260 | 0.414948  |
| 6  | 10.098163 | -3.916255 | -1.679246 |
| 6  | 10.840277 | -3.238419 | -2.630323 |
| 6  | 11.945797 | -1.881130 | -4.275456 |
| 1  | 12.775276 | -2.040667 | -4.978664 |
| 6  | 7.338952  | -4.612342 | -0.784370 |
| 1  | 6.498006  | -4.568686 | -0.077499 |
| 1  | 7.129712  | -5.399418 | -1.522783 |
| 1  | 7.404718  | -3.648113 | -1.312685 |
| 6  | 8.943799  | -3.899512 | 1.061422  |
| 1  | 9.087867  | -2.892533 | 0.641818  |
| 1  | 9.857672  | -4.179432 | 1.603813  |
| 1  | 8.113488  | -3.863920 | 1.780795  |
| 6  | 12.342067 | -4.724197 | -5.407306 |
| 1  | 12.657401 | -3.934902 | -6.106300 |
| 1  | 11.277246 | -4.936172 | -5.577299 |
| 1  | 12.917680 | -5.627317 | -5.652174 |
| 6  | 10.438385 | -6.294475 | -1.193210 |
| 1  | 11.207813 | -6.104250 | -1.953428 |

| 6 | 11.137599 | -6.750276 | 0.083967  |
|---|-----------|-----------|-----------|
| 1 | 10.414771 | -6.957855 | 0.887183  |
| 1 | 11.843061 | -5.986774 | 0.439752  |
| 1 | 11.695235 | -7.678077 | -0.103298 |
| 6 | 12.354378 | -0.774894 | -3.307174 |
| 1 | 12.516010 | 0.166053  | -3.852499 |
| 1 | 13.286179 | -1.038397 | -2.787361 |
| 1 | 11.572766 | -0.613046 | -2.549345 |
| 6 | 12.595440 | -4.320674 | -3.957856 |
| 1 | 12.258976 | -5.141402 | -3.310371 |
| 6 | 14.072326 | -4.065957 | -3.671128 |
| 1 | 14.661327 | -4.964617 | -3.900028 |
| 1 | 14.228493 | -3.808748 | -2.614401 |
| 1 | 14.467524 | -3.247959 | -4.291933 |
| 6 | 9.478414  | -7.345934 | -1.742819 |
| 1 | 10.021450 | -8.278329 | -1.949134 |
| 1 | 9.012489  | -7.002953 | -2.677222 |
| 1 | 8.682470  | -7.582433 | -1.020960 |
| 6 | 10.694729 | -1.540646 | -5.082335 |
| 1 | 9.820805  | -1.440336 | -4.419516 |
| 1 | 10.484235 | -2.330496 | -5.817129 |
| 1 | 10.835006 | -0.594260 | -5.624283 |
| 6 | 9.860649  | -2.563377 | -1.908886 |
| 7 | 9.764978  | -4.999563 | -0.996318 |
| 7 | 11.771790 | -3.163674 | -3.568748 |

[(BAC)<sub>2</sub>Sb]+:

| 7 | 5.675661 | 3.629654  | 14.746880 |
|---|----------|-----------|-----------|
| 7 | 7.959146 | 3.443065  | 8.616253  |
| 7 | 6.049014 | 0.803022  | 10.338207 |
| 7 | 8.218839 | 1.744795  | 16.639567 |
| 6 | 6.836543 | 2.993138  | 14.793027 |
| 6 | 7.785262 | 2.284874  | 15.515832 |
| 6 | 8.002937 | 2.560675  | 14.166554 |
| 6 | 8.043716 | 2.370816  | 10.998104 |
| 6 | 7.723400 | 2.707962  | 9.685348  |
| 6 | 4.744530 | 3.546635  | 15.887500 |
| 1 | 5.100534 | 2.695253  | 16.485785 |
| 6 | 8.902569 | 4.579275  | 8.707059  |
| 1 | 8.831389 | 5.088151  | 7.735613  |
| 6 | 7.010390 | 1.710525  | 10.340426 |
| 6 | 7.520379 | 1.981789  | 17.916155 |
| 1 | 6.735776 | 2.715519  | 17.683562 |
| 6 | 6.038765 | -0.272292 | 11.354438 |
| 1 | 5.295886 | -0.996405 | 10.991064 |
| 6 | 9.431360 | 0.898212  | 16.619720 |
| 1 | 9.518159 | 0.499704  | 17.640402 |
| 6 | 5.070357 | 0.763012  | 9.235379  |
| 1 | 5.194856 | 1.720551  | 8.708986  |
| 6 | 7.270494 | 3.167317  | 7.341648  |
| 1 | 6.751103 | 2.211055  | 7.497468  |
| 6 | 8.262439 | 2.962548  | 6.200528  |
| 1 | 8.812962 | 3.884435  | 5.964309  |
| 1 | 7.720208 | 2.663200  | 5.293182  |

| 1 | 8.987112  | 2.174001  | 6.445107  |  |
|---|-----------|-----------|-----------|--|
| 6 | 10.678156 | 1.724784  | 16.322401 |  |
| 1 | 10.628387 | 2.169547  | 15.316875 |  |
| 1 | 11.572584 | 1.088294  | 16.357893 |  |
| 1 | 10.797688 | 2.535805  | 17.053453 |  |
| 6 | 10.335000 | 4.091383  | 8.893578  |  |
| 1 | 10.444910 | 3.558692  | 9.850360  |  |
| 1 | 11.026663 | 4.944444  | 8.908913  |  |
| 1 | 10.633094 | 3.415748  | 8.080577  |  |
| 6 | 6.860336  | 0.704797  | 18.425386 |  |
| 1 | 6.164173  | 0.297699  | 17.677841 |  |
| 1 | 6.301078  | 0.907697  | 19.349149 |  |
| 1 | 7.610352  | -0.067316 | 18.653688 |  |
| 6 | 3.329572  | 3.209253  | 15.428126 |  |
| 1 | 2.884881  | 4.020363  | 14.833397 |  |
| 1 | 2.685677  | 3.055844  | 16.304840 |  |
| 1 | 3.321731  | 2.287756  | 14.829397 |  |
| 6 | 4.802682  | 4.809648  | 16.741215 |  |
| 1 | 5.828841  | 5.003310  | 17.087291 |  |
| 1 | 4.151248  | 4.709592  | 17.620450 |  |
| 1 | 4.462581  | 5.688742  | 16.173243 |  |
| 6 | 5.584650  | 0.247038  | 12.713352 |  |
| 1 | 6.298835  | 0.992931  | 13.091414 |  |
| 1 | 5.540879  | -0.579884 | 13.436267 |  |
| 1 | 4.589666  | 0.709084  | 12.647843 |  |
| 6 | 8.469030  | 5.561010  | 9.790524  |  |
| 1 | 7.429252  | 5.882560  | 9.632067  |  |

| 1 | 9.114421  | 6.449878  | 9.769605  |
|---|-----------|-----------|-----------|
| 1 | 8.556064  | 5.106722  | 10.789465 |
| 6 | 3.640533  | 0.725447  | 9.766394  |
| 1 | 3.423804  | -0.212483 | 10.297766 |
| 1 | 2.933964  | 0.798364  | 8.928502  |
| 1 | 3.455430  | 1.566646  | 10.448889 |
| 6 | 7.390944  | -0.974074 | 11.421443 |
| 1 | 7.693760  | -1.334268 | 10.427888 |
| 1 | 7.330216  | -1.838064 | 12.097568 |
| 1 | 8.170362  | -0.296545 | 11.803624 |
| 6 | 9.256846  | -0.278984 | 15.665769 |
| 1 | 8.353778  | -0.853073 | 15.918900 |
| 1 | 10.124482 | -0.949429 | 15.735080 |
| 1 | 9.180851  | 0.065692  | 14.622920 |
| 6 | 8.447233  | 2.620010  | 18.946815 |
| 1 | 9.262151  | 1.942408  | 19.239965 |
| 1 | 7.878592  | 2.863223  | 19.854853 |
| 1 | 8.887874  | 3.547815  | 18.556325 |
| 6 | 6.236051  | 4.245834  | 7.037231  |
| 1 | 5.506983  | 4.333681  | 7.856157  |
| 1 | 5.693868  | 4.005947  | 6.112124  |
| 1 | 6.715519  | 5.226447  | 6.897481  |
| 6 | 5.380361  | 4.561496  | 13.638703 |
| 1 | 4.514067  | 5.145551  | 13.980770 |
| 6 | 5.371540  | -0.376796 | 8.267801  |
| 1 | 6.395299  | -0.297874 | 7.873270  |
| 1 | 4.669957  | -0.357686 | 7.422266  |

| 1  | 5.270356 | -1.354527 | 8.762436  |
|----|----------|-----------|-----------|
| 6  | 6.537964 | 5.527394  | 13.409751 |
| 1  | 6.794754 | 6.054546  | 14.339714 |
| 1  | 6.256513 | 6.275921  | 12.656089 |
| 1  | 7.434232 | 4.997546  | 13.051564 |
| 6  | 4.985394 | 3.808177  | 12.374059 |
| 1  | 5.810212 | 3.157252  | 12.053405 |
| 1  | 4.767761 | 4.515925  | 11.560871 |
| 1  | 4.094471 | 3.188488  | 12.547632 |
| 51 | 9.482410 | 2.562675  | 12.600904 |

[(BAC)H]+:

| 6 | 5.212675  | 0.729891  | 17.655277 |
|---|-----------|-----------|-----------|
| 1 | 5.099174  | 0.238781  | 18.630547 |
| 6 | 6.681552  | 2.454577  | 16.842919 |
| 6 | 7.485247  | 3.464292  | 16.244425 |
| 6 | 8.725710  | 5.138891  | 15.040583 |
| 1 | 9.553556  | 5.803775  | 15.318793 |
| 6 | 5.591997  | -0.328742 | 16.627368 |
| 1 | 4.793826  | -1.079371 | 16.554791 |
| 1 | 6.522034  | -0.840428 | 16.910339 |
| 1 | 5.725094  | 0.111288  | 15.627937 |
| 6 | 3.909124  | 1.447665  | 17.327831 |
| 1 | 3.965102  | 1.960566  | 16.356461 |
| 1 | 3.660538  | 2.187870  | 18.100584 |
| 1 | 3.089320  | 0.719418  | 17.270881 |
| 6 | 10.705682 | 4.274487  | 17.259903 |

| 1 | 11.163635 | 4.939337  | 16.513067 |
|---|-----------|-----------|-----------|
| 1 | 10.823915 | 3.235207  | 16.923711 |
| 1 | 11.264406 | 4.400353  | 18.197044 |
| 6 | 6.976527  | 1.790583  | 19.173167 |
| 1 | 7.746831  | 2.564695  | 19.059918 |
| 6 | 5.988129  | 2.250681  | 20.238831 |
| 1 | 5.194019  | 1.507620  | 20.402748 |
| 1 | 5.522485  | 3.206893  | 19.963310 |
| 1 | 6.512898  | 2.384547  | 21.194279 |
| 6 | 7.530071  | 5.998449  | 14.648891 |
| 1 | 7.791547  | 6.626866  | 13.787177 |
| 1 | 7.226935  | 6.654909  | 15.475809 |
| 1 | 6.667899  | 5.379651  | 14.359370 |
| 6 | 9.238201  | 4.616677  | 17.491711 |
| 1 | 8.838843  | 3.927487  | 18.247244 |
| 6 | 9.031125  | 6.043230  | 17.988243 |
| 1 | 9.570585  | 6.185250  | 18.934310 |
| 1 | 7.966882  | 6.252880  | 18.163112 |
| 1 | 9.422107  | 6.782385  | 17.273909 |
| 6 | 7.665773  | 0.477623  | 19.526858 |
| 1 | 8.202658  | 0.588945  | 20.478439 |
| 1 | 8.389863  | 0.187231  | 18.753291 |
| 1 | 6.940228  | -0.339196 | 19.653385 |
| 6 | 9.202864  | 4.225471  | 13.918178 |
| 1 | 8.407589  | 3.538356  | 13.593929 |
| 1 | 10.071921 | 3.631271  | 14.232301 |
| 1 | 9.494004  | 4.828548  | 13.047878 |

| 6 | 6.503816 | 2.820928 | 15.531350 |
|---|----------|----------|-----------|
| 7 | 6.321405 | 1.702641 | 17.848444 |
| 7 | 8.436925 | 4.358639 | 16.273932 |
| 1 | 5.968514 | 2.693082 | 14.595198 |

tetramethylfulvene:

| 6 | 6.774875  | 3.689332 | 3.550615  |
|---|-----------|----------|-----------|
| 6 | 6.042167  | 4.316972 | 2.600167  |
| 6 | 6.878331  | 5.368339 | 1.948846  |
| 6 | 8.111008  | 5.369905 | 2.509847  |
| 6 | 8.119307  | 4.313921 | 3.549918  |
| 6 | 6.389453  | 2.574405 | 4.468418  |
| 1 | 6.494336  | 2.872244 | 5.523644  |
| 1 | 7.030711  | 1.691994 | 4.315202  |
| 1 | 5.349102  | 2.262776 | 4.311034  |
| 6 | 4.624049  | 4.067492 | 2.198112  |
| 1 | 4.168631  | 3.258683 | 2.783143  |
| 1 | 4.557243  | 3.794876 | 1.132774  |
| 1 | 4.009926  | 4.971887 | 2.333810  |
| 6 | 6.350445  | 6.237684 | 0.853114  |
| 1 | 5.478843  | 6.819109 | 1.193594  |
| 1 | 6.013520  | 5.632053 | -0.003172 |
| 1 | 7.107136  | 6.944314 | 0.489939  |
| 6 | 9.293433  | 6.231779 | 2.205101  |
| 1 | 9.077442  | 6.941619 | 1.396603  |
| 1 | 10.160503 | 5.626375 | 1.896900  |
| 1 | 9.601380  | 6.813697 | 3.088324  |

| 6 | 9.149443  | 3.984230 | 4.340699 |
|---|-----------|----------|----------|
| 1 | 10.108741 | 4.501989 | 4.268427 |
| 1 | 9.062169  | 3.187536 | 5.083192 |

#### 5. References

S1. P. Jutzi, U. Meyer, S. Opiela, M. M. Olmstead and P. P. Power, *Organometallics*, 1990, **9**, 1459.

S2. V. Lavallo, Y. Canac, B. Donnadieu, W. W. Schoeller and G. Bertrand, *Science*, 2006, **312**, 722.

S3. O. Coughlin, T. Kramer and S. L. Benjamin, *Dalton Trans.*, **2020**, *49*, 1726-1730.

S4. (a) Sheldrick, G. M. SADABS, An Empirical Absorption Correction Program for Area Detector Data; University of Göttingen, Göttingen, Germany, 1996; (b) Sheldrick, G. M. SHELXS-97 and SHELXL-97, University of Göttingen, Göttingen, Göttingen, Göttingen, Göttingen, Göttingen, German, 2008; (c) Sheldrick, G. M. SHELXL-2014, University of Göttingen, Göttingen, German, 2014; (d) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *OLEX2: a complete structure solution, refinement and analysis program, J. Appl. Cryst.*, 2009, **42**, 339; (e) *SMART Version 5.628*, Bruker AXS Inc., Madison, WI, 2002; (f) *SAINT+ Version 6.22a*, Bruker AXS Inc., Madison, WI, 2002; (g) *SAINT+ Version v7.68A*, Bruker AXS Inc., Madison, WI, 2009; (h) *SHELXTL NT/2000, Version 6.1*, Bruker AXS Inc., Madison, WI, 2002.

S5. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.

Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision E.01. Gaussian, Inc., Wallingford CT, 2009.
S6. Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215-241.

S7. Bondi A., J. Phys. Chem., **1964**, 68, 441.

S8. F. Neese, WIREs Comput. Mol. Sci., 2012, 2, 73.

S9. E. J. Baerends, J. Autschbach, A. Berces, J. A. Berger, F. M. Bickelhaupt, C.
Bo, P. L. de Boeij, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M.
Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, S.
J. A. van Gisbergen, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, F. E. Harris,
P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, E. S. Kadantsev, G. van
Kessel, R. Klooster, F. Kootstra, E. van Lenthe, D. A. McCormack, A. Michalak, J.
Neugebauer, V. P. Nicu, V. P. Osinga, S. Patchkovskii, P. H. T. Philipsen, D. Post,
C. C. Pye, W. Ravenek, P. Romaniello, P. Ros, P. R. T. Schipper, G.
Schreckenbach, J. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P.
Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. M.
van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev, T.
Ziegler, Computer Code ADF 2019.103; Scientific Computing and Modeling NV:
Amsterdam, The Netherlands http://www.scm.com.

S10. E. Glendening, J. Badenhoop, A. Reed, J. Carpenter, J. Bohmann, C. Morales and F. Weinhold, NBO 6.0, University of Wisconsin: Madison, WI, 2013.

S11. G. A. Andrienko, ChemCraft, http://www.chemcraftprog.com.

S12. G. Knizia, J. Chem. Theory Comput., 2013, 9, 4834

S53