Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Zinc(II)-catalyzed Intramolecular Hydroarylation-Redox Cross-Dehydrogenative Coupling of *N*-Propargylanilines with Diverse Carbon Pronucleophiles: Facile Access to Functionalized Tetrahydroquinolines

Guangzhe Li, ^{*a,b} *Chengdong Wang*, ^a *Yueqing Li*, ^{a,b} *Kun Shao*, ^b *Guo Yu*, ^c *Shisheng Wang*, ^{a,b} *Xiuhan Guo*, ^{a,b} *Weijie Zhao* ^{a,b} *and Hiroyuki Nakamura* ^c

^a Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.

^b State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.

^c Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.

Table of Contents

Table of Contents	
1. General information	
2. Optimization of the reaction conditions	
2.1 Optimization of the reaction conditions for nitromethane (Table S1)	
2.2 Optimization of the reaction conditions for phenylacetylene (Table S2)	
3. The DFT study reported by Zhang et al. (Scheme S1, Scheme S2, Scheme S3)	5
4. Representative procedure	7
4.1 Reaction of <i>N</i> -propargylaniline 1 with nitromethane 2 (Table 2)	7
4.2 Synthesis of important intermediates (Scheme 2)	
4.3 Reaction of <i>N</i> -propargylaniline 1 with phenylacetylene 8 (Table 4)	
4.4 Synthesis of natural alkaloids and important intermediates (Scheme 3)	
4.5 Isotopic labeling experiments (Scheme 4, Scheme 5)	
5. Synthesis of starting materials	
6. References	
7. Copies of ¹ H-NMR, ¹³ C-NMR spectra	

1. General information

General Solvents and chemicals were reagent grade or better and obtained from commercial sources. ¹H-NMR and ¹³C-NMR spectra were recorded on 400 MHz NMR Spectrometer instrument (Bruker Avance II, Vaian DLG400), 500 MHz NMR Spectrometer instrument (Bruker AVANCE III 500) and 600 MHz NMR Spectrometer instrument (Bruker Avance NEO 600M NMR Spectroscopy). Tetramethylsilane (δ 0.00) was used as internal standard for ¹H-NMR. ¹³C-NMR was referenced to the residual solvent (CDCl₃, δ 77.0). IR spectra were measured on a ThermoFisher-6700 spectrophotometer. Melting points were determined with a X6 melting point apparatus (Beijing Take Co., Ltd). Analytical thin layer chromatography (TLC) was performed on silica gel plates produced by Qingdao Haiyang Chemical Co. Ltd (200 × 200 mm, 0.2-0.25 mm). Detection: under 254 nm UV light. HRMS/MS data were detected with LTQ Orbitrap XL ETD Mass Spectrometer instrument (Thermo Scientific).

2. Optimization of the reaction conditions

2.1 Optimization of the reaction conditions for nitromethane (Table S1)

		+	CH ₃ NO ₂		K mol%)		N	,NO₂
	Ph 1a		2 Y ml	Solv.,Coc.	, I emp., 2	24 h	Ph 3a	
Entry	Cat.	Х	Solv.	Coc. (M)	Y (ml)	Temp. (^o C) 3a ^[a] (%) Rec. 1a ^[a] (%)
1	Znl_2	20	DCE	1	0.04	100	13	N.D.
2	Zn(ClO ₄) ₂	20	DCE	1	0.04	100	N.D.	46
3	ZnSO ₄	20	DCE	1	0.04	100	N.D.	96
4	ZnCl ₂	20	DCE	1	0.04	100	40	N.D.
5	Zn(OAc) ₂	20	DCE	1	0.04	100	N.D.	84
6	ZnBr ₂	20	DCE	1	0.04	100	65	N.D.
7 Zn	$n(OAc)_2^{\cdot}2H_2O$	20	DCE	1	0.04	100	N.D.	81
8	ZnBr ₂	20	Toluene	0.5	0.04	100	27	52
9	ZnBr ₂	20	Aceton	0.5	0.04	100	31	4
10	ZnBr ₂	20	DCE	0.5	0.04	100	48	N.D.
11	ZnBr ₂	20	THF	0.5	0.04	100	48	N.D.
12	ZnBr ₂	20	MeOH	0.5	0.04	100	22	5
13	ZnBr ₂	20	DME	0.5	0.04	100	N.D.	N.D.
14	Zn(OAc) ₂	20	Neat	-	0.5	100	10	67
15	ZnBr ₂	20	Neat	-	0.5	100	71(65) ^[b]	N.D.
16	ZnCl ₂	20	Neat	-	0.5	100	46	15
17	Znl ₂	20	Neat	-	0.5	100	51	N.D.
18	ZnSO ₄	20	Neat	-	0.5	100	4	90
19	CuBr ₂	20	Neat	-	0.5	100	24	N.D.
20	CuBr	20	Neat	-	0.5	100	38	N.D.
21	Cu(OAc) ₂	20	Neat	-	0.5	100	N.D.	N.D.
22	CuSO ₄	20	Neat	-	0.5	100	20	N.D.
23	Cu(OTf) ₂	20	Neat	-	0.5	100	N.D.	N.D.
24	PtCl ₂	20	Neat	-	0.5	100	N.D.	N.D.
25	Pd(OAc) ₂	20	Neat	-	0.5	100	N.D.	N.D.
26	Fe(OAc) ₃	20	Neat	-	0.5	100	N.D.	N.D.
27	NiCl ₂	20	Neat	-	0.5	100	N.D.	N.D.
28	In(OTf) ₃	20	Neat	-	0.5	100	N.D.	N.D.
29	Vo(OAc) ₂	20	Neat	-	0.5	100	N.D.	N.D.
30	Yb(OTf) ₂	20	Neat	-	0.5	100	N.D.	N.D.
31	Sc(OTf) ₃	20	Neat	-	0.5	100	N.D.	N.D.
32	Zr(OAc) ₄	20	Neat	-	0.5	100	N.D.	N.D.
33	RuCl ₂	20	Neat	-	0.5	100	N.D.	N.D.
34	FeCl ₂	20	Neat	-	0.5	100	N.D.	N.D.
35	FeCl ₃	20	Neat	-	0.5	100	N.D.	N.D.
36	$ZnBr_2$	30	Neat	-	0.5	100	28	18
37	ZnBr ₂	20	Neat	-	0.5	100	70	8
38	ZnBr ₂	10	Neat	-	0.5	100	74	N.D.
39	ZnBr ₂	5	Neat	-	0.5	100	70	trace
40	ZnBr ₂	20	Neat	-	0.25	100	58	N.D.
41	ZnBr ₂	20	Neat	-	0.5	100	70	N.D.
42	ZnBr ₂	20	Neat	-	1.0	100	71	N.D.
43	ZnBr ₂	20	Neat	-	1.5	100	48	N.D.
44	ZnBr ₂	20	Neat	-	0.5	50	15	N.D.
45	ZnBr ₂	20	Neat	-	0.5	80	53	N.D.
46	ZnBr ₂	20	Neat	-	0.5	100	71	8
47	ZnBr ₂	20	Neat	_	0.5	120	28	12

2.2 Optimization of the reaction conditions for phenylacetylene (Table S2)

Ph	N +	8a Y eq.	//	Cat. (X mol ⁴ DCE, 1 M,Temp	\rightarrow	Ph _{9aa} Ph
Entry	Cat.	Х	Y	Temp. [^o C]	9aa ^[a] (%	%) Rec. 1a ^[a] (%)
1	CuBr	20	3	120	75	N.D.
2	Cul	20	3	120	64	N.D.
3	CuBr ₂	20	3	120	41	N.D.
4	CuCl	20	3	120	31	51
5	Cu(AcO) ₂	20	3	120	43	15
6	CuSO ₄	20	3	120	17	72
7	Cu(OTf)	20	3	120	16	9
8	Cu(OTf) ₂	20	3	120	12	4
9	ZnBr ₂	20	3	120	78	N.D.
10	Zn(OAc) ₂	20	3	120	26	N.D.
11	Znl ₂	20	3	120	N.D.	N.D.
12	Pd(AcO) ₂	20	3	120	N.D.	4
13	Sc(OTf) ₂	20	3	120	48	11
14	Yb(OTf) ₃	20	3	120	18	16
15	RuCl ₂	20	3	120	N.D.	5
16	FeCl ₂	20	3	120	N.D.	87
17	FeCl ₃	20	3	120	N.D.	91
18	Fe(OAc) ₃	20	3	120	N.D.	85
19	Inl ₃	20	3	120	N.D.	N.D.
20	Ph ₃ PAuCl	20	3	120	N.D.	N.D.
21	In(OTf) ₃	20	3	120	N.D.	17
22	$ZnBr_2$	20	3	120	80(80) ^{[b}	^{)]} N.D.
23	$ZnBr_2$	15	3	120	38	N.D
24	$ZnBr_2$	10	3	120	35	N.D.
25	$ZnBr_2$	5	3	120	22	N.D.
26	$ZnBr_2$	20	1	120	39	N.D.
27	$ZnBr_2$	20	2	120	66	N.D
28	$ZnBr_2$	20	3	120	75	N.D.
29	$ZnBr_2$	20	4	120	76	N.D.
30	$ZnBr_2$	20	3	120	78	N.D.
31	$ZnBr_2$	20	3	80	N.D.	61
32	$ZnBr_2$	20	3	50	N.D.	84
33	ZnBr ₂	20	3	r.t	N.D.	99

^{[a] 1}H-NMR yield; ^[b] Isolated yield

3. The DFT study reported by Zhang *et al.* (Scheme S1, Scheme S2, Scheme S3)

Scheme S1. Catalytic cycle proposed on the basis of calculations by Zhang et al.

The DFT study reported an alternative reaction mechanism via an allene intermediate by Zhang *et al.* was summarized in Scheme S1^[1]. The proposed catalytic cycle consists of two discrete subcycles: transformation of **1** into **18** (**IMP**) and its further reaction with **2** to give the final product **22** (**P**). The generation of **IMP** occurs through sequential $C(sp^3)$ -H activation ($14 \rightarrow 15$), cyclization/phenyl $C(sp^2)$ -H activation ($14 \rightarrow 15 \rightarrow 16$) and protonation ($17 \rightarrow IMP$) steps. The transformation from **IMP** into **P** is achieved by undergoing indole $C(sp^2)$ -H activation ($19 \rightarrow 20$), protonation of **IMP** ($20 \rightarrow 21$), and nucleophilic addition ($21 \rightarrow P$) steps successively. All three C–H bonds are activated with the assistance of an acetate ligand.

Scheme S2. The 1 and *d*-13 are in equilibrium with *d*-1 and 13

Zhang *et al.* suggested that the generation of the deuterated 1 (*d*-1) and 13 via the allene intermediate from the initial reactants 1 and *d*-13 in equilibrium (Scheme S2).

Scheme S3. Deuterium labeling study for the reaction of *N*-propargylanilines and *d*-indoles.

In order to verify the possibility of the allene intermediate, we conducted deuterium labeling experiments (Scheme S3). *N*-benzyl-*N*-(2-propynyl)aniline (**1a**) was treated with the deuterated indole d-13 in the presence of $Zn(OAc)_2$ in 1,2-dichloroethane, and the reaction was quenched after 3 h (Scheme S3, eq 1). Although Zhang et al. suggested the deuterated **1a** (d-1a') was supposed to be generated via the allene intermediate (Scheme S1), however d-1a' was not detected in our reaction mixture. Interestingly, d-1a, in which the terminal alkyne hydrogen was deuterated, was detected in 84% yield, revealing that terminal alkyne hydrogens were readily exchanged with the indole hydrogen under the conditions. Which meant that under this catalytic condition, the hydrogen atom at the C3 position of indole exchange with the hydrogen atom at the terminal alkyne of **1a**, rather than themethylene hydrogen atom of **1a**. Similarly, the reaction of **1k** with indole d-13 was carried out in the presence of $Zn(OAc)_2$ in 1,2-dichloroethane for 22 hours (Scheme S3, eq 2), and only 9% of **1k** was recovered without d-1k'. The above experimental results show that the redox CDC reaction is caused by the cyclization reaction, not the activation of methylene $C(sp^3)$ -H bond via the allene intermediate.

4. Representative procedure

4.1 Reaction of *N*-propargylaniline 1 with nitromethane 2 (Table 2)

Reaction of N-benzyl-N-(2-propynyl)aniline 1a with nitromethane 2a

N-benzyl-*N*-(2-propynyl)aniline (**1a**), ZnBr₂ (5.6 mg, 0.025 mmol) in nitromethane (**2**) (0.5 ml) were stirred at 100 °C for 24 hours in a closed vial tube protected with N₂ (Table 1, entry 1). The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 30:1 (v/v)) to give *N*-benzyl-2-nitromethyl-1,2,3,4-tetrahydroquinoline (**3a**, 45.8 mg, 65% yield) as yellow solid.

N-Benzyl-2-nitromethyl-1,2,3,4-tetrahydroquinoline 3a

Light yellow solid, 65% yield (45.8 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.30 (t, *J* = 7.3 Hz, 2H), 7.23 (dd, *J* = 14.1, 7.1 Hz, 3H), 7.04 (d, *J* = 7.4 Hz, 1H), 6.99 (t, *J* = 7.8 Hz, 1H), 6.67 (t, *J* = 7.3 Hz, 1H), 6.55 (d, *J* = 8.3 Hz, 1H), 4.62 (ABq, *J* = 16.9 Hz, 2H), 4.54-4.39 (m, 2H), 4.20 (td, *J* = 8.2, 3.7 Hz, 1H), 2.98-2.74 (m, 2H), 2.13-1.94 (m, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ 142.9, 137.9, 129.4, 128.8, 127.5, 127.3, 126.4, 120.9, 117.5, 112.8, 76.2, 56.5, 54.4, 23.2, 22.9; HRMS (ESI) m/z Calcd for C₁₇H₁₉N₂O₂ [M+H]⁺ : 283.1446. Found: 283.1436.

N-Phenyl-2-nitromethyl-1,2,3,4-tetrahydroquinoline 3b

Light yellow oil; 61% yield (40.8 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.36 (t, J = 7.8 Hz, 2H), 7.20-7.14 (m, 3H), 7.09 (d, J = 7.5 Hz, 1H), 6.96 (t, J = 7.7 Hz, 1H), 6.79 (t, J = 7.4 Hz, 1H), 6.62 (d, J = 8.2 Hz, 1H), 4.63-4.44 (m, 3H), 2.93-2.84 (m, 2H), 2.15 (ddd, J = 18.2, 10.1, 4.0 Hz, 1H), 1.99 (dt, J = 13.8, 2.8 Hz, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ 147.1, 142.2, 129.5, 126.9, 125.9, 125.1, 123.2, 119.7, 118.4, 76.4, 57.7, 23.0, 22.9; HRMS (ESI) m/z Calcd for C₁₆H₁₇N₂O₂ [M+H]⁺ : 269.1290. Found: 269.1285.

N-Allyl-2-nitromethyl-1,2,3,4-tetrahydroquinoline 3c

Light yellow oil; 55% yield (31.9 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.08 (t, J = 7.8 Hz, 1H), 7.03 (d, J = 7.3 Hz, 1H), 6.69 (t, J = 7.3 Hz, 1H), 6.63 (d, J = 8.3 Hz, 1H), 5.85 (ddt, J = 15.6, 10.0, 4.9 Hz, 1H),

5.24-5.16 (m, 2H), 4.53 (dd, J = 11.5, 5.6 Hz, 1H), 4.43 (dd, J = 11.4, 8.6 Hz, 1H), 4.15 (dq, J = 8.7, 3.9 Hz, 1H), 4.04 (dd, J = 17.3, 4.9 Hz, 1H), 3.88 (dd, J = 17.2, 4.8 Hz, 1H), 2.82 (qt, J = 12.5, 6.7 Hz, 2H), 1.99 (dd, J = 8.7, 4.2 Hz, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ 142.6, 133.4, 129.3, 127.4, 121.0, 117.3, 116.8, 112.5, 76.4, 56.2, 53.4, 23.0, 23.0; HRMS (ESI) m/z Calcd for C₁₃H₁₇N₂O₂ [M+H]⁺: 233.1290. Found: 233.1279.

N-Methyl-2-nitromethyl -1,2,3,4-tetrahydroquinoline 3d

Light yellow oil; 69% yield (35.5 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.12 (t, J = 7.7 Hz, 1H), 7.02 (d, J = 7.3 Hz, 1H), 6.70 (t, J = 7.4 Hz, 1H), 6.60 (d, J = 8.2 Hz, 1H), 4.54 (dd, J = 11.3, 5.8 Hz, 1H), 4.40 (dd, J = 11.3, 8.0 Hz, 1H), 4.12 (tt, 1H), 2.99 (s, 3H), 2.90-2.74 (m, 2H), 2.11-1.93 (m, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ 143.5, 129.1, 127.5, 120.9, 117.2, 111.5, 75.8, 57.8, 38.1, 23.3, 22.8; HRMS (ESI) m/z Calcd for C₁₁H₁₅N₂O₂ [M+H]⁺: 207.1133. Found: 207.1125.

Ethyl 2-(2-(nitromethyl)-3,4-dihydroquinolin-1(2H)-yl)acetate 3e

Light yellow oil; 40% yield (27.8 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.09-7.02 (m, 2H), 6.71 (t, J = 7.3 Hz, 1H), 6.39 (d, J = 8.2 Hz, 1H), 4.71 (dd, J = 12.3, 6.1 Hz, 1H), 4.46 (dd, J = 12.3, 7.9 Hz, 1H), 4.19 (q, J = 7.1 Hz, 3H), 4.10 (s, 2H), 2.91-2.75 (m, 2H), 2.10 (ddt, J = 13.1, 10.7, 5.0 Hz, 1H), 1.96 (ddt, J = 14.1, 5.8, 2.9 Hz, 1H), 1.27 (t, J = 7.1 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃): δ 170.8, 142.0, 129.5, 127.5, 120.9, 117.9, 111.4, 76.7, 61.3, 57.4, 53.4, 23.0, 22.8; HRMS (ESI) m/z Calcd for C₁₄H₁₈N₂O₄ [M+H]⁺: 279.1345. Found: 279.1342.

N-(2-chloroethyl)-2-(nitromethyl)-1,2,3,4-tetrahydroquinoline 3f

Light yellow oil; 17% yield (10.8 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.15-7.00 (m, 2H), 6.73 (t, J = 7.4 Hz, 1H), 6.62 (d, J = 8.3 Hz, 1H), 4.49 (dd, J = 11.6, 7.0 Hz, 1H), 4.39 (dd, J = 11.6, 7.1 Hz, 1H), 4.27 (tdd, J = 7.0, 4.2, 2.8 Hz, 1H), 3.90 (ddd, J = 15.2, 6.8, 4.1 Hz, 1H), 3.69 (dt, J = 10.9, 7.4 Hz, 1H), 3.59 (ddd, J = 11.0, 7.1, 4.1 Hz, 1H), 3.47 (dt, J = 15.2, 7.6 Hz, 1H), 2.80 (dd, J = 8.9, 3.5 Hz, 2H), 2.12-2.01 (m, 1H), 1.96 (ddd, J = 10.7, 5.8, 3.1 Hz, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ 141.3, 130.0, 127.6, 121.1, 117.9, 112.2, 76.4, 57.0, 52.9, 40.8, 22.7; HRMS (ESI) m/z Calcd for C₁₂H₁₅ClN₂O₂ [M+H]⁺: 255.0895. Found: 255.0900.

N-Benzyl-2-nitromethyl-6-methoxyl-1,2,3,4-tetrahydroquinoline 3g

Light yellow oil; 47% yield (36.7 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.31 (t, *J* = 7.3 Hz, 2H), 7.24 (t, *J* = 7.4 Hz, 3H), 6.66-6.57 (td, 2H), 6.51 (d, *J* = 8.8 Hz, 1H), 4.53 (ABq, *J* = 16.6 Hz, 2H), 4.50-4.36 (m, 2H), 4.13 (tt, *J* = 7.3, 3.8 Hz, 1H), 3.71 (s, 3H), 2.93-2.73 (m, 2H), 2.12-2.00 (m, 1H), 1.99-1.89 (m, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ 151.9, 138.2, 137.1, 128.7, 127.2, 126.6, 122.6, 114.8, 114.7, 113.0, 76.0, 56.3, 55.5, 23.2, 23.1; HRMS (ESI) m/z Calcd for C₁₈H₂₁N₂O₃ [M+H]⁺: 313.1552. Found: 313.1543.

N-Benzyl-2-nitromethyl-6-methyl-1,2,3,4-tetrahydroquinoline 3h

Light yellow oil; 52% yield (38.5 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.31 (t, J = 7.2 Hz, 2H), 7.28-7.20 (m, 4H), 6.89 (s, 1H), 6.83 (d, J = 8.3 Hz, 1H), 6.48 (d, J = 8.3 Hz, 1H), 4.60 (ABq, J = 16.8 Hz, 2H), 4.54- 4.42 (m, 2H), 4.19 (td, J = 8.1, 3.6 Hz, 1H), 2.89 (ddd, J = 18.2, 12.7, 5.9 Hz, 1H), 2.80 (ddd, J = 16.9, 5.6, 2.7 Hz, 1H), 2.22 (s, 3H), 2.14-1.95 (m, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ 140.5, 138.0, 130.0, 128.7, 128.0, 127.2, 126.8, 126.5, 121.0, 113.1, 76.0, 56.5, 54.7, 23.2, 22.8, 20.2; HRMS (ESI) m/z Calcd for C₁₈H₂₁N₂O₂ [M+H]⁺: 297.1603. Found: 297.1591.

N-Benzyl-2-nitromethyl-6-fluoro-1,2,3,4-tetrahydroquinoline 3i

Light yellow oil; 44% yield (33.0 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.31 (t, *J* = 7.2 Hz, 2H), 7.28-7.22 (m, 1H), 7.19 (d, *J* = 7.3 Hz, 2H), 6.77 (dd, *J* = 8.9, 2.9 Hz, 1H), 6.70 (td, *J* = 8.6, 3.0 Hz, 1H), 6.46 (dd, *J* = 9.0, 4.7 Hz, 1H), 4.56 (ABq, *J* = 16.8 Hz, 2H), 4.52-4.38 (m, 2H), 4.19 (td, *J* = 8.2, 3.7 Hz, 1H), 2.93-2.75 (m, 2H), 2.12-1.93 (m, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ 155.6 (d, ¹*J*_{C-F} = 236.8 Hz), 139.2 (d, ⁴*J*_{C-F} = 2.0 Hz), 137.8, 128.9, 127.4, 126.5, 122.7 (d, ³*J*_{C-F} = 6.8 Hz), 115.7 (d, ²*J*_{C-F} = 22.0 Hz), 114.2 (d, ³*J*_{C-F} = 7.5 Hz), 114.0 (d, ²*J*_{C-F} = 22.0 Hz), 76.1, 56.4, 55.3, 23.2, 23.0; HRMS (ESI) m/z Calcd for C₁₇H₁₈FN₂O₂ [M+H]⁺: 301.1352. Found: 301.1343.

N-Benzyl-2-nitromethyl-6-chloro-1,2,3,4-tetrahydroquinoline 3j

Light yellow oil; 70% yield (55.3 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.32 (t, J = 7.2 Hz, 2H), 7.28-7.23 (m, 1H), 7.18 (d, J = 7.4 Hz, 2H), 7.02 (d, J = 2.4 Hz, 1H), 6.93 (dd, J = 8.8, 2.5 Hz, 1H), 6.45 (d, J = 8.8 Hz, 1H), 4.60 (ABq, J = 17.0 Hz, 2H), 4.55-4.39 (m, 2H), 4.22 (td, J = 8.2, 3.6 Hz, 1H), 2.93-2.75 (m, 2H), 2.03 (ttd, J = 14.0, 7.1, 6.2, 3.8 Hz, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ 141.4, 137.3, 128.9, 128.8, 127.4, 127.3, 126.3, 122.5, 122.2, 114.0, 76.0, 56.4, 54.5, 23.0, 22.8; HRMS (ESI) m/z Calcd for C₁₇H₁₈ClN₂O₂ [M+H]⁺: 317.1057. Found: 317.1048.

N-Benzyl-2-nitromethyl-4-phenyl-1,2,3,4-tetrahydroquinoline 3k

The configurations were assigned by the coupling constant of 2-H and 4-H according to our previous reports.^[4] *Trans/cis* isomer total yield: 15% (total weight: 13.4 mg), a mixture of *trans*-isomer and *cis*-isomer (*trans/cis* = 9:1) observed in the ¹H-NMR spectra. *trans*-isomer: light yellow oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.37-7.31 (m, 4H), 7.30-7.23 (m, 5H), 7.22-7.17 (m, 2H), 7.06-6.99 (m, 1H), 6.73 (d, *J* = 7.6 Hz, 1H), 6.67-6.57 (m, 2H), 4.69 (ABq, *J* = 16.7 Hz, 2H), 4.65-4.48 (m, 2H), 4.22 (tt, *J* = 7.5, 4.0 Hz, 1H), 4.14 (dd, *J* = 12.1, 5.8 Hz, 1H), 2.29 (ddd, *J* = 13.6, 12.3, 4.4 Hz, 1H), 2.19 (ddd, *J* = 13.8, 5.8, 3.4 Hz, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ 144.6, 143.3, 137.9, 130.0, 128.8, 128.7, 128.6, 127.8, 127.4, 126.8, 126.6, 125.0, 117.8, 113.4, 56.3, 55.0, 39.8, 33.4; HRMS (ESI) m/z Calcd for C₂₃H₂₃N₂O₂ [M+H]⁺: 359.1760. Found: 359.1744.

N-Benzyl-2-nitromethyl-4-n-Butyl-1,2,3,4-tetrahydroquinoline 31

The configurations were assigned by the coupling constant of 2-H and 4-H according to our previous reports.^[4] *Trans/cis* isomer total yield: 22% (total weight: 18.6 mg), a mixture of *trans*-isomer and *cis*-isomer (*trans/cis* = 12:1) observed in the ¹H-NMR spectra. *trans*-isomer: Light yellow oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.33 (t, *J* = 7.2 Hz, 2H), 7.25 (t, *J* = 10.1 Hz, 4H), 7.18 (d, *J* = 7.5 Hz, 1H), 7.02 (t, *J* = 7.8 Hz, 1H), 6.74 (t, *J* = 7.4 Hz, 1H), 6.59 (d, *J* = 8.2 Hz, 1H), 4.62 (ABq, *J* = 16.9 Hz, 2H), 4.56-4.39 (m, 2H), 4.15 (dq, *J* = 9.7, 4.9 Hz, 1H), 2.86 (tt, *J* = 10.0, 5.1 Hz, 1H), 2.06 (dt, *J* = 13.6, 5.0 Hz, 1H), 1.91 (dtt, *J* = 14.4, 10.6, 4.8 Hz, 2H), 1.34 (ddt, *J* = 23.5, 17.5, 8.6 Hz, 4H), 0.93 (t, *J* = 6.6 Hz, 3H); ¹³C-NMR (151 MHz, CDCl₃): δ 143.5, 138.1, 128.8, 127.3, 126.7, 126.6, 126.4, 117.9, 113.6, 77.1, 56.0, 55.1, 34.5, 32.0, 30.2, 28.6, 22.9, 14.1; HRMS (ESI) m/z Calcd for C₂₁H₂₇N₂O₂ [M+H]⁺: 339.2068. Found: 339.1994.

N-Benzyl-2-nitromethyl-4-methyl-1,2,3,4-tetrahydroquinoline 3m

The configurations were assigned by the coupling constant of 2-H and 4-H according to our previous reports.^[4] *Trans/cis* isomer total yield: 41% (total weight: 30.2 mg), a mixture of *trans*-isomer and *cis*-isomer (*trans/cis* = 11:1) observed in the ¹H-NMR spectra. *trans*-isomer: light yellow oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.32 (t, *J* = 7.1 Hz, 2H), 7.28-7.19 (m, 4H), 7.01 (t, *J* = 7.7 Hz, 1H), 6.74 (t, *J* = 7.4 Hz, 1H), 6.55 (d, *J* = 8.2 Hz, 1H), 4.63 (ABq, *J* = 17.0 Hz, 2H), 4.57-4.45 (m, 2H), 4.21-4.14 (m, 1H), 2.96-3.05 (m, 1H), 2.01 (dt, *J* = 14.6, 3.3 Hz, 1H), 1.86 (td, *J* = 13.8, 13.3, 4.1 Hz, 1H), 1.40 (d, *J* = 6.6 Hz, 3H); ¹³C-NMR (151 MHz, CDCl₃): δ 142.7, 137.8, 128.8, 127.4, 127.3, 127.0, 126.5, 126.4, 117.7, 112.9, 76.8, 56.5, 32.7, 26.4, 20.6; HRMS (ESI) m/z Calcd for C₁₈H₂₁N₂O₂ [M+H]⁺ : 296.1603. Found: 297.1597.

4.2 Synthesis of important intermediates (Scheme 2)

Synthesis of compound 4

3a (60.0 mg, 0.21 mmol) and Raney nickel (18.0 mg, 30%) in THF (15.0 ml) were stirred at 30 ° C for 12 h in a two-necked flask protected by hydrogen ballon. The reaction solution was filtered into a flask (using celite) and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (methanol/dichloromethane = 1:10 (v/v)) to give (1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)methanamine **4** (30.7 mg, 57% yield) as colorless oily liquid. ¹H-NMR (400 MHz, Methanol-d₄): δ 7.35-7.19 (m, 5H), 7.01-6.90 (m, 2H), 6.63-6.55 (m, 2H), 4.70 (d, *J* = 16.9 Hz, 1H), 4.51 (d, *J* = 16.9 Hz, 1H), 3.54 (dq, *J* = 8.3, 5.1 Hz, 1H), 2.95-2.79 (m, 3H), 2.74 (dt, *J* = 16.3, 4.2 Hz, 1H), 2.07 (ddt, *J* = 12.1, 5.8, 3.3 Hz, 1H), 1.93 (ddt, *J* = 18.1, 11.6, 4.9 Hz, 1H); ¹³C-NMR (101 MHz, Methanol-d₄): δ 143.9, 139.0, 128.6, 128.2, 126.7, 126.6, 126.5, 116.5, 113.2, 57.5, 54.7, 48.2, 48.0, 47.8, 47.6, 47.4, 47.2, 47.0, 41.3, 22.9, 22.0; HRMS (ESI) m/z Calcd for C₁₇H₂₀N₂ [M+H]⁺: 253.1705. Found: 279.1699.

Synthesis of compound 5

Et₃N (35 µl) and Acetic anhydride (0.29 mmol, 27 µl) were added to a cold solution of compound **4** (0.2 mmol, 52.8 mg) in THF (1.5 mL), then the resulting mixture was stirred at room temperature for 1 h. The resulting mixture was concentrated under reduced pressure. The residue was dissolved in EtOAc, washed with a saturated aqueous solution of NaHCO₃ and brine, dried (Na₂SO₄) , then concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography (EtOAc) to give *N*-((1-benzyl-1,2,3,4-tetrahydroquinolin-2-yl)methyl)acetamide **5** (54.8 mg, 98% yield) as greyish solid. ¹H-NMR (400 MHz, CDCl₃): δ 7.35-7.21 (m, 5H), 7.01 (t, *J* = 7.4 Hz, 2H), 6.64 (t, *J* = 7.3 Hz, 1H), 6.59 (d, *J* = 8.3 Hz, 1H), 5.62 (s, 1H), 4.62 (d, *J* = 17.0 Hz, 1H), 4.52 (d, *J* = 17.0 Hz, 1H), 3.51 (p, *J* = 6.2 Hz, 1H), 3.31 (q, *J* = 6.1 Hz, 2H), 2.91-2.81 (m, 1H), 2.75 (dt, *J* = 16.5, 4.5 Hz, 1H), 1.98-1.92 (m, 2H), 1.78 (s, 3H); ¹³C-NMR (101 MHz, CDCl₃): δ 170.3, 144.6, 139.4, 129.1, 128.8, 127.3, 127.0, 126.7, 122.0, 116.8, 113.1, 57.4, 55.8, 41.6, 23.9, 23.3, 23.2. Spectral data are in accordance with the reported data.^[2]

Synthesis of compound 6

3a (0.38 mmol, 105.0 mg) and Pd/C (5% loading, 31.5 mg, 30%) in a mixed solvent of methanol/tetrahydrofuran (22 ml, v:v=10:1) were stirred at 30 ° C for 24 h in a 100 ml reaction flask protected by hydrogen ballon. The resulting mixture was filtered into a flask (using celite) and concentrated under reduced pressure to give a crude product. The residure was purified by silica gel column chromatography (methanol: methylene chloride = 1:10 (v/v)) to give (1,2,3,4-tetrahydroquinolin-2-yl)methanamine **6** (60.5 mg, yield 99%) as white solid product. ¹H-NMR (400 MHz, Methanol-d₄): δ 6.94 (t, *J* = 7.5 Hz, 2H), 6.61 (d, *J* = 7.6 Hz, 2H), 3.61 (dq, *J* = 8.7, 5.4 Hz, 1H), 3.06 (d, *J* = 5.7 Hz, 2H), 2.82 (dtt, *J* = 27.9, 10.6, 5.7 Hz, 2H), 1.99 (dtd, *J* = 15.1, 5.7, 3.7 Hz, 1H), 1.85-1.74 (m, 1H). Spectral data are in accordance with the reported data.^[2]

Synthesis of compound 7

compound **6** (0.33 mmol, 54.3 mg) and CDI (1,1-Carbonyldiimidazole) (0.8 mmol, 2.4 equiv, 101.7 mg) in a mixed solution of THF/DMF (1.2 ml, v:v = 1:3) were stirred at 70 °C overnight in a closed vial tube protected with N₂. The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 1:1 (v/v)) to give 3,3a,4,5-tetrahydroimidazo[1,5-a]quinolin-1(2H)-one **7** (45.9 mg, 74% yield) as white solid. ¹H-NMR (400 MHz, CDCl₃): δ 8.26 (d, *J* = 8.3 Hz, 1H), 7.18 (t, *J* = 7.9 Hz, 1H), 7.09 (d, *J* = 7.5 Hz, 1H), 6.94 (t, *J* = 7.4 Hz, 1H), 4.78 (s, 1H), 4.09 (dtd, *J* = 11.1, 8.2, 2.7 Hz, 1H), 3.68 (t, *J* = 8.4 Hz, 1H), 3.22 (t, *J* = 8.1 Hz, 1H), 3.02-2.83 (m, 2H), 2.11 (ddd, *J* = 10.6, 5.8, 2.9 Hz, 1H), 1.89 (tt, J = 12.7, 6.3 Hz, 1H);

¹³C-NMR (101 MHz, CDCl₃): δ 159.3, 136.7, 129.0, 126.7, 124.4, 122.1, 118.6, 54.6, 44.0, 27.3, 27.0; HRMS (ESI) m/z Calcd for $C_{11}H_{12}N_2O$ [M+H]⁺: 189.1022. Found: 189.1030.

4.3 Reaction of *N*-propargylaniline 1 with phenylacetylene 8 (Table 4)

Reaction of N-Benzyl-N-(2-propynyl)aniline 1a with phenylacetylene 8

N-benzyl-*N*-(2-propynyl)aniline (**1a**), ZnBr₂ (11.3 mg, 0.05 mmol) and phenylacetylene (**8a**) (0.75 mmol, 81 μ l) in 1,2-dichloroethane (0.25 ml) were stirred at 120 °C for 24 hours in a closed vial tube protected with N₂ (Table 2, entry 1). The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether : eluent ethyl acetate= 30:1 (v/v)) to give *N*-benzyl-2-ethynylbenzene-1,2,3,4 tetrahydroquinoline **9aa** (64.7 mg, 80% yield) as light yellow oil.

N-Benzyl-2-ethynylbenzene-1,2,3,4-tetrahydroquinoline 9aa

Light yellow oil; 80% yield (64.7 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.33 (d, J = 6.8 Hz, 6H), 7.29-7.21 (m, 4H), 7.01 (dd, J = 18.4, 7.7 Hz, 2H), 6.64 (t, J = 7.3 Hz, 1H), 6.54 (d, J = 8.2 Hz, 1H), 4.71-4.60 (ABq, J = 17.0 Hz, 2H), 4.47 (t, J = 3.5 Hz, 1H), 3.26 (dt, J = 16.6, 8.7 Hz, 1H), 2.78 (d, J = 15.9 Hz, 1H), 2.41-2.08 (m, 2H); ¹³C-NMR(101 MHz, CDCl₃): δ 144.2, 138.7, 131.7, 128.8, 128.6, 128.2, 128.0, 127.2, 126.8, 126.7, 123.0, 122.2, 116.7, 111.8, 89.2, 83.3, 53.8, 27.8, 24.9; HRMS (ESI) m/z Calcd for C₂₄H₂₁N [M+H]⁺: 324.1754. Found: 324.1740.

N-Phenyl-2-ethynylbenzene-1,2,3,4-tetrahydroquinoline 9ba

Light yellow oil; 51% yield (39.4 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.44-7.38 (m, 4H), 7.33 (dd, J = 6.7, 3.1 Hz, 2H), 7.28-7.23 (m, 4H), 7.08 (d, J = 7.5 Hz, 1H), 6.92 (t, J = 7.5 Hz, 1H), 6.70 (t, J = 7.3 Hz, 1H), 6.58 (d, J = 8.3 Hz, 1H), 4.74 (t, J = 3.7 Hz, 1H), 3.33 (ddd, J = 17.2, 12.2, 5.9 Hz, 1H), 2.84 (dt, J = 16.3, 3.6 Hz, 1H), 2.28 (tddt, J = 12.8, 9.4, 6.3, 3.6 Hz, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ 146.8, 143.1, 131.6, 129.5, 129.3, 128.1, 128.0, 126.5, 125.2, 123.0, 122.7, 118.1, 115.2, 89.4, 83.9, 52.1, 27.7, 24.5; HRMS (ESI) m/z Calcd for C₂₄H₂₁N [M+H]⁺: 310.1597. Found: 310.1586.

N-Allyl-2-ethynylbenzene-1,2,3,4-tetrahydroquinoline 9ca

Light yellow oil; 58% yield (39.6 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.37 (dq, J = 8.1, 4.3, 3.9 Hz, 2H), 7.26 (dt, J = 6.3, 2.9 Hz, 3H), 7.06 (t, J = 7.8 Hz, 1H), 7.00 (d, J = 7.3 Hz, 1H), 6.66-6.59 (m, 2H), 5.94 (ddt, J = 17.1, 10.0, 4.9 Hz, 1H), 5.33-5.15 (m, 2H), 4.44 (t, J = 3.8 Hz, 1H), 4.12-3.99 (m, 2H), 3.20 (ddd, J = 16.4, 12.0, 5.2 Hz, 1H), 2.74 (dt, J = 15.9, 3.8 Hz, 1H), 2.17 (tddt, J = 17.1, 12.7, 8.9, 4.2 Hz, 2H); ¹³C-NMR(101 MHz, CDCl₃): δ 143.8, 134.0, 131.7, 128.8, 128.2, 128.0, 127.1, 123.1, 122.2, 116.5, 116.0, 111.7, 89.5, 83.1, 52.5, 49.8, 27.8, 24.9; HRMS (ESI) m/z Calcd for C₂₀H₁₉N [M+H]⁺: 274.1596. Found: 274.1591.

N-Methyl-2-ethynylbenzene-1,2,3,4-tetrahydroquinoline 9da

Light yellow oil; 70% yield (43.2 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.39-7.33 (m, 2H), 7.28-7.22 (m, 3H), 7.10 (t, *J* = 7.7 Hz, 1H), 7.00 (d, *J* = 7.3 Hz, 1H), 6.68 (t, *J* = 8.0 Hz, 2H), 4.35 (t, *J* = 3.8 Hz, 1H), 3.19 (ddd, *J* = 16.8, 11.6, 6.1 Hz, 1H), 3.01 (s, 3H), 2.74 (d, *J* = 16.1 Hz, 1H), 2.21 (qt, *J* = 12.9, 6.8 Hz, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ 144.9, 131.7, 128.7, 128.2, 128.0, 127.1, 123.0, 122.7, 117.3, 112.0, 88.4, 83.7, 51.9, 37.9, 27.7, 24.7; HRMS (ESI) m/z Calcd for C₁₈H₁₇N [M+H]⁺: 248.1439. Found: 248.1439.

N-Benzyl-2-ethynylbenzene-6-Methoxy-1,2,3,4-tetrahydroquinoline 9ga

Light yellow oil; 58% yield (51.2 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.39-7.30 (m, 6H), 7.25 (dd, J = 5.5, 2.1 Hz, 4H), 6.66 (d, J = 2.8 Hz, 1H), 6.59 (dd, J = 8.9, 2.8 Hz, 1H), 6.49 (d, J = 8.9 Hz, 1H), 4.64-4.51 (ABq, J = 16.5 Hz, 2H), 4.40 (t, J = 3.8 Hz, 1H), 3.72 (s, 3H), 3.48 (s, 2H), 3.24 (ddd, J = 16.5, 11.1, 6.1 Hz, 1H), 2.81-2.71 (m, 1H), 2.22 (qt, J = 9.0, 5.3 Hz, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ 151.5, 139.2, 138.8, 131.8, 128.6, 128.2, 128.1, 127.0, 126.9, 123.8, 123.1, 115.0, 113.2, 112.4, 89.2, 83.5, 55.7, 54.6, 50.4, 28.1, 25.3; HRMS (ESI) m/z Calcd for C₂₅H₂₃NO [M+H]⁺: 354.1858. Found: 354.1846.

N-Benzyl-2-ethynylbenzene-6-Methyl-1,2,3,4-tetrahydroquinoline 9ha

Light yellow oil; 52% yield (43.8 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.38-7.19 (m, 10H), 6.86 (s, 1H), 6.80 (d, J = 8.3 Hz, 1H), 6.46 (d, J = 8.3 Hz, 1H), 4.68-4.56 (ABq, J = 16.8 Hz, 2H), 4.43 (t, J = 3.9 Hz,

1H), 3.23 (dt, J = 16.6, 8.6 Hz, 1H), 2.75 (dt, J = 16.1, 4.0 Hz, 1H), 2.22 (d, J = 7.7 Hz, 5H); ¹³C-NMR (101 MHz, CDCl₃): δ 142.1 139.0, 131.7, 129.6, 128.5, 128.2, 128.0, 127.6, 126.8, 125.9, 123.1, 122.3, 112.0, 89.3, 83.4, 54.0, 50.3, 28.0, 24.9, 20.2; HRMS (ESI) m/z Calcd for C₂₅H₂₃N [M+H]⁺: 338.1909. Found: 338.1901.

N-Benzyl-2-ethynylbenzene-6-fluoro-1,2,3,4-tetrahydroquinoline 9ia

Light yellow oil; 61% yield (52.0 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.41-7.22 (m, 11H), 6.77 (dd, *J* = 8.9, 2.9 Hz, 1H), 6.68 (td, *J* = 8.6, 3.0 Hz, 1H), 6.44 (dd, *J* = 9.0, 4.7 Hz, 1H), 4.64-4.54 (ABq, *J* = 16.7 Hz, 2H), 4.42 (t, *J* = 3.9 Hz, 1H), 3.24 (dt, *J* = 16.8, 8.9 Hz, 1H), 2.76 (dt, *J* = 16.3, 4.1 Hz, 1H), 2.26-2.18 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 155.3 (d, ¹*J*_{C-F} = 235.5 Hz), 140.7 (d, ⁴*J*_{C-F} = 1.7 Hz), 138.6, 131.7, 128.6, 128.2, 128.1, 127.0, 126.8, 123.9 (d, ³*J*_{C-F} = 6.8 Hz), 122.9, 115.3 (d, ²*J*_{C-F} = 21.8 Hz), 113.2 (d, ²*J*_{C-F} = 21.7 Hz), 112.8 (d, ³*J*_{C-F} = 7.3 Hz), 88.8, 83.7, 54.5, 50.3, 27.8, 25.1; HRMS (ESI) m/z Calcd for C₂₄H₂₀FN [M+H]⁺: 342.1658. Found: 342.1646.

N-Benzyl-2-ethynylbenzene-6-chloro-1,2,3,4-tetrahydroquinoline 9ja

Light yellow oil; 56% yield (50.0 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.38-7.23 (m, 11H), 7.00 (d, J = 2.4 Hz, 1H), 6.92 (dd, J = 8.8, 2.5 Hz, 1H), 6.44 (d, J = 8.8 Hz, 1H), 4.66-4.58 (ABq, J = 16.9 Hz, 2H), 4.45 (t, J = 3.6 Hz, 1H), 3.23 (ddd, J = 16.9, 10.9, 6.4 Hz, 1H), 2.75 (dt, J = 16.1, 3.8 Hz, 1H), 2.26-2.17 (m, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ 135.8, 131.2, 124.7, 121.7, 121.5, 121.2, 120.0, 119.8, 119.6, 116.9, 115.8, 114.5, 106.1, 81.7, 70.3, 70.0, 69.7, 47.0, 43.3, 20.6, 17.8; HRMS (ESI) m/z Calcd for C₂₄H₂₀ClN [M+H]⁺: 358.1363. Found: 358.1357.

N-Benzyl-2-ethynylbenzene-4-phenyl-1,2,3,4-tetrahydroquinoline 9ka

The configurations were assigned by the coupling constant of 2-H and 4-H according to our previous reports.^[4] *Trans/cis* isomer total yield: 59% (total weight: 58.9 mg), a mixture of *trans*-isomer and *cis*-isomer (*trans/cis* = 8:1) observed in the ¹H-NMR spectra. *trans*-isomer: light yellow oil; ¹H-NMR (400

MHz, CDCl₃): δ 7.42-7.31 (m, 8H), 7.26 (ddd, J = 11.4, 6.0, 1.8 Hz, 7H), 7.05-6.99 (m, 1H), 6.69 (dt, J = 7.5, 1.2 Hz, 1H), 6.63 (d, J = 8.3 Hz, 1H), 6.57 (td, J = 7.5, 0.8 Hz, 1H), 4.79-4.64 (ABq, J = 16.8 Hz, 2H), 4.47 (dt, J = 9.1, 5.0 Hz, 2H), 2.52-2.39 (m, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ 145.0, 144.5, 138.7, 131.7, 129.4, 128.9, 128.6, 128.5, 128.2, 128.1, 127.5, 126.9, 126.9, 126.5, 125.4, 122.9, 116.9, 112.1, 89.1, 83.9, 54.0, 49.5, 41.3, 36.8; HRMS (ESI) m/z Calcd for C₃₀H₂₆N [M+Na]⁺:422.1885. Found: 422.1879.

N-Benzyl-2-ethynylbenzene-4-n-buthyl-1,2,3,4-tetrahydroquinoline 9la

The configurations were assigned by the coupling constant of 2-H and 4-H according to our previous reports.^[4] *Trans/cis* isomer total yield: 67% (total weight: 63.5 mg), a mixture of *trans*-isomer and *cis*-isomer (*trans/cis* = 5:1) observed in the ¹H-NMR spectra. *trans*-isomer: light yellow oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.32-7.13 (m, 10H), 7.06 (d, *J* = 7.5 Hz, 1H), 6.96-6.89 (m, 1H), 6.64-6.57 (m, 1H), 6.50 (dd, *J* = 7.6, 4.4 Hz, 1H), 4.72-4.50 (ABq, *J* = 16.8 Hz, 2H), 4.45-4.35 (m, 1H), 3.00 (tt, *J* = 8.8, 4.9 Hz, 1H), 2.32-2.12 (m, 1H), 2.01 (ddd, *J* = 12.9, 8.3, 4.4 Hz, 1H), 1.81 (ddt, *J* = 15.3, 10.2, 5.2 Hz, 1H), 1.52 (dtt, *J* = 13.2, 8.6, 3.5 Hz, 1H), 1.43-1.26 (m, 4H), 0.90-0.82 (m, 3H); ¹³C-NMR (101 MHz, CDCl₃): δ 144.25, 138.93, 131.61, 128.48, 128.16, 127.99, 127.50, 127.17, 127.02, 126.87, 126.76, 126.58, 123.03, 116.80, 112.36, 89.58, 83.57, 53.85, 48.82, 36.27, 34.32, 33.93, 33.61, 28.86, 22.92, 14.08; HRMS (ESI) m/z Calcd for C₂₈H₃₀N [M+H]⁺: 380.2378. Found: 380.2371.

The configurations were assigned by the coupling constant of 2-H and 4-H according to our previous reports.^[4] *Trans/cis* isomer total yield: 51% (total weight: 43.0 mg),a mixture of *trans*-isomer and *cis*-isomer (*trans/cis* = 5:1) observed in the ¹H-NMR spectra. *trans*-isomer: light yellow oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.33-7.22 (m, 5H), 7.18 (dt, *J* = 9.2, 3.9 Hz, 5H), 7.10 (dt, *J* = 7.6, 1.2 Hz, 1H), 6.96-6.89 (m, 1H), 6.63 (dtd, *J* = 11.5, 7.4, 1.0 Hz, 1H), 6.48-6.44 (m, 5H), 4.67-4.53 (ABq, *J* = 17.0 Hz, 5H), 4.44-4.36 (m, 1H), 3.23 (dq, *J* = 11.6, 6.8, 5.8 Hz, 1H), 2.16 (dt, *J* = 12.9, 4.5 Hz, 1H), 2.03-1.88 (m, 1H), 1.34 (d, *J* = 6.8 Hz, 14H); ¹³C-NMR (101 MHz, CDCl₃): δ 143.90, 138.77, 131.70, 128.58, 128.18, 128.06, 127.33, 127.10, 126.83, 126.73, 126.53, 123.03, 117.37, 116.83, 112.80, 111.86, 89.65, 83.49,

53.89, 49.58, 36.60, 28.14, 20.37; HRMS (ESI) m/z Calcd for $C_{25}H_{24}N$ [M+H]⁺: 338.1909. Found: 338.1906.

N-Benzyl-2-(4-methoxyphenylethynyl)-1,2,3,4-tetrahydroquinoline 9ab

Light yellow oil; 58% yield (51.2mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.36-7.28 (m, 5H), 7.27-7.21 (m, 2H), 7.04-6.95 (m, 2H), 6.80-6.76 (m, 2H), 6.63 (t, *J* = 7.3 Hz, 1H), 6.53 (d, *J* = 8.2 Hz, 1H), 4.70-4.60 (ABq, *J* = 17.0 Hz, 2H), 4.45 (t, *J* = 3.7 Hz, 1H), 3.77 (s, 3H), 3.25 (dt, *J* = 16.5, 9.0 Hz, 1H), 2.77 (dt, *J* = 15.9, 3.9 Hz, 1H), 2.24-2.18 (m, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ 159.4, 144.3, 138.8, 133.1, 128.8, 128.5, 127.2, 126.8, 126.7, 122.3, 116.6, 115.1, 113.8, 111.8, 87.8, 83.2, 55.2, 53.8, 50.4, 25.0; HRMS (ESI) m/z Calcd for C₂₅H₂₄NO [M+H]⁺: 354.1858. Found: 354.1855.

N-Benzyl-2-(4-methylphenylethynyl)-1,2,3,4-tetrahydroquinoline 9ac

Light yellow oil; 75% yield (63.2 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.32 (q, *J* = 7.6 Hz, 4H), 7.23 (d, *J* = 6.7 Hz, 3H), 7.10-6.95 (m, 4H), 6.64 (t, *J* = 7.3 Hz, 1H), 6.54 (d, *J* = 8.2 Hz, 1H), 4.70 -4.60 (ABq, *J* = 16.9 Hz, 2H), 4.45 (t, *J* = 3.8 Hz, 1H), 3.25 (dt, *J* = 16.5, 8.8 Hz, 1H), 2.77 (dt, *J* = 16.1, 3.6 Hz, 1H), 2.31 (s, 3H), 2.22 (dq, *J* = 7.0, 3.8 Hz, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ 144.3, 138.9, 138.1, 131.6, 128.9, 128.9, 128.6, 127.2, 126.8, 126.7, 122.3, 120.0, 116.7, 111.9, 88.6, 83.5, 53.8, 50.4, 27.9, 25.0, 21.4; HRMS (ESI) m/z Calcd for C₂₅H₂₄N [M+H]⁺: 338.1909. Found: 338.1905.

N-Benzyl-2-(4-fluorophenylethynyl)-1,2,3,4-tetrahydroquinoline 9ad

Light yellow oil; 73% yield (62.2 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.36-7.27 (m, 6H), 6.98 (dt, J = 28.0, 8.2 Hz, 4H), 6.65 (t, J = 7.3 Hz, 1H), 6.54 (d, J = 8.2 Hz, 1H), 4.70-4.59 (ABq, J = 16.9 Hz, 2H), 4.45 (t, J = 3.9 Hz, 1H), 3.24 (dt, J = 16.6, 8.6 Hz, 1H), 2.79 (dt, J = 16.1, 3.7 Hz, 1H), 2.22 (dt, J = 8.3, 4.0 Hz, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ 162.3 (d, ¹ $J_{C-F} = 249.3$ Hz), 144.2, 138.7, 133.6 (d, ³ $J_{C-F} = 8.3$ Hz), 128.9, 128.6, 127.2, 126.9, 126.7, 122.2, 119.1 (d, ⁴ $J_{C-F} = 3.5$ Hz), 116.8, 115.4 (d, ² $J_{C-F} = 22.0$ Hz), 111.9, 89.0, 82.4, 53.9, 50.3, 27.8, 25.0; HRMS (ESI) m/z Calcd for C₂₄H₂₁FN [M+H]⁺: 342.1658. Found: 342.1643.

N-Benzyl-2-(4-chlorophenylethynyl)-1,2,3,4-tetrahydroquinoline 9ae

Light yellow oil; 60% yield (53.6 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.36-7.28 (m, 5H), 7.27-7.21 (m, 7H), 7.01 (dd, *J* = 16.8, 7.7 Hz, 3H), 6.65 (t, *J* = 7.3 Hz, 1H), 6.54 (d, *J* = 8.2 Hz, 1H), 4.70-4.58 (ABq, *J* = 16.9 Hz, 2H), 4.45 (t, *J* = 4.1 Hz, 1H), 3.23 (dt, *J* = 16.6, 8.6 Hz, 1H), 2.84-2.73 (m, 2H), 2.22 (dt, *J* = 8.4, 4.1 Hz, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ 144.1, 138.6, 134.0, 132.9, 128.9, 128.6, 128.5, 127.2, 126.9, 126.7, 122.1, 121.5, 116.9, 111.9, 90.3, 82.3, 53.9, 50.3, 27.7, 24.9; HRMS (ESI) m/z Calcd for C₂₄H₂₁ClN [M+H]⁺: 358.1363. Found: 358.1357.

N-Benzyl-2-(4-methylformatephenylethynyl)-1,2,3,4-tetrahydroquinoline 9af

Light yellow oil; 78% yield (74.3 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.94 (d, *J* = 8.3 Hz, 2H), 7.39 (d, *J* = 8.3 Hz, 2H), 7.35-7.33 (m, 3H), 7.26 (s, 3H), 7.02 (dd, *J* = 16.9, 7.7 Hz, 2H), 6.66 (t, *J* = 7.3 Hz, 1H), 6.56 (d, *J* = 8.2 Hz, 1H), 4.72-4.60 (ABq, *J* = 16.9 Hz, 2H), 4.49 (t, *J* = 3.8 Hz, 1H), 3.90 (s, 3H), 3.25 (dt, *J* = 16.6, 8.6 Hz, 1H), 2.80 (dt, *J* = 16.1, 3.8 Hz, 1H), 2.25 (dt, *J* = 8.4, 4.1 Hz, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ 166.5, 144.1, 138.6, 131.6, 129.4, 129.3, 128.9, 128.6, 127.7, 127.3, 126.9, 126.7, 122.1, 117.0, 111.9, 92.5, 82.8, 53.9, 52.2 50.4, 27.7, 25.0; HRMS (ESI) m/z Calcd for C₂₆H₂₄NO₂[M+H]⁺: 382.1807. Found: 382.1797.

4.4 Synthesis of natural alkaloids and important intermediates (Scheme 3)

Synthesis of 9dh and (±) galipinine 10 (Scheme 3, entry 1)

N-Methyl-*N*-(2-propynyl)aniline (**1d**), ZnBr₂ (11.3 mg, 0.05 mmol) and 4-ethynyl-1,2dimethoxybenzene (**8g**) (0.75 mmol, 81 μ l) in 1,2-dichloroethane (0.25 ml) were stirred at 120 °C for 24 hours in a closed vial tube protected with N₂. The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether : ethyl acetate= 30:1 (v/v)) to give *N*-benzyl-2-ethynylbenzene-1,2,3,4 tetrahydroquinoline **9dg** (64.7 mg, 80% yield) as light yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 7.13-7.07 (m, 1H), 7.03-6.99 (m, 1H), 6.96 (dd, J = 8.3, 1.9 Hz, 1H), 6.86 (d, J = 1.8 Hz, 1H), 6.75 (d, J = 8.3 Hz, 1H), 6.68 (t, J = 7.3 Hz, 2H), 4.35 (t, J = 3.8 Hz, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 3.18 (ddd, J = 16.2, 11.2, 6.3 Hz, 1H), 3.01 (s, 3H), 2.74 (dt, J = 16.0, 4.1 Hz, 1H), 2.27-2.13 (m, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ 149.2, 148.5, 145.0, 128.7, 127.1, 125.0, 122.6, 117.0, 115.2, 114.4, 111.8, 110.8, 87.0, 83.5, 55.9, 55.8, 51.8, 37.8, 27.8, 24.7; HRMS (ESI) m/z Calcd for C₂₀H₂₂NO₂ [M+H]⁺: 308.1651. Found: 308.1644.

Compound 9dg (42.6 mg, 0.14 mmol) and Pd/C (5% loading, 12.8 mg, 30%) in methanol (10 ml) were stirred at room temperature overnight protected by a hydrogen balloon. The resulting mixture was concentrated under reduced pressure to give (±) galipinine 10 (43.1 mg, 99%) as a white solid without further purification. ¹H-NMR (400 MHz, CDCl₃): δ 7.08 (t, J = 7.7 Hz, 1H), 6.98 (d, J = 7.3 Hz, 1H), 6.79 (d, J = 8.0 Hz, 1H), 6.72 (d, J = 10.0 Hz, 2H), 6.59 (t, J = 7.2 Hz, 1H), 6.53 (d, J = 8.2 Hz, 1H),3.86 (d, J = 5.7 Hz, 6H), 3.29 (dq, J = 8.4, 4.1 Hz, 1H), 2.92 (s, 3H), 2.85 (ddd, J = 17.7, 11.9, 6.4 Hz, 1H), 2.68 (ddd, J = 18.8, 9.5, 4.8 Hz, 2H), 2.53 (ddd, J = 13.9, 10.1, 6.5 Hz, 1H), 2.00-1.86 (m, 3H), 1.73 (dtd, J = 13.9, 9.5, 5.5 Hz, 1H); MS (ESI) m/z Calcd for $C_{20}H_{26}NO_2[M+H]^+$: 312.20. Found : data.^[3] 312.27. Spectral data accordance with are in the reported

Synthesis of 9di and (±) cuspareine 11 (Scheme 3, entry 1)

N-benzyl-*N*-(2-propynyl)aniline (**1d**). ZnBr₂ (11.3)mg, 0.05 mmol) and 4-ethynyl-1,2ylidenedioxybenzene (8h) (0.75 mmol, 81 µl) in 1,2-dichloroethane (0.25 ml) were stirred at 120 °C for 24 h in a closed vial tube protected with N₂. The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether : eluent ethyl acetate= 30:1 (v/v)) to give N-benzyl-2-ethynylbenzene-1,2,3,4 tetrahydroquinoline 9dh (64.7 mg, 80% yield) as light yellow oil. White solid; 58% yield (42.2 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.10 (td, J = 8.1, 1.4 Hz, 1H), 7.00 (d, J = 7.3 Hz, 1H), 6.88 (dd, J = 8.0, 1.6 Hz, 1H), 6.80 (d, J = 1.5 Hz, 1H), 6.70-6.63 (m, 2H), 5.93 (s, 2H), 4.33-4.30 (m, 1H), 3.21-3.11 (m, 1H), 2.99 (s, 3H), 2.73 (dt, J = 16.1, 4.2 Hz, 1H), 2.18 (ddtt, J = 9.9, 7.8, 6.1, 4.2 Hz, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ 147.7, 147.3, 145.1, 128.8, 127.1, 126.3, 122.7, 117.1, 116.4, 111.9, 111.8, 108.3, 101.2, 86.9, 83.5, 51.9, 37.9, 27.9, 24.8; HRMS (ESI) m/z Calcd for $C_{19}H_{18}NO_2[M+H]^+$: 292.1338. Found: 292.1330.

Compound **9dh** (55.6 mg, 0.19 mmol) and Pd/C (5% loading, 16.7 mg, 30%) in methanol (10 ml) were stirred at room temperature in a hydrogen autoclave (0.6 Mpa) for 6 hours protected by a hydrogen balloon. The resulting mixture was concentrated under reduced pressure to give 2-(2-(benzo[d][1,3]dioxol-5-yl)ethyl)-1-methyl-1,2,3,4-tetrahydroquinoline **11** (56.1 mg, 99%) as a white solid without further purification. ¹H-NMR (400 MHz, CDCl₃): δ 7.07 (t, *J* = 7.7 Hz, 1H), 6.97 (d, *J* = 7.2 Hz, 1H), 6.74-6.67 (m, 2H), 6.65-6.56 (m, 2H), 6.52 (d, *J* = 8.2 Hz, 1H), 5.91 (s, 2H), 3.26 (dq, *J* = 8.5, 4.1 Hz, 1H), 2.90 (s, 3H), 2.83 (ddd, *J* = 17.6, 11.5, 6.7 Hz, 1H), 2.65 (ddt, *J* = 23.9, 15.4, 4.9 Hz, 2H), 2.50 (ddd, *J* = 13.9, 9.9, 6.6 Hz, 1H), 1.95-1.83 (m, 3H), 1.70 (dtd, *J* = 14.2, 9.5, 5.5 Hz, 1H); MS (ESI-TOF) m/z Calcd for C₁₉H₂₂NO₂[M+H]⁺: 295.17. Found: 296.22. Spectral data are in accordance with the reported data.^[3]

Synthesis of compound 12 (Scheme 3, entry 2)

Compound **9ca** (0.25 mmol, 68.2 mg) and Grubbs-II catalyst (0.01 mmol, 8.5 mg) in toluene (1.5 ml), were stirred at 110 ° C for 40 hours. The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (dichloromethane: petroleum ether = 1:4 (V:V)) to give 3-(1-phenylvinyl)-4,5-dihydropyrrolo[1,2-a]quinoline **12** (24.0 mg, 51% yield) as white solid. ¹H-NMR (400 MHz, CDCl₃): δ 7.44 (dd, *J* = 7.8, 1.6 Hz, 2H), 7.36-7.27 (m, 5H), 7.21 (d, *J* = 7.1 Hz, 1H), 7.17 (d, *J* = 3.1 Hz, 1H), 7.06 (td, *J* = 7.4, 1.1 Hz, 1H), 6.27 (d, *J* = 3.0 Hz, 1H), 5.39 (d, *J* = 1.6 Hz, 1H), 5.22 (d, *J* = 1.6 Hz, 1H), 2.81-2.76 (m, 2H), 2.64 (dd, *J* = 8.2, 5.7 Hz, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ 143.9, 142.3, 136.6, 128.8, 128.0, 128.0, 127.8, 127.6, 127.4, 127.4, 123.9, 120.9, 115.2, 114.2, 112.5, 111.2, 26.7, 21.6; HRMS (ESI) m/z Calcd for C₂₄H₂₀ClN [M+H]⁺: 272.1439. Found: 272.1425.

4.5 Isotopic labeling experiments (Scheme 4, Scheme 5)

Eq 1: 1a (0.25 mmol, 55.3 mg), ZnBr₂ (0.025 mmol, 11.3 mg) and *d*-**13** (0.75 mmol, 87.9 mg) in 1,2dichloroethane (250 μ l) were stirred at 120 ° C for 3 hours in a closed vial tube protected with N₂. The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether : eluent ethyl acetate = 30:1 (v/v)) to give the final product *d*-**22a** (13.0 mg, yield: 16%; *d*-incorporation: C3: 18%, C4: 10%), *d*-**1a** (47.2 mg, yield: 84%; *d*-incorporation:

32%), no *d*-1a' was detected or isolated. They were characterized by ¹H-NMR. The deuterium atom at the C2-position (92% *d*) of *d*-13 might have been not only transferred to C3-position (18% *d*) and C4-position (10% *d*) of *d*-22a, but also transferred to terminal alkyne (32% *d*) of *d*-1a.

Eq 2: 1k (0.25 mmol, 74.3 mg), ZnBr₂ (0.025 mmol, 11.3 mg) and *d*-13 (0.75 mmol, 87.9 mg) in 1,2dichloroethane(250 μ l) were stirred at 120 °C for 24 hours in a closed vial tube protected with N₂. The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether : eluent ethyl acetate = 30:1 (v/v)) to give the *d*-22k (83.0 mg, yield: 80%; *d*-incorporation: C3: 35%), 1k (6.8 mg, yield: 9%), and no *d*-1k' was detected or isolated. They were characterized by ¹H-NMR. The deuterium atom at the C2-position (92%*d*) of *d*-13 can be transferred to C3-position (35%*d*) of *d*-22k, but cannot be transferred to 1k' (with no active terminal alkyne).

Eq 1: 1a (0.25 mmol, 55.3 mg), ZnBr₂ (0.025 mmol, 11.3 mg) and *d*-**8a** (0.75 mmol, 81 µl) in 1,2dichloroethane(250 µl) were stirred at 120 °C for 24 hours in a closed vial tube protected with N₂. The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether : eluent ethyl acetate = 30:1 (v/v)) to give the final product *d*-**9aa**, characterized by ¹H-NMR. The deuterium atom at the terminal alkyne (93% *d*) of *d*-**8a** might have been transferred to C3-position (52% *d*) and C4-position (29% *d*) of *d*-**9aa** according to the ¹H-NMR spectrum of *d*-**9aa**.

Eq 2: *d*-1a (0.25 mmol, 55.9 mg), ZnBr₂ (0.025 mmol, 11.3 mg) and phenylacetylene (8a) (0.75 mmol, 81 μ l) in 1,2-dichloroethane(250 μ l) were stirred at 120 °C for 24 hours in a closed vial tube protected with N₂. The resulting mixture was concentrated under reduced pressure. The residue was purified by

silica gel column chromatography (petroleum ether : eluent ethyl acetate = 30:1 (v/v)) to give the final product *d*-**9aa**, and characterized by ¹H-NMR. The deuterium atom at the terminal alkyne (93% *d*) of *d*-**8a** might have been transferred to C3-position (10% *d*) and C4-position (16% *d*) of *d*-**9aa** according to the ¹H-NMR spectrum of *d*-**9aa**.

Eq 3: *d*-**1a'** (0.25 mmol, 55.8 mg), ZnBr₂ (0.025 mmol, 11.3 mg) and phenylacetylene (**8a**) (0.75 mmol, 81 μ l) in 1,2-dichloroethane(250 μ l) were stirred at 120 °C for 24 hours in a closed vial tube protected with N₂. The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether : eluent ethyl acetate = 30:1 (v/v)) to give the final product *d*-**9aa**, and characterized by ¹H-NMR. The deuterium atom at the C2 position of *d*-**1a'** (99% d) might have been transferred to C4-position (56% *d*) of *d*-**9aa** according to the ¹H-NMR spectrum of *d*-**9aa**.

5. Synthesis of starting materials

Synthesis of N-benzyl-N-(2-propynyl)anilines 1a,1g-i^[4]

To a solution of anilines (15 mmol) in acetonitrile (40 mL) was added potassium carbonate (2.76 g, 20 mmol) followed by propargyl bromide (0.75 mL, 10 mmol) and the resultant mixture was stirred for 24 h at room temperature. The reaction mixture was filtered and concentrated to afford the crude residue, which was purified by silica gel column chromatography to afford *N*-(prop-2-ynyl)anilines. To a solution of *N*-(2-propynyl)anilines (5 mmol) in acetonitrile (10 mL) was added potassium carbonate (1.38 g, 10 mmol) followed by benzyl bromide (0.9 mL, 7.5 mmol) and the resultant mixture was stirred 12 h at room temperature. The reaction mixture was filtered and concentrated to afford the crude residue, which was purified by silica gel column chromatography (hexane : ethyl acetate = 30 : 1 (v:v)) to afford *N*-benzyl-*N*-(2-propynyl)anilines.

N-Benzyl-N-(2-propynyl)aniline 1a

Yellow oil; 88% yield (0.97 g); ¹H-NMR (400 MHz, CDCl₃): δ 7.33 (d, J = 4.7 Hz, 4H), 7.30-7.22 (m, 3H), 6.91 (d, J = 8.1 Hz, 2H), 6.82 (t, J = 7.3 Hz, 1H), 4.56 (s, 2H), 4.03 (d, J = 2.2 Hz, 2H), 2.22 (t, J = 2.3 Hz, 1H). Spectral data are in accordance with the reported data.^[4]

N-Benzyl-N-(2-propynyl)-4-methoxyaniline 1g

White solid; 81% yield (1.01 g); ¹H-NMR (400 MHz, CDCl₃): δ 7.36-7.25 (m, 5H), 6.92 (d, *J* = 9.0 Hz, 2H), 6.83 (d, 2H), 4.43 (s, 2H), 3.91 (d, *J* = 2.2 Hz, 2H), 3.76 (s, 3H), 2.22 (t, *J* = 2.1 Hz, 1H). Spectral data are in accordance with the reported data.^[4]

N-Benzyl-N-(2-propynyl)-4-methylaniline 1h

Yellow oil; 80% yield (0.94 g); ¹H-NMR (400 MHz, CDCl₃): δ 7.42-7.16 (m, 5H), 7.07 (d, J = 8.2 Hz, 2H), 6.84 (d, J = 8.4 Hz, 1H), 4.50 (s, 2H), 3.98 (d, J = 1.9 Hz, 1H), 2.26 (s, 3H), 2.20 (t, J = 2.0 Hz, 1H). Spectral data are in accordance with the reported data.^[4]

N-Benzyl-N-(2-propynyl)-4-fluoroaniline 1i

Yellow oil; 80% yield (0.96 g); ¹H-NMR (400 MHz, CDCl₃): δ 7.38-7.23 (m, 6H), 6.95 (t, J = 8.6 Hz, 2H), 6.86 (dd, J = 9.0, 4.4 Hz, 2H), 4.47 (s, 2H), 3.95 (d, J = 1.6 Hz, 2H), 2.23 (t, J = 2.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 156.6 (d, ¹ $J_{C-F} = 237.5$ Hz), 145.5 (d, ⁴ $J_{C-F} = 2.2$ Hz), 138.2, 128.6, 127.4, 127.3, 116.4 (d, ³ $J_{C-F} = 7.5$ Hz), 115.5 (d, ² $J_{C-F} = 22.2$ Hz), 79.4, 72.4, 55.8, 40.6; HRMS (ESI) m/z Calcd for C₁₆H₁₅FN [M+H]⁺: 240.1189. Found: 240.1181.

N-Benzyl-N-(2-propynyl)-4-chloroaniline 1j

Yellow oil; 81% yield (1.04 g); ¹H-NMR (400 MHz, CDCl₃) : δ 7.31 (dt, J = 14.3, 6.6 Hz, 5H), 7.17 (d, J = 7.8 Hz, 2H), 6.79 (d, J = 7.8 Hz, 2H), 4.51 (s, 2H), 3.99 (d, J = 2.3 Hz, 2H), 2.25-2.20 (t, J = 2.3 Hz, 1H). Spectral data are in accordance with the reported data.^[4]

Synthesis of *N*, *N*-diphenyl-*N*-(2-propynyl)amine 1b^[4]

To a dry dimethylformamide solution (30 mL) of diphenylamine (3.38 g, 20 mmol) was added 60% NaH (0.96 g, 24 mmol) at 0 °C under N₂, and the mixture was stirred for 30 min at room temperature. Then propargyl bromide (1.80 ml, 24 mmol) was added to the reaction media and let stirring continue for 4 h. The reaction was quenched by saturated NH₄Cl aqueous solution and the mixture was extracted three times with ethyl acetate. The combined organic layer was washed with saturated aqueous NaCl solution, dried over anhydrous MgSO₄, and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 30 : 1 (v:v)) give to **1b** (2.60 g, 63% yield) as light yellowish oil. ¹H-NMR (400 MHz, CDCl₃): δ 7.30 (td, *J* = 7.4, 2.0 Hz, 4H), 7.12-7.04 (m, 4H), 7.05-6.96 (m, 2H), 4.41 (d, *J* = 2.3 Hz, 2H), 2.22 (t, *J* = 2.4 Hz, 1H). Spectral data are in accordance with the reported data.^[4]

Synthesis of *N*-allyl-*N*-(2-propynyl)aniline 1c^[4]

To a solution of the *N*-propargyl aniline (655.9 mg, 5.0 mmol) in acetonitrile (8.0 mL) at room temperature was added potassium bicarbonate (1.5g, 10 mmol) and potassium iodide (0.5 mmol, 83.0 mg), followed by adding allyl bromide (907.3 mg, 648.0 µl, 7.5 mmol), and tthe reaction solution was stirred for 12 hours. Filtered the inorganic salt and then the solvent was evaporated and the oily residue was purified with silica gel column chromatography (petroleum ether : ethyl acetate = 30 : 1 (v:v)) to give **1c** (427.5 mg, 50% yield) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ 7.29-7.22 (m, 2H), 6.87 (d, *J* = 8.2 Hz, 2H), 6.80 (t, *J* = 7.3 Hz, 1H), 5.90 (ddt, *J* = 17.0, 10.3, 5.2 Hz, 1H), 5.31-5.17 (m, 3H), 4.02 (d, *J* = 2.3 Hz, 2H), 3.97 (d, *J* = 5.2 Hz, 2H), 2.19 (t, *J* = 2.3 Hz, 1H). Spectral data are in accordance with the reported data.^[4]

Synthesis of *N*-methyl-*N*-(2-propynyl)anilines 1d^[4]

To a solution of *N*-(2-propynyl)aniline (1.31 g, 10 mmol) in dimethylformamide (40 mL) was added potassium carbonate (2.07 g, 15 mmol) followed by iodomethane (0.93 mL, 15 mmol) at 0 °C and the resultant mixture was stirred over night at room temperature. The reaction was quenched by water and the mixture was extracted three times with ethyl acetate. The combined organic layer was washed with saturated aqueous NaCl solution, dried over anhydrous MgSO₄, and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane : ethyl acetate = 30 : 1 (V:V)) to give **1d** (1.23 g, 85 % yield) as colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ 7.31-7.24 (m, 3H), 6.88 (d, *J* = 7.9 Hz, 2H), 6.83 (t, *J* = 7.2 Hz, 1H), 4.06 (d, *J* = 2.3 Hz, 2H), 2.98 (s, 3H), 2.18 (t, *J* = 2.3 Hz, 1H). Spectral data are in accordance with the reported data.^[4]

Synthesis of Ethyl-N-phenyl-N-(prop-2-yn-1-yl)glycinate 1e^[5]

A solution of *N*-phenylpropargylamine (656 mg, 5.0 mmol), K_2CO_3 (1.50 g, 10 mmol) and ethyl bromoacetate (947 µL, 10 mmol) in acetonitrile (10 mL) was heated to 80 °C overnight. The suspension is filtered and washed with EtOAc (20 mL). The residue was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20 : 1 (v:v)) to give **1e** (0.71 g, 66 % yield) as colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ 7.25 (tt, *J* = 7.4, 2.2 Hz, 2H), 6.84-6.76 (m, 3H), 4.19 (q, *J*)

= 7.1 Hz, 2H), 4.15 (d, J = 2.4 Hz, 2H), 4.12 (s, 2H), 2.27 (t, J = 2.4 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃): δ 167.2, 144.1, 125.5, 115.1, 110.0, 75.8, 57.4, 48.8, 37.4, 10.5; HRMS (ESI) m/z Calcd for C₁₃H₁₆NO₂ [M+H]⁺: 218.1181. Found: 218.1172.

Synthesis of *N*-(2-chloroethyl)-*N*-(prop-2-yn-1-yl)aniline 1f^[6]

(1) *N*-(2 hydroxyethyl)aniline (1.03g, 7.5 mmol) was added to a 300 mL round-bottom flask followed by CH_2Cl_2 (80 mL). The resulting solution was cooled in an ice bath before addition of C_2Cl_6 (2.0 g, 8.3 mmol). To this system, PPh₃ (2.2 g, 8.3 mmol) was slowly added in portions using a powder funnel. After complete addition of PPh₃, the funnel was washed with CH_2Cl_2 (20 mL). The reaction was subsequently left to warm to room temperature overnight. The resulting white precipitate was collected, added to H_2O (15 mL), and quenched with 3 equiv of saturated NaHCO₃ aq. The product was extracted with CH_2Cl_2 (3×30mL) and dried with Na₂SO₄. After solvent removal on a rotary evaporator, the very pale yellow oil was further dried over Na₂SO₄ (1.07 g, 92% yield).

(2) *N*-chloroethylaniline (1.0 g, 6.9 mmol) in anhydrous acetonitrile (20 ml) , adding potassium carbonate (1.9 g, 13.8 mmol), then 3-bromopropyne (1.2 g, 10.4 mmol), were stirred at room temperature for 48 h. The crude product was washed with ethyl acetate into a flask, and concentrated under reduced pressure to give a crude product. Finally, the crude product is purified by silica gel column chromatography(petroleum ether: methylene chloride = 3:1 (v/v)), to give product (461.7 mg, 35% yield) as pale yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 7.31-7.24 (m, 2H), 6.83 (dd, *J* = 13.8, 7.7 Hz, 3H), 4.09 (d, *J* = 2.3 Hz, 2H), 3.76-3.67 (m, 4H), 2.23 (t, *J* = 2.3 Hz, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ 147.0, 129.4, 118.6, 113.6, 79.7, 72.4, 53.3, 40.7, 40.6; HRMS (ESI) m/z Calcd for C₁₁H₁₃ClN [M+H]⁺: 194.0737, Found: 194.0726.

Synthesis of N-benzyl-N-(2-propynyl)anilines 1k, 1l

A mixture of aniline (0.47 g, 0.46 mL, 5.0 mmol), formaldehyde (40% aqueous solution) (0.83 g, 0.76 mL, 11.0 mmol), phenylboronic acid (0.64 g, 5.25 mmol), alkyne (6.0 mmol), Copper(II) acetate (0.09 g, 10 mol%) and 1, 2-dichloroethane (15 mL) was stirred in a sealed glass tube at 80 °C for 24 hours. After completion of the reaction, the reaction solution was filtered. After evaporating the solvents in vacuum, the residue was purified by silica gel column chromatography (hexane : ethyl acetate = 30 : 1 (v:v)) to give the pure products.

N-Benzyl-N-(3-phenyl-2-propynyl)aniline 1k

Yellow oil; 75% yield (1.12 g); ¹H-NMR (500 MHz; CDCl₃): δ 7.35-7.31 (m, 6H), 7.27-7.24 (m,6H), 6.94 (d, J = 8.0 Hz, 2H), 6.80 (t, J = 7.5 Hz, 1H), 4.62 (s, 2H), 4.24 (s, 2H). Spectral data are in accordance with the reported data.^[4]

N-Benzyl-N-(2-heptynyl)aniline 11

Yellow oil; 70% yield (0.97 g); ¹H-NMR (500 MHz; CDCl₃): δ 7.31-7.29 (m, 4H), 7.24-7.19 (m, 3H), 6.87 (d, J = 8.0 Hz, 2H), 6.76 (t, J = 7.5 Hz, 1H), 4.54 (s, 2H), 3.99 (t, J = 2.0 Hz, 2H), 2.17-2.13 (m, 2H), 1.47-1.42 (m, 2H), 1.41-1.32 (m, 2H), 0.88 (t, J = 7.5 Hz, 3H). Spectral data are in accordance with the reported data.^[4]

Synthesis of *N*-benzyl-*N*-(2-propynyl)anilines 1m^[7]

To a solution of anilines (7.5 mmol) in acetonitrile (20 mL) was added potassium carbonate (1.4 g, 10 mmol) followed by 1-bromo-2-butyne (455 µl, 5 mmol) and the resultant mixture was stirred at room temperature for 12 h. The reaction mixture was filtered and concentrated to afford the crude residue, which was purified by silica gel column chromatography to afford *N*-(3-methyl-2-butyne)anilines. To a solution of *N*-(3-methyl-2-butyne)anilines (2.6 mmol) in acetonitrile (10 mL) was added potassium carbonate (0.7 g, 5.2 mmol) followed by benzyl bromide (463 µl, 3.9 mmol) and the resultant mixture was stirred at room temperature for12 h. The reaction mixture was filtered and concentrated to afford the crude residue, which was purified by silica gel column chromatography (hexane : ethyl acetate = 30 : 1 (v:v)) to give *N*-Benzyl-*N*-(3-methyl-2-butyne)anilines (420.8 mg, 69% yield) as colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ 7.35-7.29 (m, 4H), 7.23 (t, *J* = 7.0 Hz, 3H), 6.87 (d, *J* = 7.6 Hz, 2H), 6.77 (t, *J* = 7.2 Hz, 1H), 4.55 (s, 2H), 3.98 (s, 2H), 1.80 (d, *J* = 2.0 Hz, 3H); ¹³C-NMR (151 MHz, CDCl₃): δ 149.0, 138.9, 129.2, 128.6, 127.1, 127.0, 117.9, 114.0, 79.8, 75.0, 55.1, 40.2, 3.7. Spectral data are in accordance with the reported data.^[7]

Synthesis of Acetylene substrate^[8]

(1) $[Pd(PPh_3)_4]$ (288.9 mg, 0.25, 5.0 mol%), CuI (95.2mg, 0.05 mmol, 10.0mol%), 4-bromo aromatic ether (5.0 mmol, 1.0 equiv.) and triethylamine (2.0 mL) were dissolved in dry THF (2.5 mL). Then trimethylsilylacetylene (850 µl, 6.0 mmol, 1.2 equiv) was added to the reaction mixture slowly. The resulting mixture was stirred at 50 °C for 24 h in a closed vial protected by N₂. The mixture was cooled to room temperature and passed through a short pad of celite using ethyl acetate, then concentrated under reduced pressure. The residue was used for the next step without any further purification.

(2) The crude silvlated product was dissloved in THF (10 mL), and TBAF (0.65 g, 0.5 equiv) was added portion wise into the flask under N_2 atmosphere at 0 °C. The resulting mixture was stirred at room temperature for 1 h. The mixture was extracted with ethyl acetate (100 mL) and washed with water (100 mL). After drying over with Na₂SO₄, the solvent was concentrated under reduced pressure and purified by silica gel chromatographic (hexane as eluent).

4-Ethynyl-1,2-dimethoxybenzene (8g)

Brown solid; 73% yield (591.0 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.11 (dd, J = 8.3, 1.5 Hz, 1H), 6.99 (d, J = 1.4 Hz, 1H), 6.80 (d, J = 8.3 Hz, 1H), 3.88 (d, J = 4.8 Hz, 6H), 3.00 (s, 1H). Spectral data are in accordance with the reported data.^[8]

4-Ethynyl-1,2-ylidenedioxybenzene(8g)

Brown solid; 64% yield (521.7.0 mg). ¹H-NMR (400 MHz, CDCl₃): δ 7.02 (d, J = 8.0 Hz, 1H), 6.93 (s, 1H), 6.75 (d, J = 8.0 Hz, 1H), 5.97 (s, 2H), 2.97 (s, 1H). Spectral data are in accordance with the reported data.^[8]

Synthesis of *d*-1a^[9]

Propargyl aniline **1a** (0.95 mmol, 210.0 mg) was dissolved in Et₂O (20 ml), then added *n*-BuLi (in hexane , 1.6 M, 846 μ l, 1.35 mmol) drop wise at 0 °C. The mixture was allowed to warm to room temperature and was stirred for 1 h. After the quench by D₂O (1 ml), the mixture was dried over with MgSO₄ and decanted. The residure was concentrated in vacuo to give *d*-**1a** (197.0 mg, 93% yield) as colorless liquid. The ¹H-NMR peak at 2.21 ppm completely disappeared compared to 1a indication more than 99% incorporation.

Synthesis of *d*-1a' ^[10]

(1) A suspension of lithium aluminum deuteride (LiAlD₄) (2.4 g, 57.7 mmol) in ether (150 mL) was cooled to -50 °C under nitrogen in a two neck round-bottomed flask. A solution of Methyl propiolate (5.1 g, 61.22 mmol) in ether (50 mL) was added drop wise over a period of 60 min with continuous stirring. The reaction mixture was stirred for another 90 min at -30 °C, and was allowed to cool to room temperature slowly over a period of 3 h and the stirred overnight. The reaction mixture was quenched by successive drop-wise addition of H₂O (3 mL), NaOH (0.22 g in 1.5 mL H₂O) and H₂O (2 mL). The solid was allowed to settle and decanted. The residual solid was washed with ether (2 X 50 mL) and the washings were collected. The combined liquid was dried over MgSO₄ and the ether was evaporated under vaccum. The residual liquid was subjected to distillation under reduced pressure at 650 mbar. The fraction between 60 and 90 °C was collected to give the desired product. The final product was obtained as colorless oil (1.4 g, 42%) without further purification.

(2) To the stirred solution of Deuterated propynol (1.2 g, 20.66 mmol) in dichloromethane (15 mL) at -5 $^{\circ}$ C under nitrogen, phosphorus tribromide (PBr₃) (6.0 g, 22.38 mmol) was added drop wise. The solution was stirred at that temperature for 1 h, heated up to room temperature and stirred for three more hours. The reaction mixture was quenched at 0 $^{\circ}$ C with H₂O (15.0 mL). The organic layer was washed successively with saturated NaHCO₃ (25.0 mL) and H₂O (25.0 mL) and dried over MgSO₄. The solvent was evaporated carefully and the final product was obtained as colorless oil (1.8 g, 15.0 mmol, 72.6%)

and was analyzed by NMR. The product was considered pure enough for the next step without further purification.

(3) *N*-benzylaniline was dissolved (2.5 mmol, 460.0 mg) in anhydrous acetonitrile (10.0 ml), adding anhydrous potassium carbonate (690.0 mg) and *d*-bromopropyne (5.0 mmol, 610.0 mg) and stired at room temperature for 24 h. The reaction mixture was filtered and concentrated to afford the crude residue, which was purified by silica gel column chromatography (hexane : ethyl acetate = 30 : 1) to give *d*-1a' (21.3 mg, 4% yield) as colorless liquid. The ¹H-NMR double peak at 4.03 ppm completely disappeared compared to 1a indicating more than 99% incorporation.

Synthesis of d-8a

The phenylacetylene **8a** (5.0 mmol, 550 μ l) was dissolved in acetonitrile (12.0 ml), stirred at room temperature for 0.5 hours. Deutirium oxide (2.26 ml) was added and stirred for 1 h. Finally, it was dried over by anhydrous MgSO₄, and filtered to give a acetonitrile solution, and concentrated under reduced pressure to give *d*-**8a** (270.1 mg, yield 52%, *d* incorpotation 93%) as light yellow liquid. The ¹H-NMR peak at 3.07 ppm almost disappeared compared to **8a**.

Synthesis of *d*-13^[4]

Indole (2.0 g, 17 mmol) was stirred in a 0.01 M solution of DCl in D₂O (20 mL) at 60°C for 4 h under N₂. The reaction was cooled and extracted three times with dry Et₂O (20 mL). The organic layers were combined, dried over MgSO₄ and filtered and reduced under vacuum. The resulting oil was triturated in pentane to afford a colorless solid. The solid ([1,3- 2 H]Indole) was dissolved in a mixture of Et₂O (20 mL) and H₂O (10 mL) and stirred for 2 h at room temperature. The layers were separated and the aqueous layer extracted twice with Et₂O (20 mL). The organic layers were combined, dried over MgSO₄ and filtered and reduced under vacuum to give [3- 2 H]Indole (*d*-13, 0.88 g, 44% yield) as colorless solid. The ¹H-NMR peak at 6.55 ppm completely disappeared compared to indole indication more than 92% incorporation.

6. References

[1] H. Wang, M. Dong, C. Liu, D. Zhang, Catal. Sci. Technol, 2018, 8, 1997.

[2] S. Gilberto, B. Annalida, L. Simone, M. Michele, C. Daniel-Henri, J. A. Boutin, D. Philippe, L. Valeria, S. Francesco, L. Alessio, *J. Med. Chem*, 2015, **58**, 7512.

- [3] M. Pappoppula, F. S. Cardoso, B. O. Garrett, A. Aponick, Angew. Chem. Int. Ed, 2015, 54, 15202.
- [4] G. Li, H. Nakamura, Angew. Chem. Int. Ed, 2016, 55, 6758.
- [5] P. P. Lange, A. R. Bogdan, K. James, Adv. Synth. Catal, 2012, 354, 2373.
- [6] R. T. Baker, J. C. Gordon, C. W. Hamilton, N. J. Henson, P. Lin, S. Maguire, M. Murugesu, B. L. Scott, N. C. Smythe, *J. Am. Chem. Soc*, 2012, **134**, 5598.
- [7] A. Saito, S. Oda, H. Fukaya, Y. Hanzawa, J. Org. Chem, 2009, 74, 1517.
- [8] Y. Jeong, J. Lee, J. Ryu, Bioorgan. Med. Chem, 2016, 24, 2114.
- [9] T. Sugiishi, H. Nakamura, J. Am. Chem. Soc, 2012, 134, 2504.

[10]S. Nag, L. Lehmann, G. Kettschau, M. Toth, T. Heinrich, A. Thiele, A. Varrone, C. Halldin, *Bioorgan. Med. Chem*, 2013, **21**, 6634.

7. Copies of ¹H-NMR, ¹³C-NMR spectra

N-Benzyl-2-nitromethyl-6-methoxyl-1,2,3,4-tetrahydroquinoline 3g (¹³C-NMR)

N-Benzyl-2-nitromethyl-6-fluoro-1,2,3,4-tetrahydroquinoline 3i (¹³C-NMR)

N-Benzyl-2-nitromethyl-6-chloro-1,2,3,4-tetrahydroquinoline 3j (¹³C-NMR)

N-Benzyl-2-nitromethyl-4-phenyl-1,2,3,4-tetrahydroquinoline 3k (¹H-NMR)

N-Benzyl-2-nitromethyl-4-phenyl-1,2,3,4-tetrahydroquinoline 3k (¹³C-NMR)

4.5 f1 (ppm)

4.0

3.5

9.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

2

3.0

2.5

2.0

1.5

1.0

0.5

0.0

N-Allyl-2-ethynylbenzene-1,2,3,4-tetrahydroquinoline 9ca (¹H-NMR)

N-Benzyl-2-ethynylbenzene-6-fluoro-1,2,3,4-tetrahydroquinoline 9ia (¹³C-NMR)

N-Benzyl-2-ethynylbenzene-6-chloro-1,2,3,4-tetrahydroquinoline 9ja (¹³C-NMR)

N-Benzyl-2-ethynylbenzene-4-phenyl-1,2,3,4-tetrahydroquinoline 9ka (¹H-NMR)

N-Benzyl-2-ethynylbenzene-4-*n*-butyl-1,2,3,4-tetrahydroquinoline 9la (¹H-NMR)

N-Benzyl-2-ethynylbenzene-4-methyl-1,2,3,4-tetrahydroquinoline 9ma (¹H-NMR) 33419 34419

9.0 8.5 5.5 5.0 4.5 f1 (ppm) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 8.0 7.5 7.0 6.5 6.0

0.0

N-Benzyl-2-(4-methylphenylethynyl)-1,2,3,4-tetrahydroquinoline 9ac (¹H-NMR)

N-Benzyl-2-(4-fluorophenylethynyl)-1,2,3,4-tetrahydroquinoline 9ad (¹H-NMR)

N-Benzyl-2-(4-methylformatephenylethynyl)-1,2,3,4-tetrahydroquinoline 9af (¹H-NMR)

N-Benzyl-2-(3,4-dimethoxyphenylethynyl)-1,2,3,4-tetrahydroquinoline 9dg (¹H-NMR)

N-Benzyl-2-(3,4-dimethoxymethylenephenylethynyl)-1,2,3,4-tetrahydroquinoline 9dh (¹H-NMR)

N-Benzyl-2-(3,4-dimethoxyhenylethane)-1,2,3,4-tetrahydroquinoline 10 (¹H-NMR)

N-Benzyl-2-(3-indolyl)-1,2,3,4-tetrahydroquinoline 22a (¹H-NMR)

Compound d-9aa (¹H-NMR)

N-Phneyl-*N*-(2-propynyl)aniline 1b (¹H-NMR)

fl (ppm)

N-(2-Chloroethyl)-*N*-(prop-2-yn-1-yl)aniline 1f (¹H-NMR)

4-Methyl-N-benzyl-N-(2-propynyl)aniline 1h (¹H-NMR)

4-Chloro-N-benzyl-N-(2-propynyl)aniline 1j (¹H-NMR)

