Supplementary Information

Direct Access to Pentenedinitriles via Ni-Catalyzed

Dihydrocyanation of 1,3-Enynes

Feilong Sun, Jihui Gao and Xianjie Fang*

E-mail: fangxj@sjtu.edu.cn.

Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China

Table of Contents

1. General information	S2
2. Preparation of substrates 1	S3
3. Investigating the nickel-catalyzed dihydrocyanation of 1a	S4
4. Scope of the dihydrocyanation of 1	S7
5. Unsuccessful 1,3-enynes	S18
6. Scale-up synthesis of 3a	S18
7. Synthesis of poly-substituted pyridine 4 and 5	S19
8. Deuterium-labeling experiment for the hydrocyanation of 6	S21
9. NMR Spectra	S22
10. References	S56

1. General information

All air and moisture sensitive manipulations were carried out with standard Schlenk technique or in a nitrogen-filled glovebox (Vigor). Dried and oxygen free solvents were obtained from solvent purification system (Vigor YJC-7) and used thereafter. Column chromatography was performed using 200-300 mesh silica gels. The NMR spectra were recorded on a Bruker-400/500 MHz instrument and chemical shifts are reported in ppm relative to the residual deuterated solvents. High-resolution mass spectra (HRMS) were performed at Instrumental Analysis Center of Shanghai Jiao Tong University with electrospray spectrometer Waters Micromass Q-TOF Premier Mass Spectrometer. GC yields were determined by Shimadzu Nexis GC-2030. Ni(cod)₂ was purchased from LaaJoo. The substrates and reagents for catalytic reactions were degassed and stored in the glovebox.

2. Preparation of substrates 1

General procedure A:

$$\begin{array}{cccc} & Pd(PPh_{3})_{2}Cl_{2} \ (2 \ mol\%) \\ Cul \ (4 \ mol\%) \\ Cul \ (4 \ mol\%) \\ \hline \\ Br & + & = -R \end{array} \xrightarrow[THF \ (0.5 \ M), r.t. \ overnight \\ \hline \\ \begin{array}{c} \mathbf{S1} \\ \mathbf{S2} \\ (1.3 \ equiv.) \end{array} \xrightarrow[THF \ (0.5 \ M), r.t. \ overnight \\ \hline \\ \end{array} \xrightarrow[THF \ (0.5 \ M), r.t. \ overnight \\ \hline \\ \begin{array}{c} \mathbf{1} \end{array}$$

Following a known procedure,¹ CuI (38 mg, 0.2 mmol) and Pd(PPh₃)₂Cl₂ (70 mg, 0.1 mmol) were dissolved in triethylamine (2 mL) under argon gas in a sealed tube. Phenylacetylene (5.0 mmol, 1.0 equiv.) and vinylbromide (6.5 mmol, 1.3 equiv., 1.0 M in THF) were added and the resulting mixture was stirred at room temperature until complete conversion of the starting material was observed from TLC. The reaction mixture was diluted with Et₂O (10 mL) and washed with saturated aqueous NH₄Cl (5 mL), H₂O (3 x 20 mL), and brine (20 mL), dried over Na₂SO₄, and concentrated in vacuum. Purification by column chromatography afforded enyne 1.

The 1,3-envnes **1a-x**, **1aa** were prepared according to the procedure A.

General procedure B:

CuI (57 mg, 0.30 mmol) and Pd(PPh₃)₄ (173 mg, 0.15 mmol) were dissolved in diethylamine (6.0 mL) under argon gas in a sealed tube. Phenylacetylene (5.0 mmol, 1.0 equiv.) and vinylbromide (5.0 mmol, 1.0 equiv.) were added and the resulting mixture was stirred at room temperature until complete conversion of the starting material was observed from TLC. The reaction mixture was diluted with Et₂O (10 mL) and washed with saturated aqueous NH₄Cl (5 mL), H₂O (3 x 20 mL), and brine (20 mL), dried over Na₂SO₄, and concentrated in vacuum. Purification by column chromatography afforded envne 1.

The 1,3-envnes **1y-z** were prepared according to the procedure B.

3. Investigating the nickel-catalyzed dihydrocyanation of 3a

Summary of results: All ligands shown in Table S1 were ineffective for the dihydrocyanation reaction.

Summary of results: Catalyst loading has great effect on the reaction and this phenomenon was shown by GC-MS analysis.

Figure S2. Effect of HCN source

HCN source: Toluene and acetone cyanohydrin

HCN source: MeOH and acetone cyanohydrin

Summary of results: Compared with acetone cyanohydrin as HCN source, the TMSCN and MeOH showed excellent chemselectivity and reactivity.

4. Scope of the dihydrocyanation of 1

General procedure C: To a flame-dried reaction tube equipped with a Teflon-coated magnetic stir bar, were added Ni(cod)₂ (20 mol%, 11.0 mg), dppp (20 mol%, 16.5 mg) and MeOH (1.0 mL) in glovebox. The mixture was stirred at room temperature for 1 min. Next, alkynes **1** (0.2 mmol, 1.0 equiv) and TMSCN **2** (120 μ L, 1.0 mmol, 5.0 equiv.) (*caution: TMSCN should be handled carefully because it is a highly toxic chemical*) were added successively. Then the reaction was removed out of glove box and heated at 80 °C for 3 h. The reaction mixture was diluted with DCM (1 mL). After the solvent was removed under reduced pressure, the residue was purified by column chromatography to afford the desired products **3**.

(Z)-4-methyl-2-phenylpent-2-enedinitrile (3a)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a yellow oil (65% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.53 (m, 2H), 7.49-7.42 (m, 3H), 6.70 (d, *J* = 8.0 Hz, 1H), 4.01 (dq, *J* = 8.0, 8.0 Hz, 1H), 1.62 (d, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.3, 131.3, 130.4, 129.3, 126.1, 119.5, 119.1, 114.8, 27.8, 18.8. HRMS (ESI) calcd for [C₁₂H₁₁N₂]⁺ ([M+H])⁺: 183.0917, found:183.0921.

(Z)-2-([1,1'-biphenyl]-4-yl)-4-methylpent-2-enedinitrile (3b)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a white solid (50% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.71-

7.58 (m, 6H), 7.50-7.44 (m, 2H), 7.40 (m, 1H), 6.74 (d, J = 8.0 Hz, 1H), 4.14-3.86 (dq, J = 8.0, 8.0 Hz, 1H), 1.64 (d, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 139.6, 137.9, 130.1, 129.0, 128.1, 127.9, 127.1, 126.5, 119.2, 119.1, 114.8, 27.9, 18.9. HRMS (ESI) calcd for $[C_{18}H_{16}N_3]^+$ ([M+NH₂]⁺): 274.1344, found: 274.1344.

(Z)-4-methyl-2-(p-tolyl)pent-2-enedinitrile (3c)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a colorless oil (77% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 7.48-7.39 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 6.64 (d, *J* = 8.0Hz, 1H), 3.99 (dq, *J* = 8.0, 8.0 Hz, 1H), 2.39 (s, 3H), 1.60 (d, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 137.1, 129.9, 128.5, 125.9, 119.3, 119.2, 115.0, 27.8, 21.3, 18.9. **HRMS** (EI) calcd for [C₁₃H₁₂N₂]⁺: 196.0995, found: 196.0994.

(Z)-2-(4-cyclohexylphenyl)-4-methylpent-2-enedinitrile (3d)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a colorless oil (79% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.44 (m, 2H), 7.32-7.22 (m, 2H), 6.64 (d, J = 8.0 Hz, 1H), 3.99 (dq, J = 8.0, 8.0 Hz, 1H), 2.60-2.46 (m, 1H), 1.90-1.81 (m, 4H), 1.79-1.71 (m, 1H), 1.60 (d, J = 8.0Hz, 3H), 1.38 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 137.2, 128.8, 127.7, 126.0, 119.3, 119.2, 115.0, 44.3, 34.2, 27.8, 26.7, 26.0, 18.9. HRMS (EI) calcd for [C₁₈H₂₀N₂]⁺: 264.1621, found: 264.1619.

(Z)-4-methyl-2-(4-(trimethylsilyl)phenyl)pent-2-enedinitrile (3e)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a colorless oil (78% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 8.0 Hz, 2H), 6.71 (d, J = 8.0 Hz, 1H), 4.01 (dq, J = 8.0, 8.0 Hz, 1H), 1.61 (d, J = 8.0 Hz, 3H), 0.29 (s, 9H). ¹³C NMR (100 MHz, CDCl3) δ 143.9, 138.3, 134.2, 131.5, 125.2, 119.5, 119.1, 114.8, 27.8, 18.8, -1.29. HRMS (EI) calcd for [C₁₅H₁₈N₂Si]⁺: 254.1234, found: 254.1231.

(Z)-2-(4-methoxyphenyl)-4-methylpent-2-enedinitrile (3f)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a colorless oil (81% yield).¹**H** NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.0 Hz, 2H), 6.94 (d, J = 8.0 Hz, 2H), 6.55 (d, J = 12.0 Hz, 1H), 3.98 (dq, J = 8.0, 8.0 Hz, 1H), 3.85 (s, 3H), 1.60 (d, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.3, 135.8, 127.5, 123.8, 119.3, 118.8, 115.1, 114.6, 55.5, 27.8, 18.9. **HRMS** (EI) calcd for [C₁₃H₁₂N₂O]⁺: 212.0944, found: 212.0941.

(Z)-4-methyl-2-(4-(methylthio)phenyl)pent-2-enedinitrile (3g)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a yellow solid (70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.46 (m, 2H), 7.31-7.28 (m, 2H), 6.66 (d, J = 9.0 Hz, 1H), 4.01 (dq, J = 8.0, 8.0 Hz, 1H), 2.53 (s, 3H), 1.63 (d, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 137.0, 127.6, 126.3, 126.2, 119.2, 118.9, 114.8, 27.8, 18.9, 15.1. HRMS (EI) calcd for [C₁₃H₁₂N₂S]⁺: 228.0716, found: 228.0714.

(Z)-2-(4-(dimethylamino)phenyl)-4-methylpent-2-enedinitrile (3h)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a yellow solid (36% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.42 (m, 2H), 6.75-6.66 (m, 2H), 6.45 (d, *J* = 8.0 Hz, 1H), 3.99 (dq, *J* = 8.0, 8.0 Hz, 1H), 3.04 (s, 6H), 1.60 (d, *J* = 8.0 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 151.5, 132.4, 127.1, 119.7, 119.1, 118.7, 115.4, 111.9, 40.1, 27.7, 19.1. HRMS (EI) calcd for [C₁₄H₁₅N₃]⁺: 225.1260, found: 225.1258.

(Z)-2-(3-hydroxyphenyl)-4-methylpent-2-enedinitrile (3i)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/4, v/v) gave the product as a yellow solid (55% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 7.32 (t, J = 8.0 Hz, 1H), 7.14 (d, J = 12.0 Hz, 1H), 7.06 (s, 1H), 6.94 (dd, J = 8.0, 4.0 Hz, 1H), 6.71 (d, J = 8.0 Hz, 1H), 5.75 (s, 1H), 4.02 (dq, J = 8.0, 8.0 Hz, 1H), 1.64 (d, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.5, 138.6, 132.7, 130.6, 119.1, 119.1, 118.3, 117.6, 114.8, 113.0, 27.8, 18.8. **HRMS** (EI) calcd for [C₁₂H₁₀N₂O]⁺: 198.0788, found: 198.0783.

(Z)-4-methyl-2-(4-(trifluoromethoxy)phenyl)pent-2-enedinitrile (3j)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a colorless oil (55% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 12.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 6.71 (d, J = 12.0 Hz, 1H), 4.03 (dq, J = 8.0,

8.0 Hz, 1H), 1.65 (d, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 139.2, 129.9, 127.7, 121.5, 118.8, 118.2, 114.4, 27.9, 18.7. ¹⁹F NMR (377 MHz, CDCl₃) δ - 57.8. HRMS (ESI) calcd for $[C_{13}H_{11}F_{3}N_{3}O]^{+}$ ([M+NH₂]⁺): 282.0854, found: 282.0855.

(Z)-4-methyl-2-(4-(trifluoromethyl)phenyl)pent-2-enedinitrile (3k)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a colorless oil (45% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (m, 4H), 6.80 (d, *J* = 8.0 Hz, 1H), 4.03 (dq, *J* = 8.0, 8.0 Hz, 1H), 1.64 (d, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.7, 134.6, 132.5, 132.3, 132.2, 126.5, 126.4, 126.3, 118.7, 118.40, 114.2, 27.9, 18.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.0. HRMS (EI) calcd for [C₁₃H₉F₃N₂]⁺: 250.0712, found: 250.0709.

methyl (Z)-4-(1,3-dicyanobut-1-en-1-yl)benzoate (3l)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/4, v/v) gave the product as a yellow solid (35% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.19-8.08 (m, 2H), 7.73-7.63 (m, 2H), 6.83 (d, J = 8.0 Hz, 1H), 4.05 (dq, J = 8.0, 8.0 Hz, 1H), 3.97 (s, 3H), 1.66 (d, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 140.4, 135.3, 131.8, 130.5, 126.1, 118.8, 118.7, 114.4, 52.5, 27.9, 18.7. HRMS (EI) calcd for [C₁₄H₁₂N₂O₂]⁺: 240.0893, found: 240.0889.

(Z)-2-(4-fluorophenyl)-4-methylpent-2-enedinitrile (3m)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v)

gave the product as a yellow solid (65% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.62 - 7.49 (m, 2H), 7.18-7.10 (m, 2H), 6.63 (d, J = 8.0 Hz, 1H), 3.99 (dq, J = 8.0, 8.0 Hz, 1H), 1.61 (d, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 162.6, 138.2, 138.1, 128.1, 128.0, 127.5, 127.4, 119.0, 118.4, 116.6, 116.4, 114.7, 27.9, 18.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -109.44. HRMS (EI) calcd for [C₁₂H₉FN₂]⁺: 200.0744, found: 200.0741.

(Z)-2-(4-chlorophenyl)-4-methylpent-2-enedinitrile (3n)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a yellow solid (60% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.53 - 7.46 (d, J = 8.0 Hz, 2H), 7.44-7.40 (d, J = 8.0 Hz, 2H), 6.68 (d, J = 8.0 Hz, 1H), 3.91(dq, J = 8.0, 8.0 Hz, 1H), 1.62 (d, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.7, 136.6, 129.8, 129.6, 127.3, 118.9, 118.4, 114.5, 27.9, 18.8. HRMS (EI) calcd for [C₁₂H₉ClN₂]⁺: 216.0449, found: 216.0447.

(Z)-2-(4-bromophenyl)-4-methylpent-2-enedinitrile (30)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a yellow solid (42% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.61-7.54 (m, 2H), 7.46-7.37 (m, 2H), 6.69 (d, J = 8.0 Hz, 1H), 3.99 (dq, J = 8.0, 8.0 Hz, 1H), 1.62 (d, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.8, 132.5, 130.2, 127.5, 124.9, 118.8, 118.5, 114.4, 27.9, 18.7. HRMS (EI) calcd for [C₁₂H₉BrN₂]⁺: 259.9944, found: 259.9941.

(Z)-4-methyl-2-(4-(prop-1-en-2-yl)phenyl)pent-2-enedinitrile (3p)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a white solid (74% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 4H), 6.69 (d, J = 8.0 Hz, 1H), 5.45 (s, 1H), 5.18 (s, 1H), 4.01 (dq, J = 8.0, 8.0 Hz, 1H), 2.16 (s, 3H), 1.61 (d, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.3, 142.0, 137.7, 130.1, 126.3, 126.0, 119.2, 119.1, 114.8, 114.2, 27.8, 21.6, 18.8. HRMS (ESI) calcd for $[C_{15}H_{16}N_3]^+$ ($[M+NH_2]^+$): 238.1344, found: 238.1345.

(Z)-4-methyl-2-(4-((trimethylsilyl)ethynyl)phenyl)pent-2-enedinitrile (3q)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a yellow solid (48% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.49 (m, 4H), 6.73 (d, J = 12.0 Hz, 1H), 4.01 (dq, J = 8.0, 8.0 Hz, 1H), 1.64 (d, J = 8.0Hz, 3H), 0.28 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 138.7, 132.7, 131.0 125.8, 125.4, 118.9, 118.9, 114.5, 103.7, 97.4, 27.9, 18.8, -0.16. HRMS (EI) calcd for [C₁₇H₁₈N₂Si]⁺: 278.1234, found: 278.1230.

(Z)-4-methyl-2-(naphthalen-2-yl)pent-2-enedinitrile (3r)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a white solid (78% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.88 (m, 3H), 7.58 (m, 3H), 6.82 (d, J = 12.0 Hz, 1H), 4.18-3.97 (m, 1H), 1.65 (d, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.2, 133.8, 133.0, 129.3, 128.6, 128.5, 127.8, 127.7, 127.3, 127.1, 121.8, 119.5, 119.2, 114.9, 28.0, 18.9. HRMS (EI)

calcd for [C₆H₁₂N₂]⁺: 232.0995, found: 232.0991.

(Z)-2-(9,9-dimethyl-9H-fluoren-2-yl)-4-methylpent-2-enedinitrile (3s)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a yellow solid (76% yield).¹**H NMR** (400 MHz, CDCl₃) δ 7.80 - 7.70 (m, 2H), 7.60 (m, 1H), 7.56-7.52 (m, 1H), 7.50-7.43 (m, 1H), 7.40-7.35 (m, 2H), 6.75 (d, *J* = 8.0 Hz, 1H), 4.05 (dq, *J* = 8.0, 8.0 Hz, 1H), 1.65 (d, *J* = 8.0 Hz, 3H), 1.52 (s, 6H).¹³**C NMR** (100 MHz, CDCl₃) δ 154.7, 154.1, 141.7, 137.8, 137.3, 130.1, 128.4, 127.3, 125.4, 122.8, 120.7, 120.6, 120.3, 119.8, 119.3, 115.1, 47.1, 27.9, 27.0, 18.9. **HRMS** (EI) calcd for [C₂₁H₁₈N₂]⁺: 298.1465, found: 298.1460.

(Z)-4-methyl-2-(thiophen-2-yl)pent-2-enedinitrile (3t)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a yellow solid (55% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, *J* = 4.0, 4.0 Hz, 1H), 7.41 (dd, *J* = 4.0, 4.0 Hz, 1H), 7.24 (dd, *J* = 4.0, 4.0 Hz, 1H), 6.56 (d, *J* = 12.0 Hz, 1H), 3.94 (dq, *J* = 8.0, 8.0 Hz, 1H), 1.60 (d, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 136.5, 133.4, 128.1, 125.6, 123.8, 119.1, 114.8, 114.3, 27.6, 18.9. HRMS (EI) calcd for [C₁₀H₈N₂S]⁺: 188.0403, found: 188.0398.

(Z)-2-(benzo[d][1,3]dioxol-5-yl)-4-methylpent-2-enedinitrile (3u)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a white solid (69% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.08 (dd, J = 8.0, 4.0 Hz, 1H), 6.99 (d, J = 1.6 Hz, 1H), 6.85 (d, J = 8.0 Hz, 1H), 6.52 (d, J = 1.6 Hz, 1H), 6.85 (d, J = 8.0 Hz, 1H), 6.52 (d, J = 0.0 Hz, 1H),

8.0 Hz, 1H), 6.03 (s, 2H), 3.96 (dq, J = 8.0, 8.0 Hz, 1H), 1.59 (d, J = 8.0 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 149.6, 148.7, 136.3, 125.5, 121.2, 119.2, 118.9, 114.9, 108.7, 105.6, 101.9, 27.8, 18.9. HRMS (EI) calcd for $[C_{13}H_{10}N_2O_2]^+$: 226.0737, found: 226.0732.

(Z)-4-methyl-2-(1-methyl-1H-indol-5-yl)pent-2-enedinitrile (3v)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a yellow solid (85% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 1.6Hz, 1H), 7.44-7.34 (m, 2H), 7.14 (d, J = 4.0 Hz, 1H), 6.65 (d, J = 8.0 Hz, 1H), 6.57 (d, J = 4.0 Hz, 1H), 4.05 (dq, J = 8.0, 8.0 Hz, 1H), 3.84 (s, 3H), 1.64 (d, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 137.4, 135.3, 130.6, 128.7, 122.8, 120.4, 119.7, 119.6, 119.0, 115.6, 110.0, 102.0, 33.1, 27.9, 19.0. HRMS (EI) calcd for $[C_{15}H_{13}N_3]^+$: 235.1104, found: 235.1103.

(Z)-2-(1-benzyl-1H-pyrazol-4-yl)-4-methylpent-2-enedinitrile (3w)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/3, v/v) gave the product as a colorless oil (66% yield, Z/E = 11/1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.73 (s, 1H), 7.59 (s, 1H), 7.44-7.34 (m, 3H), 7.30-7.25 (m, 2H), 6.40 (d, J = 8.0 Hz, 1H), 5.32 (s, 2H), 4.02-3.81 (m, 1H), 1.57 (d, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 136.6, 135.3, 134.4, 129.1, 128.6, 128.1, 127.9, 119.2, 115.9, 114.7, 110.5, 56.6, 27.4, 18.9. **HRMS** (ESI) calcd for [C₁₆H₁₅N₄]⁺ ([M+H]⁺): 263.1291, found: 263.1299.

(Z)-2-(cyclohex-1-en-1-yl)-4-methylpent-2-enedinitrile (3x)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a colorless oil (55% yield). ¹**H NMR** (500 MHz, CDCl₃) δ 6.42 (t, J = 7.2 Hz, 1H), 6.07 (d, J = 8.0 Hz, 1H), 3.88 (dq, J = 8.0, 8.0 Hz, 1H), 2.28-2.20 (m, 2H), 2.18-2.07 (m, 2H), 1.76-1.68 (m, 2H), 1.66-1.57 (m, 2H), 1.52 (d, J = 8.0 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 134.2, 133.5, 130.5, 121.6, 119.6, 114.4, 27.5, 25.9, 24.7, 22.0, 21.6, 19.0. **HRMS** (EI) calcd for [C₁₂H₁₄N₂]⁺: 186.1151, found: 186.1149.

(Z)-4-ethyl-2-phenylpent-2-enedinitrile (3y)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a light yellow oil (68% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.62 -7.56 (m, 2H), 7.51-7.44 (m, 3H), 6.70 (d, J = 8.0 Hz, 2H), 3.95 (dt, J = 8.0, 8.0, 1H), 2.09 -1.83 (m, 2H), 1.21 (t, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 137.3, 131.4, 130.4, 129.3, 126.1, 120.1, 118.3, 115.0, 35.1, 26.8, 11.4. **HRMS** (EI) calcd for [C₁₃H₁₂N₂]⁺: 196.0995, found: 196.0997.

(Z)-4-(4-chlorobutyl)-2-phenylpent-2-enedinitrile (3z)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a light yellow oil (63% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.61-7.55 (m, 2H), 7.49-7.45 (m, 3H), 6.70 (d, J = 8.0 Hz, 1H), 3.95 (dt, J = 8.0, 8.0, 1H), 3.60 (t, J = 8.0 Hz, 2H), 2.09-1.96 (m, 1H), 1.94 -1.84 (m, 3H), 1.81-1.70 (m,

2H). ¹³C NMR (100 MHz, CDCl₃) δ 137.0, 131.3, 130.5, 129.3, 126.1, 120.3, 118.1, 115.0, 44.1, 33.5, 32.4, 31.6, 24.2. **HRMS** (EI) calcd for $[C_{15}H_{15}CIN_2]^+$: 258.0918, found: 258.0917.

(Z)-4-methyl-2-((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17decahydro-6H-cyclopenta[a]phenanthren-3-yl)pent-2-enedinitrile (3aa)

Purification using column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product as a white solid (70% yield). ¹H NMR (400 MHz, DMSO) δ 7.42-7.36 (m, 3H), 7.24 (d, *J* = 8.0 Hz, 1H), 4.11 (dq, *J* = 8.0, 8.0 Hz, 1H), 2.95-2.85 (m, 2H), 2.47-2.22 (m, 4H), 2.13 -1.89 (m, 4H), 1.83-1.74 (m, 1H), 1.60-1.45 (m, 6H), 1.42-1.35 (m, 1H), 0.83 (s, 3H).¹³C NMR (100 MHz, DMSO) δ 142.4, 140.3, 137.9, 129.2, 126.7, 126.5, 123.6, 120.4, 117.5, 115.6, 50.0, 47.7, 44.3, 37.8, 35.8, 31.7, 29.2, 27.5, 26.2, 25.6, 21.6, 18.5, 13.9. HRMS (ESI) calcd for [C₂₄H₂₆N₂NaO]⁺ ([M+Na]⁺): 381.1937, found: 381.1938.

5. Unsuccessful 1,3-enynes

6. Scale-up synthesis of 3a

To a flame-dried reaction tube equipped with a Teflon-coated magnetic stir bar, were added Ni(cod)₂ (20 mol%, 275.0 mg), dppp (20 mol%, 412.0 mg) and MeOH (10 mL) in glovebox. The mixture was stirred at room temperature for 1 min. Next, alkyne **1a** (5.0 mmol, 1.0 equiv.) and TMSCN **2** (3.0 mL, 25.0 mmol, 5.0 equiv.) (*caution: TMSCN should be handled carefully because it is a highly toxic chemical*) were added successively. Then the reaction was removed out of glove box and heated at 80 °C for 3 h. The reaction mixture was diluted with DCM (20 mL). After the solvent was removed under reduced pressure, the residue was purified by column chromatography to afford the desired product **3a** (591 mg, yield: 65%).

7. Synthesis of poly-substituted pyridine 4 and 5.

5-bromo-2-methyl-6-phenylpyridin-3-amine (4)

Following the reported procedure with a slight modification,³ dinitrile **3a** (36.4 mg, 0.2 mmol) in AcOH (0.5 mL) was added dropwise to 30% HBr in AcOH (0.2 g) at 0 °C. The reaction mixture was stirred at 0 °C for 30 min and then quenched with saturated NaHCO₃ solution. The resulting mixture was extracted with dichloromethane three times, and the combined organic phase was dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) gave the product **4** as a yellow solid (89% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.47-7.35 (m, 5H), 7.28 (s, 1H), 4.68 (s, 2H), 2.14 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 156.0, 141.0, 139.5, 136.5, 129.6, 129.0, 128.1, 127.4, 115.4, 16.3. **HRMS** (ESI) calcd for [C₁₂H₁₂BrN₂]⁺ ([M+H]⁺): 263.0178, found: 263.0179.

2-methyl-6-phenylpyridine (5)

To a solution of dinitrile (**3a**) (36.4mg, 0.2mmol) in toluene (6.0 mL) were added DIBAL–H (0.8 mmol, 4.0 equiv.) at -78 °C. The reaction mixture was stirred for 2.5 h at -78 °C and then quenched with 5% H₂SO₄ aqueous solution at 0 °C. The reaction mixture was partitioned between Et₂O (10 mL) and brine (10 mL). The aqueous phase was extracted with Et₂O. The combined organic layers were dried over Na₂SO₄ and concentrated to dryness. The resulting residue was purified by flash column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) to give the colorless oil **5** (92% yield). ¹H NMR (400 MHz, DMSO) δ 8.69 (d, *J* = 2.4 Hz, 1H), 8.42 (d, *J* = 1.2 Hz, 1H), 7.90 (s, 1H), 7.74-7.69 (m, 2H), 7.53-7.47 (m, 2H), 7.45-7.38 (m, 1H), 2.38 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 149.3, 145.3, 137.6, 135.5, 135.0, 133.5,

129.6, 128.5, 127.3, 18.4. **HRMS** (ESI) Calcd for $[C_{12}H_{12}N]^+$ ([M+H]⁺) 170.0964, found 170.0966.

8. Deuterium-labeling experiment for the hydrocyanation of 6

To a flame-dried reaction tube equipped with a Teflon-coated magnetic stir bar, were added Ni(cod)₂ (20 mol%, 11.0 mg), dppp (20 mol%, 16.5 mg) and CD₃OD (1.0 mL) in glovebox. The mixture was stirred at room temperature for 1 min. Next, 6^2 (0.2 mmol, 1.0 equiv.) and TMSCN (120 µL, 1.0 mmol, 5.0 equiv.) (*caution: TMSCN should be handled carefully because it is a highly toxic chemical*) were added successively. Then the reaction was removed out of glove box and heated at 80 °C for 3 h. The reaction mixture was diluted with DCM (1 mL). After the solvent was removed under reduced pressure, the residue was purified by column chromatography to afford the desired product.

9. NMR Spectra

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10. References

- (1) (a) Huang, Y. M.; del Pozo, J.; Torker, S.; Hoveyda. A. H. J. Am. Chem. Soc.
 2018, 140, 2643–2655. (b) Yu, S.; Sang, H. L.; Zhang, S. Q.; Hong, X.; Ge, S. Commun. Chem. 2018, 1, 64. (c) Zhang, Y.; Yu, B.; Gao, B.; Zhang, T.; Huang, H. Org. Lett. 2019, 21, 535–539.
- (2) Kowalkowska, A.; Suchołbiak, D.; Jonczyk. A. Eur. J. Org. Chem. 2005, 925–933.
- (3) Johnson, F.; Panella, J. P.; Carlson, A. A.; Hunneman, D. H. J. Org. Chem. 1962, 27, 2473–2478.