Electronic Supplementary Information

Self-Assembly Supramolecular Polymer by Anti-Electrostatic Anion-Anion and Halogen Bonding Interactions

Fabiola Zapata,^{a*} Lidia González,^a Adolfo Bastida,^b Delia Bautista,^c Antonio Caballero.^{a*}

^a Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain

^b Departamento de Química Física, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain

^c Servicio de Apoyo a la Investigación, Universidad de Murcia, Campus de Espinardo, E-30071, Murcia, Spain

Table of Contents

Experimental Procedures	SI2
PART I: Synthesis	SI3
PART II: ¹ H NMR Experiments	SI6
PART III: Thermodynamic model.	SI7
PART IV: SEM images.	SI9
PART V: TEM images	SI10
PART VI: X-ray	SI11
References	SI12

Experimental Procedures

All reactions were carried out using solvents that were dried by routine procedures. All melting points were determined by means of a Kofler hot-plate melting-point apparatus and are uncorrected. Solution ¹H, and ¹³C spectra were recorded with Bruker 200, 300, 400, or 600 MHz spectrometers. The following abbreviations have been used to state the multiplicity of the signals: s (singlet), d (doublet), t (triplet) and m (multiplet). Chemical shifts (δ) in the ¹H and ¹³C NMR spectra are referenced to tetramethylsilane (TMS). Diffusion NMR experiments (DOSY) were recorded with a Bruker 600 spectrometer (1H) using the LED-BPP sequence with a diffusion period (Δ) of 150 ms, field gradient pulses (δ) of 4 ms applied as half-sine profile bipolar pairs and an LED period of 5 ms. Field gradients were varied from 2-90% of maximum (53 G/cm) in 16 steps and data were analysed using Bruker TOPSPIN 2.1 software. Sample temperature was regulated at 293K.

Mass spectra were recorded with a Fisons AUTOSPEC 500 VG spectrometer and FAB+ mass spectra were carried out with 3-nitrobenzylalcohol as a matrix. Microanalyses were performed with a Carlo–Erba 1108 instrument. Dynamic Light Scattering analyses were performed using a Malvern Zetasizer Nano ZS (Malvern Instruments Ltd, UK) at 25°C and a 173° angle relative to the source. The hydrodynamic diameter distributions were obtained by volume using the software package of the apparatus. Each curve represents the average of 3 measurements (16 runs each). Prior to analysis, all solutions were filtered.

Scanning electron microscopy (SEM) was performed using a JSM-6100 scanning microscope instrument and the images were obtained with the INCA software (Oxford Instrument). The samples were prepared on cover glass, which was cleaned using nitric acid prior to use. The cover glass was then dropped into a polymer dissolution in CH₃CN/MeOH 9:1. The supramolecular polymer in solid state on the cover glass was obtained by the vapour diffusion of diethyl ether into a solution of the polymer. Then the cover glass was dried for 16h at 25°C and the gold film was deposited by a SEM coating system Bio Rad Polaron Division prior to perform the analyses.

The samples for transmission electron microscopy were prepared by drop-casting one drop of the colloidal solution onto a carbon coated copper grid which was placed on a piece of filter paper to remove excess solvent. Bright field TEM micrographs were obtained on a Tecnai T12 Transmission Electron Microscope operating at 120 kV and equipped with an SIS MegaViewIII digital camera. No staining of the samples was necessary.

X-Ray Structure Determinations. Intensities were registered at low temperature on a Bruker D8QUEST diffractometer using monochromated Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å). Absorption corrections were based on multi-scans (program SADABS). Structures were refined anisotropically using SHELXL-2016. Hydrogen atoms were included using rigid methyl groups or a riding model. *Special features and exceptions*: The iodine atoms are disordered over two positions, I1 (64:38%) and I2 (52:48%). One NO₂ ligand is disordered over two positions, 51:49%. The sulphate anion is also disordered over two positions, 69:32%.

PART I: Synthesis

Scheme 1. Synthesis of receptor $1^{2+} \cdot 2BF_4$. i) tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA), CuI, THF. ii) trime-thyloxonium tetrafluoroborate, CH₂Cl₂.

Synthesis of the bis-iodotriazole

Copper iodide (0.077 g 0.4 mmol) and TBTA (0.210 g, 0.4 mmol) were stirred in dry THF (10 ml) for 20 min. The catalyst solution was added to a solution (30 ml THF) of 1-(2-iodoethynyl)benzene **2** (0.550 g, 2.4 mmol) and azide **1** (0.300 g, 1 mmol) and the reaction left to stir in the dark for 48 h at r.t. before being quenched with 10 % ammonium hydroxide solution (30 mL). The mixture is allowed to stir for 15 minutes, appearing a pale-yellow solid which is filled in vacuo. The solid is washed with more ammonium hydroxide solution (30 ml) and finally with methanol (50 ml).

Yield=(0.656 g, 87 %); **m.p.** 217°C (decomposes); ¹**H NMR**- δ (DMSO-*d*₆, 200MHz): 7.87 (dd, 4H, *J* = 1.5 Hz, *J* = 8.2 Hz), 7.70 (d, 2H, *J* = 8.9 Hz), 7.45 (m, 6H), 7.23 (d, 2H, *J* = 2.1 Hz), 6.93 (dd, 2H, *J* = 2.1 Hz, *J* = 8.9Hz), 4.89 (t, 4H, *J* = 4.5 Hz), 4.57 (t, 4H, *J* = 4.5 Hz); ¹³C **NMR**- δ (DMSO-*d*₆, 50MHz): 156.7, 149, 135.9, 131, 129.7, 129.2, 128.8, 127.5, 124.6, 116.4, 106.9, 83.0, 66.5, 50.1; **MS (ESI)**: *m/z* calc. for C₃₀H₂₄I₂N₆O₂ [M+H]+755.01, found 755.01.

¹H-NMR

Synthesis of the monomer $1^{2+} \cdot 2BF_4$.

A solution of bis-iodotriazole (0.449 g, 0.60 mmol) in dry dichloromethane (15 mL) was treated with trimethyloxonium tetrafluoroborate (0.220 g, 1.44 mmol) and the reaction mixture left to stir under N₂ for 48 h at r.t. and then all volatile components were removed in vacuo to give a yellow oil, which was purified by silica gel column chromatography (eluent CH₂Cl₂/CH₃OH 8:2) to give an yellow solid. **Yield**=(0.120 g, 21 %); **m.p.** 195 °C (decomposes); ¹**H NMR**- δ (CD₃CN/CD₃OD 9:1, 600MHz): 7.74 (d, 2H, *J* = 9 Hz), 7.71 (d, 2H, *J* = 7.3 Hz), 7.67 (t, 4H, *J* = 7.3 Hz), 7.52 (d, 4H, *J* = 8.2 Hz), 7.22 (d, 2H, *J* = 2.4 Hz), 7.03 (dd, 2H, *J* = 2.4 Hz, *J* = 8.9 Hz), 5.10 (t, 4H, *J* = 4.8 Hz), 4.64 (t, 4H, *J* = 4.8 Hz), 4.11 (s, 6H); ¹³C **NMR**- δ (CD₃CN, 100MHz): 156.4, 146.3, 135.8, 132.2, 130.6, 129.8, 124.8, 123.4, 116.5, 107, 94.6, 65.7, 54.1, 31.1; **MS (ESI)**: *m/z* calc. for C₃₂H₃₀B₂F₈I₂N₆O₂ [M²⁺] 392.04, found 392.04.

S5

PART II: ¹H NMR Experiments

Figure SI1. ¹H NMR spectral changes observed in $1^{2+} \cdot 2BF_4^-$ in CD₃CN/CD₃OD (9/1, v/v) during the addition of up to 8 equiv of H₂PO₄⁻ anions.

Table SI1. Experimental NMR diffusion coefficients $D (10^{-9} \text{ m}^2 \text{s}^{-1})$ recorded as a function of the concentration of the bis-iodotriazolium receptor $1^{2+} \cdot 2BF_4^-$ and the species $1^{2+} \cdot 2H_2PO_4^-$ measured in CD₃CN/CD₃OD (9:1 v/v).

$C (\mathrm{mM})$	$1^{2+} \cdot 2BF_4^{-}$	$1^{2+} \cdot 2H_2PO_4^{-}$
2.5	1.083	0.817
1.25	1.081	0.848
0.625	1.075	0.913

PART III: Thermodynamic model.

In order to elaborate the thermodynamic model used to describe the formation of the heteromonomer supramolecular polymers we have used the same strategy recently applied by our research group¹. The model is composed of one initial nucleation equilibrium followed by successive elongation steps

$$A + n B \rightleftharpoons (AB_n), \qquad K_{\mathbf{N}} = \frac{[(AB_n)]}{[A] [B]^n} (\mathbf{M}^{-n})$$
 (1a)

$$(AB_n) + A + n B \rightleftharpoons (AB_n)_2, \qquad K_{\rm E} = \frac{[(AB_n)_2]}{[(AB_n)] [A] [B]^n} ({\rm M}^{-1-n})$$
(1b)

$$(AB_n)_{i-1} + A + n B \rightleftharpoons (AB_n)_i, \qquad K_{\rm E} = \frac{[(AB_n)_i]}{[(AB_n)_{i-1}] [A] [B]^n} \qquad ({\rm M}^{-1-n}) \qquad (1c)$$

÷

÷

where A, B and $(AB_n)_i$ denote the receptor, the anion, and the supramolecular polymer of length i respectively. In the initial nucleation step (1a) an (AB_n) nucleus is formed which is subsequently elongated through the reversible addition of the monomers to post-nucleus polymer. We note that the above equations consider a polymer with general n:1 anion-receptor stoichiometry so that n is not necessarily an integer number. For instance, a 3:2 anion-receptor stoichiometry would correspond to n = 1.5.

From Equation (1) we can express the concentration of the polymers in terms of [A] and [B] as follows

$$[(AB_n)] = K_N[A][B]^n \tag{2a}$$

$$[(AB_n)_2] = K_E[(AB_n)][A][B]^n = K_N K_E[A]^2[B]^{2n}$$
(2b)

$$[(AB_n)_3] = K_E[(AB_n)_2][A][B]^n = K_N K_E^2[A]^3[B]^{3n}$$
(2c)

$$[(AB_n)_i] = K_E[(AB_n)_{i-1}][A][B]^n = K_N K_E^{i-1}[A]^i ([B]^n)^i$$
(2d)

The total concentration of $A(C_A)$ is then given by

:

$$C_{A} = [A] + [(AB_{n})] + 2 [(AB_{n})_{2}] + 3 [(AB_{n})_{3}] + \dots$$

$$= [A] + \sum_{i=1}^{\infty} i [(AB_{n})_{i}]$$

$$= [A] + \sum_{i=1}^{\infty} i K_{N} K_{E}^{i-1} [A]^{i} ([B]^{n})^{i}$$

$$= [A] + K_{N} K_{E}^{-1} \sum_{i=1}^{\infty} i (K_{E}[A][B]^{n})^{i}$$

$$= [A] + K_{N} \frac{[A][B]^{n}}{(1 - K_{E}[A][B]^{n})^{2}}$$
(3)

where the identity

$$\sum_{i=1}^{\infty} i \, x^i \, = \, \frac{x}{(1-x)^2}$$

was used in the last step. Following a similar procedure, we obtain

$$C_B = [B] + n \ K_N \frac{[A][B]^n}{(1 - K_E [A][B]^n)^2}$$
(4)

We note that from Equations (3) and (4) we can also derive

$$n(C_A - [A]) = C_B - [B]$$
(5)

which is a direct consequence from the stoichiometry of Equation (1).

Equations (3) and (4) stablish the relationship between the total concentration of A and B (C_A and C_B), quantities decided at the beginning of the experiment, and their values at equilibrium ([A] and [B]), quantities directly related to the measurement of some experimental quantity, the NMR shift in our present study. The [A] concentrations can be estimated from the measured NMR shifts, assuming that they can be evaluated using the following weighted sum

$$\delta = \frac{[A]}{C_A} \delta_A + \frac{C_A - [A]}{C_A} \delta_{\rm sp} \tag{6}$$

where δ_A and δ_{sp} are the NMR shifts in the isolated receptor and the supramolecular polymer, respectively.

In practice we carried out two sets of fits. Firstly, the values of K_N , K_E , δ_{sp} and n are fitted using equations (3), (4) and (6) to reproduce the observed NMR shifts. This fit provides us an approximate value of the stoichiometry coefficient n that for the $1^{2+}\cdot 2BF_4$ / H_2PO_4 polymer was 1.84 what points out a 2:1 stoichiometry. Then a new fit of the values of K_N , K_E , and δ_{sp} was performed fixing n = 2.

PART IV: SEM images.

Figure SI2. Six different SEM images of the self-assembled compounds $1^{2+}\cdot 2H_2PO_4^-$.

PART V: TEM images

Figure SI3. Four different TEM images of the self-assembled compounds $1^{2+}\cdot 2H_2PO_4^-$

PART VI: X-ray

Table 1. Crystal data and structure refinement for LG2S_0m075sp_a_sq.				
Identification code	LG2S_0m075sp_a_sq			
Empirical formula	C16 H18.50 I N3 O7 P1.50			
Formula weight	538.19			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P2 ₁ /n			
Unit cell dimensions	a = 8.2071(14) Å	<i>α</i> = 90°.		
	b = 26.934(4) Å	β= 94.840(6)°.		
	c = 21.649(3) Å	$\gamma = 90^{\circ}$.		
Volume	4768.5(13) Å ³			
Z	8			
Density (calculated)	1.499 Mg/m ³			
Absorption coefficient	1.481 mm ⁻¹			
F(000)	2136			
Crystal size	0.180 x 0.060 x 0.040 mm ³			
Theta range for data collection	1.888 to 27.102°.			
Index ranges	-10<=h<=10, -34<=k<=34, -27<=l<=27			
Reflections collected	385552			
Independent reflections	10526 [R(int) = 0.0645]			
Completeness to theta = 25.242°	100.0 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.7457 and 0.6943			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	10526 / 46 / 533			
Goodness-of-fit on F ²	1.175			
Final R indices [I>2sigma(I)]	R1 = 0.0486, $wR2 = 0.1052$			
R indices (all data)	R1 = 0.0547, $wR2 = 0.1075$			
Largest diff. peak and hole	1.436 and -1.335 e.Å ⁻³			

Figure SI4. X-ray structure of $1^{2+} \cdot 2H_2PO_4^-$. Thermal ellipsoids are drawn at the 50% probability level

References

 Sabater, P.; Zapata, F.; Bastida, A.; Caballero, A. Org. Biomol. Chem., 2020, DOI: 10.1039/d0ob00258e