Electronic Supplementary Information

One Electron Reduction Transforms High-Valent Low-Spin Cobalt Alkylidene into High-

Spin Cobalt(II) Carbene Radical

Amanda Grass,^a James A. Bellow,^a Gregory Morrison,^b Hans-Conrad zur Loye,^b Richard L.

Lord,^c* Stanislav Groysman^a*

^aDepartment of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA.

^bDepartment of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA

^cDepartment of Chemistry, Grand Valley State University, Allendale, MI, 49401, USA.

Table of Contents

1. Synthesis and characterization of complexes	S3
2. X-ray crystallographic details and structures of 3a and 5	S7
3. Evans' method formula and procedure	S10
4. NMR and GC-MS spectra	S11
5. IR spectra	S20
6. UV-vis spectra	S23
7. SQUID measurements	S26
8. Computational data	S29
9. Scheme demonstrating quinoidal distortion in the structures of 2 and 3	S40
10. References	S41

1. Synthesis and Characterization of Complexes

General. All reactions involving air-sensitive materials were executed in a nitrogen-filled glovebox standard Schlenk line procedures. Cobalt chloride. or by bis(pentamethylcyclopentadienyl)cobalt(II), 2,6-dimethylphenyl isocyanide, and trimethoxybenzene were purchased from Sigma-Aldrich. Adamantyl isocyanide was purchased from Alfa Aesar. Potassium graphite and thallium hexafluorophosphate were purchased from Strem. The syntheses of complexes 1 and 2 were reported previously.^{1,2} Diphenyldiazomethane were synthesized according to a reported literature procedure.³ All solvents were purchased from Fisher Scientific and were of HPLC grade. The solvents were purified using an MBRAUN solvent purification system and stored over 3 Å molecular sieves. Deuterated benzene (C_6D_6) was purchased from Cambridge Laboratories and deuterated tetrahydrofuran (THF-d₈) was obtained from Sigma Aldrich. Both were degassed under argon, and stored over 3 Å molecular sieves. The complexes were characterized using NMR, IR, and UV/vis spectroscopy, X-ray crystallography, SQUID magnetometry, elemental analysis, and solution magnetometry by the Evans method. NMR and GC-MS spectra were recorded at the Lumigen Instrument Center (Wayne State University). NMR was performed on a Varian Mercury or Agilent 400 MHz Spectrometer in C_6D_6 or THF-d₈ at room temperature. Chemical shifts and coupling constants (J) were reported in parts per million (δ) and hertz (Hz), respectively. IR spectra of powdered samples were recorded on a Shimadzu IR Affinity-1 FT-IR Spectrometer outfitted with a MIRacle10 attenuated total reflectance accessory with a monolithic diamond crystal stage and pressure clamp. UV-visible spectra were obtained on a Shimadzu UV-1800 spectrometer. SQUID magnetometry was performed at the Magnetic Properties Measurement System Facility

at University of South Carolina. Elemental analyses were performed by Midwest Microlab LLC. Formation of the ketenimine and organic byproducts was confirmed by GC-MS using Agilent 6890N spectrometer, Thermo TG5MS 30 m \times 0.32 mm \times 0.25 µm column, 7683 series injector, and Agilent 5973 detector.

Synthesis of $[Co(OR_2)(CPh_2)][CoCp*_2]$ (3). A suspension of $CoCp_2*$ (46 mg, 0.138 mmol) in diethyl ether was added to a stirring dark-brown ether solution of $Co(OR)_2(CPh_2)$ (2, 85 mg, 0.128 mmol) at -35°C. There was an immediate color change to lighter brown. The reaction was allowed to warm to room temperature and stirred for 1 hour. The solution was filtered, washed with diether ether, dissolved in THF, filtered, and dried in vacuo. Subsequent recrystallization of a THF solution layered with diethyl ether at -35°C yields X-ray quality crystals of **3** (76 mg, 60% yield). ¹H NMR (400 MHz, THF-d₈) δ 108.4 (5H, Ph), δ 45.4 (1H, OR-Ph), δ 11.4 (2H, OR-Ph), δ 8.10 (5H, OR-Ph), δ 7.74 (4H, OR-Ph), δ 6.19 (18H, OR-'Bu), -4.46 (30H, Cp*), -44.22 (5H, Ph). IR (cm⁻¹): 2974 (w), 2947 (w), 2885 (w), 1558 (m), 1474 (m), 1377 (m), 1280 (w), 1142 (w), 1061 (s), 1022 (w), 945 (m), 891 (m), 844 (w), 799 (w), 741 (m), 702 (s). λ_{max} ($\epsilon_{M (L}^{-1} cm^{-1} mol^{-1})$) 500 nm (2040), 648 nm (760), 712 nm (590). μ_{eff} (Evans method) = 4.2 ± 0.2 μ_{B} (calcd 4.9). Anal. Calcd for $C_{63}H_{92}O_2Co_2: C, 75.72; H, 9.28$, Found: C, 76.08; H, 8.92.

Synthesis of $[Co(OR_2)(CPh_2)][K(18-crown-6)]$ (4). A THF solution of 18-crown-6 (41 mg, 0.154 mmol) in was added to a stirring dark-brown THF solution of $Co(OR)_2(CPh_2)$ (88 mg, 0.132 mmol), followed by a suspension of KC₈ (24 mg, 0.175 mmol) in THF. There was a color change to russet brown after 5 minutes and the reaction was stirred for 1 hour at room temperature. Solvent was removed in vacuo to afford a brown residue. The residue was dissolved in a solution of 15:1 diethyl ether:THF, filtered, and washed with additional diethyl ether. The filtrate was concentrated in vacuo. Subsequent recrystallization at -35 °C yields crystals of 4 (50

mg, 39% yield). IR (cm⁻¹): 2970 (w), 2940 (w), 2886 (w), 1473 (w), 1350 (w), 1103 (s), 1065 (s), 964 (m), 748 (m), 702 (s). $\lambda_{max} (\epsilon_{M (L}^{-1} cm^{-1} mol^{-1}) 503 \text{ nm} (620), 651 \text{ nm} (200), 712 \text{ nm} (160).$ Anal. Calcd for C₅₅H₈₀O₈Co: C, 68.30; H, 8.34 Found: C, 67.97; H, 8.37.

Reaction of [Co(OR₂)(CPh₂)][CoCp*₂] with 2,6-dimethylphenyl isocyanide. A benzene solution of CN(2,6-Me₂C₆H₃) (40 mg, 0.303 mmol) in benzene was added to a stirring solution of [Co(OR₂)(CPh₂)][CoCp*₂] (93 mg, 0.0962 mmol) in benzene at room temperature. There was a color change to dark purple-black after 20 minutes and solution was stirred for an additional 2 hours. Solvent was removed in vacuo to afford a dark purple residue. The residue was dissolved in diethyl ether, filtered, and washed with additional diethyl ether. The filtrate was concentrated in vacuo and subsequent recrystallization at -35°C yielded mixture of X-ray quality crystals of orange $Co_2(CN(2,6-Me_2C_6H_3))_8$ (5) and purple $CoCp_2*(Me_2C_5Me_2C(H)(n^2C(CN(2,6-Me_2C_6H_3)))_8))_8$ 3))(C(H)Ph₂) (6). The products display similar solubility in organic solvents and crystallize together. Orange and purple crystals were mechanically separated to give 22 mg (20% yield) of 5 and 22 mg (49%) of 6, and further characterized. Synthesis, spectroscopic and structural characterization of orange $Co_2(CN(2,6-Me_2C_6H_3))_8$ was previously reported.⁴ ¹H NMR spectrum of 5 matched literature spectrum and is reported below. ¹H NMR (400 MHz, C_6D_6) of 5: δ 6.78 (br, 24H), 2.39 (s, 48H). 6 was characterized by X-ray crystallography, IR spectroscopy, ¹H NMR spectroscopy, and UV-vis spectroscopy. IR (cm⁻¹): 2917 (w), 2855 (w), 2381 (w), 2045 (s), 2014 (s), 1667 (s), 1582 (m), 1458 (m), 1373 (w), 1188 (m), 1126 (w), 1057 (w), 957 (m), 764 (m), 741 (m), 656 (s).¹H NMR (400 MHz, C_6D_6) δ 7.53 (d, 4H, o-Ph), δ 7.16 (t, 8H, m-Ph.), δ 7.08 (t, 3H, NC₆H₃), 6.98 (t, 2H, p-Ph.), δ 5.34(s, 1H, Me₂C₅Me₂CH), δ 3.82 (s, 6H, CHPh₂), 2.22 (s, 6H, $Me_2C_6H_3$), δ 1.58 (bs, 6H, $Me_2C_5Me_2CH$), δ 1.33 (s, 15H, Cp^*), δ 1.27 (s, 6H, $Me_2C_5Me_2CH$). $\lambda_{max} (\epsilon_{M (L} cm^{-1} mol^{-1})) 550 (12071).$

Reaction of $[Co(OR_2)(CPh_2)][K(18-crown-6)]$ with 2,6-dimethylphenyl isocyanide. A solution of $CN(2,6-Me_2C_6H_3)$ (8.7 mg, 0.0663 mmol) in benzene/ether was added to a stirring solution of $[Co(OR)_2(CPh_2)][K(18-crown-6)]$ (50 mg, 0.0519 mmol) in benzene/ether at -35°C. There was a color change to dark green immediately and solution was stirred for 45 minutes, after which the solution transitions to a greenish brown. Solvent was removed in vacuo to afford a dark brown-green residue. The residue was washed repeatedly with hexanes. ¹H NMR of the residue shows formation of the previously reported ketenimine⁵ and $Co_2(CN(2,6-Me_2C_6H_3))_8$ (5).⁴ The hexane washings were concentrated at -35 °C to afford 5 in 18% yield.

Reaction of [Co(OR₂)(CPh₂)][CoCp*₂] with adamantyl isocyanide. A ether solution of CNAd (21)mg, 0.130 mmol) was added to a stirring brown-green suspension of [Co(OR₂)(CPh₂)][CoCp*₂] (29 mg, 0.029 mmol) in ether at room temperature. After 20 minutes, the reaction turned russet brown. The solution gradually darkened and was stirred for 3 hours total at room temperature. The solvent was removed in vacuo to afford a dark brown residue. The residue was dissolved in a 1:1 hexane:ether solution and filtered through a silica plug. The solvent was removed in vacuo and the faint yellow oil was shown by ¹H NMR to be the previously reported ketenimine (approximately 55% yield), in addition to free isocyanide and hydrolyzed ligand. GC-MS confirmed the presence of the ketenimine as the major product.

2. X-ray crystallographic details and structures of 3a and 5

The structures of **3**, **3a**, **5**, and **6** were confirmed by X-ray analysis. The structures of **2** and **5** was previously reported.^{2,4b} Whereas the crystal data parameters for **5** matched those previously reported,^{4b} its refinement parameters are slightly different and therefore are reported here. The crystals were mounted on a Bruker APEXII/Kappa three circle goniometer platform diffractometer equipped with an APEX-2 detector. A graphic monochromator was employed for wavelength selection of the Mo K α radiation ($\lambda = 0.71073$ Å). The data were processed and the structure was solved using the APEX-2 software supplied by Bruker-AXS. The structure was refined by standard difference Fourier techniques with SHELXL (6.10 v., Sheldrick G. M., and Siemens Industrial Automation, 2000). Hydrogen atoms were placed in calculated positions using a standard riding model and refined isotropically; all other atoms were refined anisotropically. The structure of **3a** was of relatively low quality, due to weak diffraction and the disordered solvent. As we were not able to model the solvent satisfactorily, SQUEEZE was used.

	3	3 a	5	6
formula	$C_{63}H_{86}Co_2O_2$	$0.5C_{63}H_{86}Co_2O_2$	$C_{72}H_{72}Co_2N_8$	C ₄₂ H ₄₈ CoN
fw	993.18	496.59	1167.24	625.74
crystal system	Triclinic	Monoclinic	Triclinic	Orthorhombic
space group	<i>P</i> -1	<i>C</i> 2/ <i>c</i>	<i>P</i> -1	Pbcn
a (Å)	12.0917(7)	19.276(7)	12.0255(6)	14.6058(7)
<i>b</i> (Å)	13.2206(7)	15.481(6)	13.8796(7)	14.6784(7)
<i>c</i> (Å)	18.3083(10)	20.600(8)	21.0959(10)	30.7441(13)
α (deg)	83.843(3)	90.00	98.389(3)	90.00
β (deg)	74.551(3)	101.414(11)	99.020(3)	90.00
γ (deg)	73.230(3)	90.00	113.189(3)	90.00
$V(\text{\AA}^3)$	2699.6(3)	6026(4)	3111.9(3)	6591.2(5)
$D_c (\text{g cm}^{-3})$	1.222	1.095	1.246	1.261
Ζ	2	8	2	8
$\mu (\text{mm}^{-1})$	0.657	0.588	0.582	0.551
<i>T</i> (K)	100(2)	100(2)	100(2)	100(2)
R_1	0.0335	0.1046	0.0505	0.0474
GOF	1.023	0.976	1.000	0.962

Table S1.	Crystal	data and	structure	refinement	for	3,	3 a,	5,	and	6.
	~									

Figure S1. X-ray structure (50% probability ellipsoids) of **3a**, with selected bonds shown.

Figure S2. X-ray structure (50% probability ellipsoids) of 5, with selected bonds shown.

3. Evans' method formula and procedure

The Evans method was performed on all complexes using a Wilmad coaxial insert (purchased from Aldrich) and a standard NMR tube. The sample was carefully weighed (10 - 20 mg) and dissolved in 1.00 mL C₆D₆ to afford solutions with known concentrations to perform the calculations. The solutions were added to the insert, and the insert was placed inside the outer NMR tube, which contained C₆D₆. NMR spectra were taken. The molar susceptibility χ_m of the compound was first calculated using Equation 1:⁶

$$\chi_m = \left[\frac{3\Delta\nu}{4\pi m\nu_0} + \chi_0\right] M \tag{1}$$

where Δv is the peak separation (Hz), *m* is the concentration of the solution (g/mL), v_0 is the spectrometer operating frequency in Hertz, χ_0 is the molar susceptibility of the solvent (in cm³/g), and *M* is the molar mass of the compound (g/mol). Diamagnetic corrections were calculated using Pascals constants. The solution state effective magnetic moment (μ_{eff}) was calculated using Equation 2:

$$\mu_{eff} = \sqrt{(2.383 \times 10^3)(\chi_m)} \tag{2}$$

Three measurements were taken, the average of the three and the corresponding standard deviation were calculated. The uncertainty was estimated to be $\sim 10\%$, based on weight measurement uncertainty.

Table S2. Observed magnetic moment for complex **3** using the Evans method $(\mu_{obs} (\mu_B))$.

	3
1	4.35
2	4.07
3	4.27
average	4.23
standard deviation	0.15
μ_{calc} (μB)	4.90

4. NMR and GC-MS Spectra

Figure S3. ¹H NMR spectrum of $[Co(OR)_2(CPh_2)][CoCp*_2]$ (3).

Figure S4. ¹H NMR spectrum (CD₂Cl₂) of [Co(OR)₂(CPh₂)][K(18-crown-6)].

Figure S5. ¹H NMR spectrum of $Co_2(CN(2,6-Me_2C_6H_3))_8$ (5).

Figure S6. ¹H NMR spectrum of 6.

Figure S7. 1 H- 1 H COSY NMR spectrum of **6**.

Figure S8. ¹H NMR spectrum of the reaction between $[Co(OR)_2(CPh_2)][K(18-crown-6)]$ and $CN-2,6-Me_2C_6H_3$ to form $Ph_2C=C=N-(2,6-Me_2C_6H_3)$ and $Co_2(CN-2,6-Me_2C_6H_3)_8$.

Figure S9. ¹H NMR spectrum of the reaction between $[Co(OR)_2(CPh_2)][CoCp*_2]$ and CNAd to form ketenimine. Purple asterisks denote free isocyanide and red asterisks denote HOR.

Figure S10. GC-MS of the filtered (silica plug) products mixture of the reaction between **3** and CNAd showing formation ketenimine (MS in **Figure S9** below).

Figure S11. MS of the product eluting at 12.239 consistent with $Ph_2C=C=NAd$ (calculate mass 327).

5. IR spectra

Figure S12. IR spectrum of $[Co(OR_2)(CPh_2)][CoCp*_2]$ (3).

Figure S13. IR spectrum of [Co(OR)₂(CPh₂)][K(18-crown-6)] (4).

Figure S14. IR spectrum of 6.

6. UV-vis spectra

Figure S15. UV-Vis spectrum of $[Co(OR)_2(CPh_2)][CoCp*_2]$ (3).

Figure S16. UV-Vis spectrum of [Co(OR)₂(CPh₂)][K(18-crown-6)] (**4**).

Figure S17. UV-Vis spectrum of 6.

7. SQUID measurements

Solid state magnetic measurements were conducted on a Quantum Design Magnetic Properties Measurement System (QD-MPMS3). Data were collected under zero-field cooled (zfc) conditions from 2-300 K in an applied field of 1000 Oe. Observed magnetic moments were determined from Curie-Wiess fits. For the susceptibility of **2**, an appreciable temperature independent contribution was observed. For this reason, a modified Curie-Weiss law, $\chi = \chi_o + C/(T - \theta)$ where χ_o is the temperature independent term, was used. The raw data were corrected for sample shape and radial offset effects using the method reported by Morrison and zur Loye.⁷

Figure S18. Magnetic susceptibility and inverse susceptibility for 2.

Figure S19. Magnetic moment of 3 estimated as $2.827(\chi_M T)^{1/2}$.

Fitting of ChiT for 3. The temperature dependent magnetic data for 3 were fit to Equation 3, which represents the magnetism of a "dimer" system with coupled S = 1/2 and S = 3/2 spins.

$$\mathcal{X}_{M} = \frac{Ng^{2}\mu_{B}^{2}}{3k_{B}(T-\theta)} \frac{6+30e^{\frac{4J}{k_{B}T}}}{3+5e^{\frac{4J}{k_{B}T}}}$$
(3)

In this equation, N stands for Avogadro's number, g for the Landé g-value, k_B for the Boltzmann's constant, and J for the exchange coupling between the Co(II) and radical spins. Shown in Figure S20, several combinations of g, J, and θ can be used to fit the experimental ChiT data. As expected based on the system following the Curie-Weiss law for T > 10 K, the data can be fit with g = 1.9, $\theta = -20.9$ K, and J/k_B = 0, Figure S20 (left), which is equivalent to the Curie-Weiss fit. As DFT data indicates antiferromagnetic coupling between the Co(II) and radical spins, J/k_B = 0 K is not expected. The data can instead be fit with a small negative J/k_B (J/k_B ≤ -10 K) and a less negative theta. A fit using g = 1.85, $\theta = -3$ K, and J/k_B = -10 K is shown in Figure S20 (right). Fits with J/k_B > -10 K were not possible, indicating weak antiferromagnetic coupling between the spins within the dimer. Note that the Landé g-values less than 2 result from the observed moment, 4.03 μ_B /F.U., being less than the calculated moment for an uncoupled dimer, 4.24 μ_B /F.U. As the solution moment agrees well with the calculated moment, the slightly lower than expected SQUID moment is presumed to be due to the slight degradation of the sample during shipping.

Figure S20. Two possible fits of the ChiT data for 3.

8. Computational Data

Density functional theory calculations were carried out using Revision D01 of Gaussian 09.8 Geometry optimizations were performed at the B3LYP/6-31G(d) level of theory.⁹ All optimized structures were confirmed to have stable wavefunctions¹⁰ and to be minima on the potential surface.¹¹ energy Cartesian coordinates may found in the be file titled "ReducedCarbene OptimizedStructures.xyz", whereas frequencies and thermodynamics for each species may be found in Tables S4 and S5.

Two sets of states were optimized; a singlet and triplet whose initial guess wavefunctions correspond to low-spin Co(II) anti- or ferromagnetically coupled to carbene radical (3' S = 0 and 3' S = 1) and a triplet and quintet corresponding to high-spin Co(II) anti- or ferromagnetically coupled to carbene radical (3' S = 1' and 3' S = 2). As evidenced by Table S3, the Mulliken spin analysis at the cobalt ion and carbene carbon for each of these states confirms these states though the higher energy triplet state has slightly more spin at Co and slightly less spin at C, suggesting more intermediate-spin Co(II) alkylidene character. The two lowest-energy states both demonstrate high-spin Co(II) character, consistent with the inferences from the crystallographic structures.

Table S3.	Mulliken	spins	on	the C	Co a	and	C_{carbene}	atoms,	as	well	as	relative	electronic	and	free
energies (in	kcal/mol).													

	Co spin	C spin	$\Delta E(SCF)$	∆G(gas)
3' $(S = 0)$	1.06	-0.70	16.96	16.11
3'(S=1)	1.40	0.26	15.23	14.55
3' (<i>S</i> = 1')	2.67	-0.63	0.00	0.00
3'(S=2)	2.71	0.65	4.52	0.97

Because the quintet was so close in energy to the lowest energy state (3' S = 1'), a more detailed analysis of the electronic structure of 3' S = 2 (beyond Mulliken spins) was performed. As shown in Figure S20, the singly occupied molecular orbitals of this quintet state confirm the AF/F-coupled nature of these two lowest-energy states. We repeated the analysis of the Mulliken spins assuming this state is lowest in energy due to the nearly isoenergonic nature of these triplet/quintet states. Mulliken spin analysis of the [Co(OR)₂] and [CPh₂] fragments shows spins of 2.97 and 1.03, in contrast to 1.89 and -0.89 for 2. Thus, consistent with the conclusions for the antiferromagnetic state presented in the paper, other than the spin flip from the AF- to F-coupled state, the magnitude of the spin at the carbene carbon only changes by ~0.1 whereas the spin at cobalt changes by ~1.1, consistent with metal-centered reduction.

Table S4. Harmonic frequencies (cm^{-1}) for the optimized species.

3' (S=0)		
6.5697	11.9039	20.9884
27.5454	30.7284	35.0843
43.9544	50.5611	53.9536
55.3421	63.9911	68.1565
68.6707	73.6773	84.9052
88.1189	88.8255	92.0818
99.8264	115.8513	120.1861
125.0838	130.0122	164.3875
179.4148	186.0601	207.5179
211.7500	216.3747	223.2557
233.3355	233.7602	237.2208
248.6150	253.7240	256.8326
259.9074	268.6625	275.3712
278.3140	284.6316	288.8674
290.3346	296.0609	298.5487
303.5191	307.1848	310.9029
320.4819	328.0916	331.5082
333.0110	337.1695	339.8705
340.9686	351.7724	357.3591
362.2287	379.6447	391.1876
397.0466	410.2970	417.8573
419.9324	423.3925	426.2569
429.0223	430.9896	431.2026
432.2944	438.1942	441.2026

445.2463	446.8423	497.0755
511.1107	511.6736	561.3272
563.7855	564.1812	565.8127
570.3743	587.5436	629.5325
631.0884	635.7851	636.8137
657.0799	660.6971	669.3468
702.0359	707.0841	710.4635
720.0964	723.4811	724.1077
753.6944	755.9172	756.6541
766.8299	810.4468	813.2542
825.5560	828.7750	842.9947
855.3124	864.1477	867.7801
869.3129	889.6525	895.8661
896.2493	897.4381	903.2129
905.7423	918.9427	932.0025
935.7899	936.7404	937.4004
939.0630	940.1338	944.7782
948.9811	950.9326	953.3107
958.0411	963.5727	967.5323
968.9059	969.0208	972.2720
972.5977	973.6184	977.9677
987.5115	998.9376	1000.2936
1007.3366	1016.5391	1020.0333
1021.4914	1049.6543	1050.7766
1052.8624	1054.2438	1055.2993
1056.0735	1057.0181	1058.3921
1063.2716	1064.6643	1070.0026
1071.1461	1094.5090	1101.0624
1104.4219	1114.1549	1122.1055
1134.6022	1164.4869	1165.7438
1181.2539	1183.9597	1185.3392
1186.9110	1189.0528	1202.1371
1215.3626	1217.4486	1220.2018
1229.3444	1231.4109	1231.7136
1232.9894	1240.0887	1241.1085
1241.6423	1243.3328	1250.1024
1252.5645	1260.7558	1263.6188
1303.6719	1309.8511	1329.7408
1334.6355	1337.0582	1359.7980
1360.7479	1362.8362	1365.8094
1411.9019	1413.7517	1415.1669
1416.1247	1419.2469	1420.9205
1422.5429	1425.1106	1444.0401
1448.0287	1452.7943	1456.3267
1475.7910	1484.4963	1484.8403
1485.1451	1506.9612	1508.8888

1510.2699	1511.1035	1517.0709
1517.3172	1519.7633	1522.3496
1523.7905	1524.2734	1525.9693
1526.5848	1527.1750	1530.0755
1532.0783	1534.0100	1534.3629
1535.6358	1537.2761	1539.3296
1540.9099	1544.7161	1549.3864
1551.9547	1554.1912	1558.1820
1559.9715	1565.4236	1591.7673
1607.2974	1625.4735	1633.5036
1634.2103	1637.6035	1655.2157
1655.7241	3031.9438	3033.6041
3033.6564	3034.8407	3035.7939
3036.8785	3037.1229	3040.4297
3045.0616	3046.2457	3048.3857
3053.3285	3092.3021	3093.9527
3096.8850	3101.5736	3108.1867
3109.0567	3109.3036	3112.1440
3113.2349	3116.1228	3133.2562
3137.5825	3140.6803	3142.0463
3144.6149	3145.4010	3146.7909
3151.0916	3155.3659	3155.6192
3156.2394	3157.6479	3158.3941
3158.6864	3159.4166	3162.7301
3166.2718	3169.2333	3174.2017
3174.6747	3177.8345	3185.6384
3187.0644	3188.4514	3190.0439
3190.8305	3195.2746	3202.3514
3204.0408	3207.2279	3239.2640
3240.1289	3244.4010	3299.4078

3' (S=1)

8.6942	11.7697	19.1899
27.5271	33.5695	39.1850
44.7979	48.9787	55.5682
61.7143	63.0032	67.0528
74.6835	77.2580	83.9659
85.8882	90.2087	94.1944
104.2587	116.1997	117.6148
133.5922	137.9818	175.6680
178.7928	190.0878	206.0897
215.6375	221.7489	224.3895
235.5830	237.3009	238.9565
248.2701	251.8138	261.8029

270.8075	273.6923	282.7623
288.0306	290.8452	292.5833
296.3302	299.1624	301.0961
303.1252	305.5851	312.5185
322.6984	328.8424	333.7003
336.1623	337.4300	341.6563
342.8219	355.6701	361.7981
367.9036	385.8645	386.2914
395.0881	407.5708	418.8809
421.4640	425.2336	426.3672
428.1482	431.0518	432.5442
434.3158	438.9362	444.4275
446.2491	448.4461	501.2806
511.1586	513.0682	517.8124
561.7402	563.7963	565.9897
568.3566	588.0090	630.6356
631.7201	635.8729	636.0727
659.3226	662.3795	680.3741
701.1594	707.8167	716.8177
718.9807	722.6515	728.7050
748.4641	750.7925	754.2934
756.4435	810.4331	813.2102
826.4434	828.9232	839.8769
850.0018	861.0518	864.6195
880.6086	883.8075	894.8383
896.4039	897.5581	904.0453
905.2509	929.8311	934.0538
935.6150	936.4965	938.7655
939.6107	940.7789	946.4809
950.0075	951.5201	952.3596
953.3195	962.2398	964.6274
967.1058	968.4653	971.6770
973.2804	975.0365	975.4284
977.6126	991.8529	997.1298
1003.1697	1004.6354	1018.3479
1019.4926	1048.8739	1051.8215
1052.9863	1053.3566	1054.4056
1057.0604	1057.7374	1058.3235
1063.2417	1065.1918	1070.3174
1071.7094	1088.3534	1093.9417
1104.2358	1114.2048	1119.4249
1124.0147	1166.7808	1167.7884
1181.8415	1182.6985	1185.7404
1187.3662	1200.6867	1207.7865
1215.2598	1217.6423	1226.1957
1227.6150	1230.3247	1231.9492

1232.8956	1238.8643	1240.9573
1242.7482	1243.3673	1248.7510
1250.4210	1260.1723	1262.8468
1303.3607	1310.4551	1329.2003
1335.3525	1335.6815	1360.1148
1361.6214	1365.1544	1368.4932
1413.8222	1415.9218	1416.4897
1419.8226	1422.1407	1422.5369
1423.1466	1426.3663	1446.4976
1450.2636	1454.3285	1457.8910
1476.3494	1484.1792	1485.0752
1487.1029	1508.1047	1509.2651
1510.2421	1511.9279	1519.2596
1520.6327	1520.9813	1522.2321
1523.4114	1524.7934	1525.2544
1526.2057	1527.7447	1529.5439
1532.5125	1533.8926	1535.2134
1535.8311	1538.4666	1540.8585
1544.4654	1545.6048	1547.5242
1553.0937	1554.9042	1557.3750
1559.9327	1564.8237	1593.3227
1599.7349	1628.1224	1634.2768
1634.4491	1643.9811	1656.0053
1656.2114	3034.4771	3035.0858
3035.5414	3036.5549	3037.7740
3038.3559	3040.1216	3042.9944
3047.0104	3047.1518	3051.1869
3055.7926	3093.8854	3095.0186
3099.3121	3100.6977	3111.4073
3111.8066	3113.6668	3114.0103
3117.0392	3119.1613	3137.4510
3141.5352	3142.2822	3143.2680
3147.2847	3147.9630	3149.6046
3152.5654	3153.8028	3154.7668
3156.0927	3157.4702	3158.1520
3159.1830	3159.2828	3161.8854
3162.8098	3163.1649	3175.4089
3176.5344	3178.9079	3185.2940
3186.0159	3186.8344	3191.2436
3193.1116	3198.5868	3201.3169
3203.6475	3205.1301	3242.5113
3244.3965	3254.9773	3298.4195

3' (S=1')

15.6456	20.7322	22.9462
29.0569	34.9960	38.4349
45.1812	49.4937	52.9199
54.1931	59.6791	65.5857
69.3520	72.2032	82.4206
88.8979	93.1001	94.7284
100.4087	112.0016	121.9399
125.7933	137.4377	164.8260
181.9786	190.7073	203.4208
215.4195	219.6091	227.2827
233.1934	245.9027	251.6680
253.2133	257.3327	261.4099
265.9029	272.4299	276.3203
281.1477	288.8475	292.0274
296.7241	297.9716	301.5315
303.2596	306.9360	312.8897
314.9398	328.6063	331.1361
335.7511	339.3895	345.5404
349.1714	362.1625	370.3802
376.8878	381.5961	389.0597
393.3528	404.8175	417.1508
420.5239	426.6316	427.5668
429.7367	433.2707	434.9844
437.2855	438.4486	444.0567
448.0996	454.6701	498.5997
514.4096	517.2284	562.9257
564.3372	568.4404	569.1926
573.1542	587.8377	630.3481
631.1516	635.7563	635.9561
650.4107	656.9431	669.5480
703.2139	704.7712	711.4393
712.5447	720.9827	724.2608
756.1819	756.4229	759.3957
771.5895	812.5183	813.5428
827.0893	828.5544	849.6233
857.8581	864.5911	865.0709
866.6114	890.5160	892.5281
894.2515	906.2111	908.7282
909.7433	920.1172	933.6279
933.8445	938.7861	939.2568
941.0069	941.3608	947.2200
950.6561	953.4622	954.1091
962.7352	966.0864	967.4360
968.4538	970.3233	974.5611
975.9196	984.7686	986.9122
994.5822	994.7129	1003.6532

1005.8976	1006.1027	1016.9032
1018.0651	1047.4470	1052.7837
1053.6175	1054.0618	1055.0679
1055.9574	1057.4425	1057.7325
1061.7951	1065.2451	1069.7735
1072.0235	1091.1411	1098.3941
1104.8264	1114.2489	1119.8330
1131.4896	1159.2550	1160.8584
1180.1483	1183.1851	1183.9570
1184.4652	1186.6509	1202.9444
1212.0921	1216.6966	1219.0175
1227.7868	1229.3852	1231.0873
1233.2137	1239.6925	1241.0891
1242.5551	1243.4739	1249.5697
1252.0142	1260.4112	1260.9557
1295.3276	1309.6728	1330.0320
1332.0529	1335.2548	1356.5268
1359.8184	1362.9017	1365.7930
1412.7444	1414.6925	1417.1470
1418.2973	1419.6503	1421.5939
1425.1748	1427.5431	1447.8151
1447.9657	1455.3131	1456.5891
1477.1113	1483.4924	1484.1537
1485.6805	1506.9290	1508.5182
1514.1557	1516.4563	1519.2965
1520.5386	1521.7353	1523.2947
1523.5935	1524.8654	1525.7570
1528.0353	1529.6724	1530.8048
1534.0230	1534.8766	1536.3103
1536.8962	1539.9434	1541.6233
1545.7054	1546.7579	1550.1410
1553.4276	1555.9428	1556.7405
1561.2193	1567.4434	1601.2728
1606.5785	1628.8538	1632.4838
1633.3608	1638.4499	1654.3486
1654.9597	3030.5415	3033.3354
3033.7359	3036.7898	3038.1753
3038.4939	3039.8680	3040.4500
3045.0354	3048.1669	3050.2218
3051.5427	3094.4953	3096.7968
3098.3475	3098.8475	3106.4832
3109.1585	3109.3795	3109.6518
3111.9889	3114.8223	3123.3067
3137.0089	3140.3982	3142.7543
3145.4489	3148.1398	3148.8957
3150.6000	3152.6690	3156.6255

3156.8532	3157.6052	3157.7733
3157.8963	3168.5310	3168.7269
3169.3055	3170.1630	3172.5057
3174.8899	3185.2045	3185.9182
3186.6479	3186.9964	3188.9842
3190.9867	3195.3001	3196.5482
3199.3488	3204.8164	3243.3621
3247.1433	3250.1460	3266.8278

3' (S=2)

6.5817	10.9882	18.7119	
23.2972	25.3922	32.8414	
36.1832	40.9317	44.2074	
48.3081	55.7590	60.8221	
62.9446	69.0819	72.3750	
81.0692	81.2822	86.4431	
97.1651	111.3832	112.5719	
116.1996	139.8326	150.8969	
160.5557	175.4653	192.3937	
204.7132	211.1588	213.9551	
223.4442	234.2554	235.1169	
249.2785	252.7100	255.1627	
258.7670	264.8469	273.3819	
276.7447	287.4404	288.3782	
292.6223	295.7838	300.2089	
301.6544	307.9462	313.1233	
315.2007	330.1412	333.5095	
335.7556	338.4434	342.2309	
344.0409	356.9228	364.4678	
368.4510	371.5383	384.4631	
398.3162	409.0608	411.8630	
413.3935	420.7896	426.9416	
429.2048	430.2412	432.4169	
434.0624	438.8457	439.5310	
446.4468	446.7650	494.5758	
511.1633	513.2628	562.2589	
562.9720	563.8933	565.5636	
568.6243	586.7140	629.4261	
630.1958	635.7977	636.1364	
657.0370	659.6580	665.7977	
701.4255	708.9216	710.6410	
721.4873	723.1186	724.4490	
755.0807	755.8999	756.7865	
767.3168	810.5147	813.9117	

824.6110	827.0459	841.0847
852.5403	863.8894	865.5288
867.2260	888.8593	894.5280
895.1875	897.7570	904.9014
908.4760	912.7432	934.3144
935.8453	936.9701	937.2471
939.5229	941.5277	948.6985
951.2004	954.3224	955.4213
957.8568	964.6560	965.6162
967.3151	971.3217	975.5129
976.0056	976.7207	980.5892
983.0118	999.1169	1002.7029
1003.3061	1008.3872	1018.3837
1019.6355	1050.5985	1051.9184
1053.0727	1054.1569	1055.6727
1057.1158	1057.5299	1058.0842
1063.3589	1065.7816	1069.7800
1071.2281	1098.7195	1103.5824
1105.6187	1115.0470	1126.0253
1142.9508	1160.4406	1163.4022
1181.2176	1182.7425	1185.6068
1186.5635	1193.7805	1200.1871
1215.2866	1216.3925	1222.6097
1229.5606	1230.9012	1232.4194
1233.0065	1240.3064	1241.2594
1241.9042	1243.0560	1250.7909
1251.0362	1260.5856	1261.6169
1303.3402	1307.4665	1327.0261
1334.4791	1334.7066	1359.1210
1360.2207	1361.6480	1365.4292
1410.8492	1414.0100	1415.3231
1417.4673	1419.8879	1420.7095
1422.2771	1424.6009	1445.4383
1448.2776	1453.0116	1456.4790
1474.9100	1483.5109	1484.1462
1484.3870	1507.1241	1508.0659
1510.2790	1511.3087	1514.2069
1518.1077	1520.5472	1520.5755
1521.6919	1522.5060	1523.7503
1526.1350	1527.4985	1529.7161
1533.3279	1534.2326	1535.1959
1535.9876	1538.6631	1540.1986
1543.0918	1543.3001	1549.5379
1552.1274	1555.1269	1557.4066
1562.2873	1564.8822	1592.3324
1599.6691	1621.9443	1633.2197

1633.3211	1634.8925	1655.0254
1655.4126	3032.2889	3033.5631
3034.4021	3034.5420	3035.1512
3037.0349	3039.5845	3041.6220
3045.7559	3046.5822	3050.8102
3053.7663	3093.1736	3094.8825
3097.2724	3098.2615	3105.5798
3108.4979	3112.5879	3113.7449
3113.9900	3118.0136	3136.0033
3138.5643	3138.9585	3140.6659
3143.1404	3146.9959	3150.6277
3152.4173	3154.3690	3155.8691
3156.6969	3158.3359	3158.8530
3160.0606	3160.5390	3164.5298
3165.9843	3166.6554	3174.6940
3174.7661	3175.9498	3180.7843
3185.0085	3190.5307	3190.5474
3190.9013	3191.0318	3194.6354
3200.7540	3206.7321	3242.6177
3243.6089	3248.3363	3270.8542

Table S5. Energies (E_h) for the optimized species.

Species	E(SCF)	H(gas)	G(gas)
3' $(S = 0)$	-3205.394009	-3204.460570	-3204.593084
3' (<i>S</i> = 1)	-3205.396773	-3204.463075	-3204.595569
3' (<i>S</i> = 1')	-3205.421043	-3204.487265	-3204.618762
3' (<i>S</i> = 2)	-3205.413833	-3204.480576	-3204.617222

9. Scheme Demonstrating Quinoidial Distortion in the Structures of 2 and 3.

Figure S22. Top: Resonances structures (shown for only one of the two rings) demonstrating radical delocalization into the aryl rings of the carbene. Bottom: Carbene aryl bond distances in the structures of **2** and **3** consistent with quinoidal distortion.

10. References

- 1. J. A. Bellow, M. Yousif, D. Fang, E. G. Kratz, G. A. Cisneros and S. Groysman, *Inorg. Chem.* 2015, **54**, 5624-5633.
- 2. J. A. Bellow, S. A. Stoian, J. Van Tol, A. Ozarowski, R. L. Lord and S. Groysman, *J. Am. Chem. Soc.* 2016, **138**, 5531-5534.
- 3. M. Hu, J. Rong, W. Miao, C. Ni, Y. Han and J. Hu, Org. Lett. 2014, 16, 2030-2033.
- 4. (a) Y. Yamamoto and H. Yamazaki, *Inorg. Chem.* 1978, **17**, 3111-3114. (b) P. A. Leach, S. J. Geib, S. J. Corella, G. F. Garnock and N. J. Cooper, *J. Am. Chem. Soc.* 1994, **116**, 8566-8574.
- 5. A. Grass, N. S. Dewey, R. L. Lord and S. Groysman, Organometallics 2019, 38, 962–972.

6. D. F. Evans, J. Chem. Soc., 1959, 2003-2005.

7. G. Morrison and H.-C. zur Loye, J. Solid State Chem. 2015, 221, 334-337.

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

9. (a) S. H. Vosko, L. Wilk and M. Nusair, *Can. J. Phys.* 1980, **58**, 1200. (b) C. Lee, W. Yang and R.G. Parr, *Phys. Rev. B* 1988, **37**, 785. (c) A. D. Becke, *J. Chem. Phys.* 1993, **98**, 5648. (d) P.J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.* 1994, **98**, 11623.

10. (a) H. B. Schlegel and J. J. McDouall, in *Computational Advances in Organic Chemistry*; Oeretir, C; Csizmadia, I. G., Eds.; Kluwer Academic: Amsterdam, The Netherlands, 1991. (b) R. Bauernschmitt and R. Ahlrichs, *J. Chem. Phys.* 1996, **104**, 9047.

11. H. B. Schlegel, WIREs Comput. Mol. Sci. 2011, 1, 790.