Supporting information

Synthesis of 1,2-dihydro-1,3,5-triazines derivatives via Cu(II)-catalyzed C(SP₃)_H activation of N,N-dimethylethanolamine with amidines

Min Yan^{a,b}, Renchao Ma^a, Rener Chen^a, Lei Wang^a, Zhiming Wang^a and Yongmin Ma^{a,b,*}
^aInstitute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, P R China
^bSchool of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, P R China
Corresponding author. Email: yongmin.ma@tzc.edu.cn

Contents

1. General Information ..2

2. Optimization of the Reaction Conditions ...2

3. The kinetic studies were carried out under air and O₂ ..4

4. General Procedure for Synthesis of substrates ...4

5. General Procedure for Synthesis of products ...5
 5.1 General Procedure for 1,4,6-triphenyl-1,2-dihydro-1,3,5-triazines5
 5.2 General Procedure for 2,4-disubstituted-1,3,5-triazines ..5

6. Spectrum Data ..6

7. References ...16

8. Copies of NMR Spectra ...17
1. General Information

All reagents and solvents were used as supplied without further purification. \(^1\)H NMR and \(^{13}\)C NMR were determined in CDCl\(_3\) or DMSO-\(d_6\) on a Brucker spectrometer at room temperature, and tetramethylsilane (TMS) served as an internal standard. The chemical shifts are reported in parts per million (ppm), the coupling constants (\(J\)) are expressed in hertz (Hz). All the reactions were monitored by thin-layer chromatography (TLC). TLC was performed on pre-coated silica gel plates (Qingdao Haiyang Chemical Co., Ltd, China).

2. Optimization of the Reaction Conditions

Table S1 Optimization of the Reaction Conditions

<table>
<thead>
<tr>
<th>Entry</th>
<th>Carbon source (equiv.)</th>
<th>Solvent</th>
<th>Catalyst (equiv.)</th>
<th>Conversion (%)</th>
<th>Yield (%)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DMEA (3.0)</td>
<td>MeCN</td>
<td>CuBr(_2) (0.1)</td>
<td>61</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>DMF (3.0)</td>
<td>MeCN</td>
<td>CuBr(_2) (0.1)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>DMSO (3.0)</td>
<td>MeCN</td>
<td>CuBr(_2) (0.1)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>TMEDA (3.0)</td>
<td>MeCN</td>
<td>CuBr(_2) (0.1)</td>
<td>57</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>DMEA (2.0)</td>
<td>MeCN</td>
<td>CuBr(_2) (0.1)</td>
<td>36</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>DMEA (4.0)</td>
<td>MeCN</td>
<td>CuBr(_2) (0.1)</td>
<td>63</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>DMEA (3.0)</td>
<td>DMSO</td>
<td>CuBr(_2) (0.1)</td>
<td>45</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>DMEA (3.0)</td>
<td>DMF</td>
<td>CuBr(_2) (0.1)</td>
<td>43</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>DMEA (3.0)</td>
<td>1,4-dioxane</td>
<td>CuBr(_2) (0.1)</td>
<td>63</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>DMEA (3.0)</td>
<td>THF</td>
<td>CuBr(_2) (0.1)</td>
<td>44</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>DMEA (3.0)</td>
<td>MeCN</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>DMEA (3.0)</td>
<td>MeCN</td>
<td>FeSO(_4) (0.1)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>DMEA (3.0)</td>
<td>MeCN</td>
<td>Pd(OAc)_2 (0.1)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>DMEA (3.0)</td>
<td>MeCN</td>
<td>NiCl(_2) (0.1)</td>
<td>31</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>DMEA (3.0)</td>
<td>MeCN</td>
<td>CoCl(_2) (0.1)</td>
<td>34</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>DMEA (3.0)</td>
<td>MeCN</td>
<td>Cu(OAc)$_2$ (0.1)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>DMEA (3.0)</td>
<td>MeCN</td>
<td>Cu(OAc)$_2$ (0.1)</td>
<td>67</td>
<td>34</td>
</tr>
<tr>
<td>18</td>
<td>DMEA (3.0)</td>
<td>MeCN</td>
<td>CuCl(_2) (0.1)</td>
<td>53</td>
<td>22</td>
</tr>
<tr>
<td>19</td>
<td>DMEA (3.0)</td>
<td>MeCN</td>
<td>CuCl(_2) (0.15)</td>
<td>59</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>DMEA (3.0)</td>
<td>MeCN</td>
<td>CuCl(_2) (0.15)</td>
<td>59</td>
<td>50</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Carbon Source</th>
<th>Catalyst</th>
<th>Temp (°C)</th>
<th>Conversion (%)</th>
<th>Isolated Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>DMEA (3.0)</td>
<td>MeCN</td>
<td>CuCl$_2$ (0.2)</td>
<td>80</td>
<td>61</td>
<td>51</td>
</tr>
<tr>
<td>23</td>
<td>DMEA (3.0)</td>
<td>MeCN</td>
<td>CuCl$_2$ (0.3)</td>
<td>80</td>
<td>64</td>
<td>52</td>
</tr>
<tr>
<td>24c</td>
<td>DMEA (3.0)</td>
<td>MeCN</td>
<td>CuCl$_2$ (0.15)</td>
<td>80</td>
<td>77</td>
<td>50</td>
</tr>
<tr>
<td>25d</td>
<td>DMEA (3.0)</td>
<td>MeCN</td>
<td>CuCl$_2$ (0.15)</td>
<td>80</td>
<td>75</td>
<td>53</td>
</tr>
<tr>
<td>26</td>
<td>DMEA (10.0)</td>
<td>-</td>
<td>CuCl$_2$ (0.15)</td>
<td>80</td>
<td>72</td>
<td>65</td>
</tr>
<tr>
<td>27d</td>
<td>DMEA (10.0)</td>
<td>-</td>
<td>CuCl$_2$ (0.15)</td>
<td>80</td>
<td>85</td>
<td>12</td>
</tr>
<tr>
<td>28e</td>
<td>DMEA (10.0)</td>
<td>-</td>
<td>CuCl$_2$ (0.15)</td>
<td>80</td>
<td>74</td>
<td>51</td>
</tr>
<tr>
<td>29f</td>
<td>DMEA (10.0)</td>
<td>-</td>
<td>CuCl$_2$ (0.15)</td>
<td>80</td>
<td>79</td>
<td>43</td>
</tr>
</tbody>
</table>

aAll reactions were carried out with \(N\)-phenylbenzimidamide (1a, 0.5 mmol), solvent (0.5 mL) at 80 °C for 36 h unless indicated; bIsolated yield; c1.0 equiv. of TBHP; d1.0 equiv. of K$_2$S$_2$O$_8$; ereaction at 90 °C; freaction at 100 °C.

The effect of different carbon sources, solvents, catalysts and temperatures on the product yields were investigated (Table S1). It can be shown that the reaction of \(N\)-phenylbenzimidamide (0.5 mmol) and DMEA (1.5 mmol) in the presence of CuBr$_2$ (0.05 mmol) in acetonitrile (MeCN) under air atmosphere at 80 °C for 36 h performed 61% conversion with 35% isolated yield of the desired product (entry 1). The carbon sources were first screened. Although \(N,N\)-dimethylformamide (DMF)1 and DMSO2 have been reported to be a methylene donor in many cases, they failed to facilitate our reaction (entries 2-3). In contrast, \(N,N,N',N'\)-tetramethylethylenediamine (TMEDA) was successively employed in this reaction as the methylene donor, but both the conversion rate and the isolated yield of 3a was lower than those of DMEA (entry 4 vs 1). Decreasing the use of DMEA to 2 equiv. significantly reduced the transformation while increasing the amount of DMEA had no marked improvement (entries 5-6 vs 1). Amongst the solvents employed, MeCN was found to be the best solvent for the reaction (entries 1 and 7-10). In the absence of CuBr$_2$, the reaction did not proceed at all (entry 11). In the pursuit of our program directed towards the most suitable catalyst, a series of metal salts were then screened. The results showed that CuBr$_2$ gave the highest yield by compared to other salts such as FeSO$_4$, Pd(OAc)$_2$, NiCl$_2$ and CoCl$_2$ (entry 1 vs 13-16). On the other hand, amongst the copper sources screened, CuCl$_2$ was found to be the best catalyst (entries 17-20). Although CuBr$_2$, Cul and Cu(OAc)$_2$ gave higher conversion rates, the isolated yields of 3a are lower compared to that of CuCl$_2$. By increasing the amount of the catalyst from 0.1 to 0.15 equiv., the yield of 3a was improved (entry 21). Further increase of the amount of CuCl$_2$ to 0.3 equiv. did not affect the yield markedly (entries 22-23). Considering that the reaction involves DMEA oxidation, TBHP and K$_2$S$_2$O$_8$ at 1 equiv. was supplied respectively. The result shows that although the conversion rates of 1a were increased, the product yields were similar to that in the absence of the additional oxidants, indicating that the peroxidant might not be essential to this reaction (entries 24-25). Exhilaratingly, the reaction under such initial conditions was carried out in 0.5 mL of DMEA (10 equiv.) without an additional solvent to provide the desired product 3a in an elevated yield (entry 26). Again, the presence of K$_2$S$_2$O$_8$ at 1 equiv. elevated the reaction conversion rate but lowered the product yield dramatically, probably due to an over-oxidation of the resulting product (entry 27). By increasing the reaction temperature, diminished product yields were observed (entries 28-29). Based on these results, the optimal conditions were established as described in entry 26.
3. The kinetic studies were carried out under air and O₂

![Figure S1](image)

Figure S1 Yield vs time curves of the annulation reaction of amidines with DMEA under air and O₂ respectively. Reaction conditions: 1 (0.5 mmol), CuCl₂ (0.15 equiv), in DMEA (0.5 mL) at 80 °C.

4. General Procedure for Synthesis of substrates

\[
\begin{align*}
\text{R}^1 & \quad \text{CN} \quad + \quad \text{R}^2 & \quad \text{NH}_2 \\
& \quad \text{DMSO, 0°C} \quad \text{to r.t.} \quad \text{NaH, N}_2 \quad \rightarrow \\
& \quad \text{NH} \quad \text{NH} \quad \text{R}^1 \quad \text{R}^2
\end{align*}
\]

A 50 mL pressure flask equipped with a stir-bar was charged with 5.0 mL of anhydrous DMSO and NaH (15.0 mmol, 60%, 1.5 equiv). Then aniline (12.0 mmol, 1.2 equiv.) and carbonitrile (10.0 mmol, 1.0 equiv.) were added to the flask in portions at 0°C under a nitrogen atmosphere. The reaction mixture was stirred at 0°C for 40-60 min and then stirred at room temperature about 2h. Upon completion the reaction mixture was quenched by ice water (20 ml) and extracted by ethyl acetate (3×20 ml). The combined organic layer was dried over Na₂SO₄, filtered and concentrated in vacuo. Purification by silica-gel chromatography with a mixture eluent of petroleum ether and ethyl acetate.³
5. General Procedure for Synthesis of products

5.1 General Procedure for 1,4,6-triphenyl-1,2-dihydro-1,3,5-triazines

A 25 mL flask equipped with a stir-bar was charged with benzimidamide 1 (0.5 mmol, 1.0 equiv), CuCl$_2$ (0.075 mmol, 0.15 equiv) and DMEA (0.5 ml). The reaction mixture was stirred at 80°C for 36 h. The reaction was monitored by TLC. Upon completion the reaction mixture was cooled to room temperature. Water (10 ml) was added and the mixture was extracted with ethyl acetate (3×10 mL). Combined organic phase were dried over anhydrous Na$_2$SO$_4$, and removal of solvent produced. The residue was purified by column chromatography on silica gel with a mixed eluent of petroleum ether and ethyl to give the corresponding products 3.

5.2 General Procedure for 2,4-disubstituted-1,3,5-triazines

A 25 mL flask equipped with a stir-bar was charged with benzamidine hydrochloride 4 (0.5 mmol, 1.0 equiv), CuCl$_2$ (0.075 mmol, 0.15 equiv), Cs$_2$CO$_3$ (2 mmol, 1.0 equiv) and DMEA (0.5 ml). The reaction mixture was stirred at 90°C for 10 h. The reaction was monitored by TLC. Upon completion the reaction mixture was cooled to room temperature. Water (10 ml) was added and the mixture was extracted with ethyl acetate (3×10 mL). Combined organic phase were dried over anhydrous Na$_2$SO$_4$, and removal of solvent produced. The residue was purified by column chromatography on silica gel with a mixed eluent of petroleum ether and ethyl to give the corresponding products 5.
6. Spectrum Data

1,4,6-Triphenyl-1,2-dihydro-1,3,5-triazine (3a): Yellow sticky mass; 1H NMR (400 MHz, CDCl$_3$) δ 8.39 (d, $J = 7.9$ Hz, 2H), 7.71 (d, $J = 7.2$ Hz, 2H), 7.53-7.50 (m, 3H), 7.43 (t, $J = 7.4$ Hz, 1H), 7.34 (t, $J = 7.9$ Hz, 2H), 7.26 (t, $J = 7.8$ Hz, 2H), 7.16 (t, $J = 7.4$ Hz, 1H), 7.01 (d, $J = 7.6$ Hz, 2H), 5.55 (s, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 162.43, 161.50, 143.27, 136.04, 134.03, 131.27, 130.58, 130.54, 129.00, 128.26, 128.16, 127.98, 125.69, 124.66, 66.76. HRMS (ESI) Calcd for C$_{21}$H$_{18}$N$_3$ [M+H]$^+$ 312.1495; found 312.1506.

1-[[1,1'-Biphenyl]-2-yl]-4,6-diphenyl-1,2-dihydro-1,3,5-triazine (3b): Yellow solid; Mp: 98-99 °C; 1H NMR (400 MHz, CDCl$_3$) δ 8.19 (d, $J = 6.3$ Hz, 2H), 7.45-7.42 (m, 3H), 7.39-7.34 (m, 2H), 7.29-7.24 (m, 2H), 7.18-7.13 (m, 4H), 7.08 (t, $J = 7.7$ Hz, 2H), 7.03 (t, $J = 7.7$ Hz, 2H), 6.92 (d, $J = 7.1$ Hz, 2H), 5.42 (s, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 162.50, 162.39, 141.10, 138.18, 138.02, 133.84, 131.25, 130.98, 130.33, 130.14, 128.85, 128.49, 128.40, 128.05, 128.00, 127.61, 127.14, 127.04, 126.55, 67.54. HRMS (ESI) Calcd for C$_{27}$H$_{22}$N$_3$ [M+H]$^+$ 388.1808; found 388.1818.

4,6-Diphenyl-1-(m-tolyl)-1,2-dihydro-1,3,5-triazine (3c): Yellow sticky mass; 1H NMR (400 MHz, CDCl$_3$) δ 8.40 (d, $J = 7.9$ Hz, 2H), 7.72 (d, $J = 7.1$ Hz, 2H), 7.53-7.48 (m, 3H), 7.43 (t, $J = 7.4$ Hz, 1H), 7.33 (t, $J = 7.5$ Hz, 2H), 7.11 (t, $J = 7.8$ Hz, 1H), 6.97 (d, $J = 7.6$ Hz, 1H), 6.85 (s, 1H), 6.77 (d, $J = 7.9$ Hz, 1H), 5.53 (s, 2H), 2.29 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 162.44, 161.53, 143.26, 139.06, 136.22, 134.18, 131.22, 130.52, 128.70, 128.24, 128.16, 127.97, 126.55, 125.17, 122.05, 21.30. HRMS (ESI) Calcd for C$_{22}$H$_{20}$N$_3$ [M+H]$^+$ 326.1652; found 326.1648.
1-([1,1’-Biphenyl]-3-yl)-4,6-diphenyl-1,2-dihydro-1,3,5-triazine (3d): Yellow sticky mass; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.35 (d, \(J = 7.9\) Hz, 2H), 7.71 (d, \(J = 7.1\) Hz, 2H), 7.49–7.43 (m, 3H), 7.41–7.35 (m, 3H), 7.33 (d, \(J = 8.0\) Hz, 6H), 7.29 (d, \(J = 8.4\) Hz, 1H), 7.13 (t, \(J = 1.6\) Hz, 1H), 6.94 (dt, \(J = 8.4\) H, 1.6 Hz, 1H), 5.56 (s, 2H).\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 162.40, 161.45, 143.63, 142.14, 139.98, 136.12, 134.10, 131.34, 130.56, 129.36, 128.83, 128.38, 128.18, 127.95, 127.78, 127.06, 124.37, 123.48, 123.09, 66.82. HRMS (ESI) Calcd for C\(_{27}\)H\(_{22}\)N\(_3\) [M+H]\(^+\) 388.1808; found 388.1823.

1-(3-Chlorophenyl)-4,6-diphenyl-1,2-dihydro-1,3,5-triazine (3e): Yellow solid; Mp: 70–71 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.39 (d, \(J = 8.0\) Hz, 2H), 7.72 (d, \(J = 7.2\) Hz, 2H), 7.54–7.50 (m, 3H), 7.47 (t, \(J = 7.2\) Hz, 1H), 7.37 (t, \(J = 7.6\) Hz, 2H), 7.16–7.13 (m, 2H), 7.04 (s, 1H), 6.84–6.81 (m, 1H), 5.51 (s, 2H).\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 162.40, 161.45, 144.53, 133.53, 131.67, 130.82, 128.50, 128.38, 128.18, 127.93, 125.69, 124.26, 122.95, 66.69. HRMS (ESI) Calcd for C\(_{21}\)H\(_{17}\)ClN\(_3\) [M+H]\(^+\) 346.1106; found 346.1112.

1-(4-Methoxyphenyl)-4,6-diphenyl-1,2-dihydro-1,3,5-triazine (3f): Yellow sticky mass; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.40 (d, \(J = 7.6\) Hz, 2H), 7.69 (d, \(J = 7.2\) Hz, 2H), 7.51–7.48 (m, 3H), 7.41 (t, \(J = 7.2\) Hz, 1H), 7.33 (t, \(J = 7.6\) Hz, 2H), 6.94 (d, \(J = 8.9\) Hz, 2H), 6.77 (d, \(J = 8.9\) Hz, 2H), 5.51 (s, 2H), 3.78 (s, 3H).\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 162.30, 161.58, 157.54, 136.34, 134.22, 131.08, 130.54, 130.47, 128.72, 128.24, 128.15, 127.96, 126.11, 114.27, 67.28, 55.42. HRMS (ESI) Calcd for C\(_{22}\)H\(_{20}\)N\(_3\)O [M+H]\(^+\) 342.1601; found 342.1609.
1-(4-Fluorophenyl)-4,6-diphenyl-1,2-dihydro-1,3,5-triazine (3g): Yellow sticky mass; 1H NMR (400 MHz, CDCl$_3$) δ 8.38 (d, $J = 7.9$ Hz, 2H), 7.68 (d, $J = 7.2$ Hz, 2H), 7.53-7.48 (m, 3H), 7.45 (t, $J = 7.4$ Hz, 1H), 7.35 (t, $J = 7.6$ Hz, 2H), 7.02–6.86 (m, 4H), 5.51 (s, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 162.31, 161.46, 160.33 (d, $J_1 = 245$ Hz), 139.48, 136.05, 133.83, 131.40, 130.64, 130.54, 128.39, 128.21, 127.96, 126.28 (d, $J = 8.4$ Hz), 115.99 (d, $J = 22.8$ Hz), 67.08. HRMS (ESI) Calcd for C$_{21}$H$_{17}$FN$_3$ [M+H]$^+$ 330.1401; found 330.1407.

1-(3,4-Dichlorophenyl)-4,6-diphenyl-1,2-dihydro-1,3,5-triazine (3h): Yellow sticky mass; 1H NMR (400 MHz, CDCl$_3$) δ 8.32 (dd, $J = 7.8$, 1.7 Hz, 2H), 7.66 (d, $J = 7.2$ Hz, 2H), 7.50–7.42 (m, 4H), 7.35 (t, $J = 7.6$ Hz, 2H), 7.22 (d, $J = 8.6$ Hz, 1H), 7.09 (d, $J = 2.6$ Hz, 1H), 6.72 (dd, $J = 8.7$, 2.6 Hz, 1H), 5.44 (s, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 161.85, 161.22, 142.85, 135.71, 133.27, 133.01, 131.15, 130.43, 128.90, 128.65, 127.93, 127.02, 125.61, 123.89, 121.13, 66.67. HRMS (ESI) Calcd for C$_{21}$H$_{16}$Cl$_2$N$_3$ [M+H]$^+$ 380.0716; found 380.0710.

1-(Naphthalen-1-yl)-4,6-diphenyl-1,2-dihydro-1,3,5-triazine (3i): Yellow solid; Mp: 92-93 °C; 1H NMR (400 MHz, CDCl$_3$) δ 8.40 (dd, $J = 8.0$, 2.2 Hz, 2H), 8.03 (d, $J = 8.5$ Hz, 1H), 7.87 (d, $J = 8.5$ Hz, 1H), 7.72-7.61 (m, 4H), 7.58–7.46 (m, 5H), 7.23 (d, $J = 8.0$ Hz, 1H), 7.14 (t, $J = 7.7$ Hz, 2H), 7.08 (d, $J = 8.2$ Hz, 1H), 5.61 (d, $J = 11.7$ Hz, 1H), 5.47 (d, $J = 11.7$ Hz, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 164.09, 162.26, 140.09, 136.29, 134.52, 134.20, 131.36, 130.60, 130.07, 129.63, 129.79, 129.19, 128.14, 128.03, 127.88, 127.34, 126.62, 125.71, 125.30, 122.91, 67.80. HRMS (ESI) Calcd for C$_{25}$H$_{20}$N$_3$ [M+H]$^+$ 362.1652; found 362.1665.
1-Phenyl-4,6-di-o-tolyl-1,2-dihydro-1,3,5-triazine (3j): Yellow solid; Mp: 118-119 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.78 (d, \(J = 7.1\) Hz, 1H), 7.46 (d, \(J = 7.5\) Hz, 1H), 7.32-7.12 (m, 7H), 7.09 (t, \(J = 7.4\) Hz, 1H), 7.01 (d, \(J = 7.5\) Hz, 1H), 6.93 (d, \(J = 7.4\) Hz, 2H), 5.54 (s, 2H), 2.61 (s, 3H), 2.26 (s, 3H). 13C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 164.07, 163.20, 141.89, 137.16, 136.79, 136.33, 134.36, 130.87, 130.55, 130.50, 130.19, 129.25, 128.98, 128.70, 128.72, 125.86, 125.52, 124.21, 65.82, 21.24, 19.95. HRMS (ESI) Calcd for C\(_{23}\)H\(_{22}\)N\(_3\) [M+H]\(^+\) 340.1808; found 340.1811.

1-Phenyl-4,6-di-m-tolyl-1,2-dihydro-1,3,5-triazine (3k): Yellow sticky mass; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.21 (d, \(J = 8.4\) Hz, 1H), 8.20 (s, 1H), 7.61 (s, 1H), 7.47-7.34 (m, 3H), 7.27-7.23 (m, 3H), 7.21-7.12 (m, 2H), 7.00 (d, \(J = 7.6\) Hz, 2H), 5.54 (s, 2H), 2.49 (s, 3H), 2.36 (s, 3H). 13C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 162.60, 161.68, 143.40, 138.12, 137.79, 136.14, 134.01, 132.05, 131.31, 131.05, 128.94, 128.42, 128.09, 128.04, 127.78, 125.57, 125.23, 124.61, 66.81, 21.48, 21.35. HRMS (ESI) Calcd for C\(_{23}\)H\(_{22}\)N\(_3\) [M+H]\(^+\) 340.1813; found 340.1813.

4,6-bis(3-Fluorophenyl)-1-phenyl-1,2-dihydro-1,3,5-triazine (3l): Yellow sticky mass; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.15 (d, \(J = 7.8\) Hz, 1H), 8.06 (dt, \(J = 10.8, 1.6\) Hz, 1H), 7.50-7.38 (m, 3H), 7.30-7.26 (m, 3H), 7.24-7.16 (m, 2H), 7.14 (dt, \(J = 8.3, 2.9\) Hz, 1H), 7.01 (d, \(J = 7.5\) Hz, 2H), 5.56 (s, 2H). 13C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 162.86 (d, \(J = 243\) Hz), 162.44 (d, \(J = 245\) Hz), 161.32, 160.28 142.82, 138.39 (d, \(J = 6.5\) Hz), 136.18 (d, \(J = 7.7\) Hz), 129.84 (d, \(J = 7.8\) Hz), 129.64 (d, \(J = 8\) Hz), 129.22, 126.19, 124.66, 123.55, 123.53, 118.41 (d, \(J = 21.4\) Hz), 117.48 (d, \(J = 21.1\) Hz), 117.32 (d, \(J = 23.1\) Hz), 114.85 (d, \(J = 22.8\) Hz), 66.92. HRMS (ESI) Calcd for C\(_{21}\)H\(_{16}\)F\(_2\)N\(_3\) [M+H]\(^+\) 348.1307; found 348.1312.
4,6-bis(4-Ethylphenyl)-1-phenyl-1,2-dihydro-1,3,5-triazine (3m): Yellow sticky mass; \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.26 (d, \(J = 8.3\) Hz, 2H), 7.57 (d, \(J = 8.3\) Hz, 2H), 7.28 (d, \(J = 8.4\) Hz, 2H), 7.20 (t, \(J = 7.8\) Hz, 2H), 7.11-7.08 (m, 3H), 6.95 (d, \(J = 7.4\) Hz, 2H), 5.46 (s, 2H), 2.72 (q, \(J = 7.5\) Hz, 2H), 2.62 (q, \(J = 7.6\) Hz, 2H), 1.27 (t, \(J = 7.6\) Hz, 3H), 1.19 (t, \(J = 7.6\) Hz, 3H). \(^{13}C\) NMR (101 MHz, CDCl\(_3\)) \(\delta\) 162.21, 161.62, 147.97, 146.97, 143.56, 133.70, 131.35, 130.60, 128.93, 127.98, 127.81, 127.69, 125.41, 124.59, 66.80, 28.87, 28.79, 15.50, 15.14. HRMS (ESI) Calcd for C\(_{25}\)H\(_{26}\)N\(_3\) [M+H]\(^+\) 368.2121; found 368.2125.

4,6-bis(4-Chlorophenyl)-1-phenyl-1,2-dihydro-1,3,5-triazine (3n): Yellow sticky mass; \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.25 (d, \(J = 8.4\) Hz, 2H), 7.57 (d, \(J = 8.4\) Hz, 2H), 7.41 (d, \(J = 8.5\) Hz, 2H), 7.26 (d, \(J = 8.4\) Hz, 2H), 7.22 (t, \(J = 8.0\) Hz, 2H), 7.14 (t, \(J = 7.6\) Hz, 1H), 6.94 (d, \(J = 7.8\) Hz, 2H), 5.48 (s, 2H). \(^{13}C\) NMR (101 MHz, CDCl\(_3\)) \(\delta\) 161.39, 160.39, 142.95, 137.58, 136.70, 134.57, 132.38, 131.74, 129.27, 129.20, 128.64, 128.36, 126.04, 124.67, 66.93. HRMS (ESI) Calcd for C\(_{21}\)H\(_{16}\)Cl\(_2\)N\(_3\) [M+H]\(^+\) : 380.0716, found 380.1713.

4,6-bis(4-Fluorophenyl)-1-phenyl-1,2-dihydro-1,3,5-triazine (3o): Yellow sticky mass; \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.32 (dd, \(J = 8.9, 5.6\) Hz, 2H), 7.65 (dd, \(J = 8.9, 5.4\) Hz, 2H), 7.23 (t, \(J = 7.7\) Hz, 2H), 7.17–7.07 (m, 3H), 7.01–6.91 (m, 4H), 5.47 (s, 2H). \(^{13}C\) NMR (101 MHz, CDCl\(_3\)) \(\delta\) 164.54 (d, \(J = 248\) Hz), 164.49 (d, \(J = 252\) Hz), 161.35 160.45, 143.10, 139.30, 132.70 (d, \(J = 8.9\) Hz), 132.23 (d, \(J = 3.0\) Hz), 130.02 (d, \(J = 8.5\) Hz), 129.15, 125.93, 124.69, 115.51 (d, \(J = 21.8\) Hz), 115.06 (d, \(J = 21.4\) Hz), 66.85. HRMS (ESI) Calcd for C\(_{21}\)H\(_{16}\)F\(_2\)N\(_3\) [M+H]\(^+\) 348.1307; found 348.1313.
1-Phenyl-4,6-bis(4-(trifluoromethyl)phenyl)-1,2-dihydro-1,3,5-triazine (3p): Yellow sticky mass; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.51 (d, \(J = 8.0\) Hz, 2H), 7.78 (t, \(J = 8.8\) Hz, 4H), 7.61 (d, \(J = 8.1\) Hz, 2H), 7.33 (t, \(J = 7.2\) Hz, 2H), 7.24 (t, \(J = 7.3\) Hz, 1H), 7.03 (d, \(J = 7.6\) Hz, 2H), 5.63 (s, 2H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 161.64, 160.38, 142.30, 137.24, 133.17 (q, \(J = 32.5\) Hz), 132.59 (q, \(J = 29.6\) Hz), 130.82, 129.47, 128.62, 128.41, 126.75, 125.37 (q, \(J = 3.4\) Hz), 125.92 (q, \(J = 270\) Hz), 125.26 (q, \(J = 3.2\) Hz), 124.89 (q, \(J = 270\) Hz), 124.80, 66.49. HRMS (ESI) Calcd for C\(_{23}\)H\(_{16}\)F\(_6\)N\(_3\) [M+H]\(^+\) 448.1243; found 448.1246.

![3p](image)

4,6-bis(4-Fluoro-3-methylphenyl)-1-phenyl-1,2-dihydro-1,3,5-triazine (3q): Yellow sticky mass; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.99-7.94 (m, 2H), 7.35 (dd, \(J = 10.4, 1.6\) Hz, 1H), 7.25-7.20 (m, 4H), 7.13 (t, \(J = 7.4\) Hz, 1H), 7.06 (t, \(J = 7.7\) Hz, 1H), 6.95 (d, \(J = 7.6\) Hz, 2H), 5.46 (s, 2H), 2.34 (s, 3H), 2.25 (s, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 161.43 (d, \(J = 242\) Hz), 161.26, 160.88 (d, \(J = 244\) Hz), 160.41, 143.12, 135.90 (d, \(J = 4.3\) Hz), 133.41 (d, \(J = 7.6\) Hz), 131.20 (d, \(J = 13.1\) Hz), 131.14 (d, \(J = 13.0\) Hz), 129.13, 128.80 (d, \(J = 17.3\) Hz), 127.47 (d, \(J = 13.0\) Hz), 126.01 (d, \(J = 3.4\) Hz), 125.92, 124.62, 123.24 (d, \(J = 3.2\) Hz), 116.89 (d, \(J = 24.1\) Hz), 114.43 (d, \(J = 23.9\) Hz), 66.87, 14.72, 14.69. HRMS (ESI) Calcd for C\(_{23}\)H\(_{20}\)F\(_2\)N\(_3\) [M+H]\(^+\) 376.1620; found 376.1618.

![3q](image)

1,4,6-Tri-m-tolyl-1,2-dihydro-1,3,5-triazine (3r): Yellow sticky mass; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.08 (d, \(J = 8.9\) Hz, 1H), 8.06 (s, 1H), 7.51 (s, 1H), 7.30-7.20 (m, 3H), 7.10 (d, \(J = 7.6\) Hz, 1H), 7.04 (t, \(J = 7.6\) Hz, 1H), 6.98 (t, \(J = 7.8\) Hz, 1H), 6.83 (d, \(J = 7.6\) Hz, 1H), 6.72 (s, 1H), 6.64 (d, \(J = 7.9\) Hz, 1H), 5.39 (s, 2H), 2.36 (s, 3H), 2.24 (s, 3H), 2.17 (s, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 162.61, 161.71, 143.33, 138.96, 138.06, 137.77, 136.16, 134.08, 132.01, 131.27, 130.98, 128.62, 128.39, 128.08, 127.98, 127.75, 126.45, 125.20, 125.07, 122.04, 66.86, 21.50, 21.39, 21.33. HRMS (ESI) Calcd for C\(_{24}\)H\(_{24}\)N\(_3\) [M+H]\(^+\) 354.1965; found 354.1977.

![3r](image)
1-(3-Chlorophenyl)-4,6-di-m-tolyl-1,2-dihydro-1,3,5-triazine (3s): Yellow sticky mass; 1H NMR (400 MHz, CDCl$_3$) δ 8.14 (d, J = 8.9 Hz, 1H), 8.12 (s, 1H), 7.57 (s, 1H), 7.37-7.33 (m, 2H), 7.29 (d, J = 7.6 Hz, 1H), 7.22 (d, J = 7.5 Hz, 1H), 7.16 (t, J = 7.6 Hz, 1H), 7.11-7.05 (m, 2H), 6.99 (s, 1H), 6.77 (dt, J = 7.6, 2.4 Hz, 1H), 5.44 (s, 2H), 2.44 (s, 3H), 2.33 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 162.32, 161.52, 144.65, 138.38, 137.86, 135.83, 134.62, 133.50, 132.46, 131.47, 130.92, 129.76, 128.38, 128.25, 128.14, 127.72, 125.58, 125.21, 124.19, 122.91, 66.66, 21.48, 21.40. HRMS (ESI) Calcd for C$_{23}$H$_{21}$ClN$_3$ [M+H]$^+$ 374.1419; found 374.1424.

![Image of 1-(3-Chlorophenyl)-4,6-di-m-tolyl-1,2-dihydro-1,3,5-triazine (3s)](image)

1-(4-Fluorophenyl)-4,6-di-m-tolyl-1,2-dihydro-1,3,5-triazine (3t): Yellow solid; Mp: 92-94 °C; 1H NMR (400 MHz, CDCl$_3$) δ 8.14 (d, J = 8.4 Hz, 1H), 8.13 (s, 1H), 7.53 (s, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.31 (t, J = 7.6 Hz, 2H), 7.20 (d, J = 7.6 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H), 6.93 (s, 2H), 6.91 (d, J = 2.8 Hz, 2H), 5.45 (s, 2H), 2.44 (s, 3H), 2.32 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 162.32, 161.14, 144.65, 138.26, 137.84, 135.86, 133.89, 133.69, 133.44, 131.44, 131.02, 128.40, 128.14, 128.11, 127.74, 126.20 (d, J = 8.4 Hz), 125.21, 115.91 (d, J = 29.9 Hz) 66.90, 21.47, 21.36. HRMS (ESI) Calcd for C$_{23}$H$_{12}$FN$_3$ [M+H]$^+$ 358.1714; found 358.1727.

![Image of 1-(4-Fluorophenyl)-4,6-di-m-tolyl-1,2-dihydro-1,3,5-triazine (3t)](image)

1-[[1,1'-Biphenyl]-2-yl]-4,6-bis(3-fluorophenyl)-1,2-dihydro-1,3,5-triazine (3u): Yellow solid; Mp: 107-108 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.96 (d, J = 7.8 Hz, 1H), 7.87 (dt, J = 10.0, 2.0 Hz, 1H), 7.45-7.36 (m, 3H), 7.30 (dt, J = 7.4, 1.6 Hz, 1H), 7.23-7.15 (m, 3H), 7.06-6.95 (m, 4H), 6.88 (t, J = 7.0 Hz, 3H), 6.76 (dt, J = 9.5, 1.6 Hz, 1H), 5.46 (s, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 162.75 (d, J = 243 Hz), 161.97 (d, J = 245 Hz), 161.48, 161.14, 140.63, 138.52 (d, J = 7.6 Hz), 138.09, 137.86, 135.95 (d, J = 7.7 Hz), 131.32, 129.55 (d, J = 8.0 Hz), 129.01 (d, J = 7.8 Hz), 128.82, 128.73, 128.44, 127.57, 127.28, 126.36, 125.68 (d, J = 2.8 Hz), 123.59 (d, J = 2.8 Hz), 118.06 (d, J = 21.1 Hz), 117.31 (d, J = 21.2 Hz), 116.94 (d, J = 23.1 Hz), 114.82 (d, J = 22.7 Hz), 67.60. HRMS (ESI) Calcd for C$_{27}$H$_{20}$F$_2$N$_3$ [M+H]$^+$ 424.1620; found 424.1624.

![Image of 1-[[1,1'-Biphenyl]-2-yl]-4,6-bis(3-fluorophenyl)-1,2-dihydro-1,3,5-triazine (3u)](image)
1- (3-Chlorophenyl)-4,6-bis(3-fluorophenyl)-1,2-dihydro-1,3,5-triazine (3v): Yellow sticky mass; 1H NMR (400 MHz, CDCl$_3$) δ 8.09 (d, $J = 7.9$ Hz, 1H), 8.01 (dt, $J = 10.3$, 1.6 Hz, 1H), 7.43–7.35 (m, 3H), 7.25–7.20 (m, 1H), 7.16 (dt, $J = 8.1$, 2.8 Hz, 1H), 7.11–7.06 (m, 2H), 6.96 (d, $J = 7.6$ Hz, 1H), 6.80 (s, 1H), 6.74 (d, $J = 7.9$ Hz, 1H), 5.48 (s, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 162.86 (d, $J = 243$ Hz), 162.40 (d, $J = 245$ Hz), 161.32 (d, $J = 2.8$ Hz), 160.29 (d, $J = 3.1$ Hz), 142.77, 139.33, 138.48 (d, $J = 7.7$ Hz), 136.29 (d, $J = 7.6$ Hz), 129.80 (d, $J = 8.0$ Hz), 129.62 (d, $J = 8.0$ Hz), 128.90, 127.06, 126.20 (d, $J = 3.0$ Hz), 125.15, 123.54 (d, $J = 2.8$ Hz), 122.01, 118.34 (d, $J = 21.2$ Hz), 117.42 (d, $J = 21.3$ Hz), 117.28 (d, $J = 23.1$ Hz), 114.84 (d, $J = 22.9$ Hz), 66.99. HRMS (ESI) Calcd for C$_{21}$H$_{15}$ClF$_2$N$_3$ [M+H]$^+$ 382.0917; found 382.0917.

4,6-bis(3-Fluorophenyl)-1-(4-fluorophenyl)-1,2-dihydro-1,3,5-triazine (3w): Yellow solid; Mp: 78-79 ºC; 1H NMR (400 MHz, CDCl$_3$) δ 8.13 (d, $J = 7.8$ Hz, 1H), 8.05 (dt, $J = 10.3$, 2.0 Hz, 1H), 7.49–7.40 (m, 2H), 7.38 (dt, $J = 7.6$, 1.2, 1H), 7.33–7.27 (m, 1H), 7.22 (td, $J = 8.3$, 2.6 Hz, 1H), 7.15 (td, $J = 8.0$, 2.8 Hz, 1H), 6.99 (d, $J = 6.3$ Hz, 4H), 5.52 (s, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 162.87 (d, $J = 244$ Hz), 162.48 (d, $J = 246$ Hz), 161.56, 160.70 (d, $J = 247$ Hz), 160.45, 145.02, 140.65, 138.84, 130.05 (d, $J = 7.9$ Hz), 129.80 (d, $J = 7.7$ Hz), 126.39 (d, $J = 8.4$ Hz), 126.28, 123.72, 118.73 (d, $J = 21.2$ Hz), 117.91 (d, $J = 20.3$ Hz), 117.41 (d, $J = 23.2$ Hz), 116.34 (d, $J = 22.9$ Hz), 115.02 (d, $J = 22.6$ Hz), 66.72. HRMS (ESI) Calcd for C$_{21}$H$_{15}$F$_3$N$_3$ [M+H]$^+$ 366.1213; found 366.1217.

1- (3-Chlorophenyl)-4,6-bis(4-ethylphenyl)-1,2-dihydro-1,3,5-triazine (3x): Yellow solid; Mp: 104-106 ºC; 1H NMR (400 MHz, CDCl$_3$) δ 8.24 (d, $J = 8.2$ Hz, 2H), 7.58 (d, $J = 8.2$ Hz, 2H), 7.28 (d, $J = 8.3$ Hz, 2H), 7.14 (d, $J = 8.3$ Hz, 2H), 7.10–7.06 (m,
2H), 6.99 (d, J = 1.8 Hz, 1H), 6.77 (dt, J = 7.1, 2.1 Hz, 1H), 5.42 (s, 2H), 2.72 (q, J = 7.6 Hz, 2H), 2.64 (q, J = 7.6 Hz, 2H), 1.27 (t, J = 7.6 Hz, 3H), 1.21 (t, J = 7.6 Hz, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 161.93, 161.44, 148.40, 147.14, 144.85, 134.61, 133.44, 130.88, 130.54, 129.74, 128.01, 127.98, 127.73, 125.42, 124.17, 122.91, 66.68, 28.87, 28.82, 15.48, 15.13.

HRMS (ESI) Calcd for C$_{25}$H$_{25}$ClN$_3$ [M+H]$^+$ 402.1732; found 402.1745.

4,6-bis(4-Fluorophenyl)-1-(m-tolyl)-1,2-dihydro-1,3,5-triazine (3y): Yellow sticky mass; 1H NMR (400 MHz, CDCl$_3$) δ 8.32 (dd, J = 8.9, 5.6 Hz, 2H), 7.66 (dd, J = 8.8, 5.2 Hz, 2H), 7.14–7.07 (m, 3H), 7.00–6.93 (m, 3H), 6.79 (s, 1H), 6.72 (d, J = 8.0 Hz, 1H), 5.45 (s, 2H), 2.26 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 164.54 (d, J = 248 Hz), 164.48 (d, J = 251 Hz), 161.38, 160.50, 143.04, 139.26, 132.69 (d, J = 8.8 Hz), 132.29 (d, J = 2.8 Hz), 130.88 (d, J = 2.8 Hz), 130.03 (d, J = 8.3 Hz), 128.84, 126.82, 125.19, 122.05, 115.47 (d, J = 21.8 Hz), 115.06 (d, J = 21.4 Hz), 66.89, 21.31. HRMS (ESI) Calcd for C$_{22}$H$_{18}$F$_2$N$_3$ [M+H]$^+$ 362.1463; found 362.1460.

1-(m-Tolyl)-4,6-bis(4-(trifluoromethyl)phenyl)-1,2-dihydro-1,3,5-triazine (3z): Yellow solid; Mp: 101-103 °C; 1H NMR (400 MHz, CDCl$_3$) δ 8.42 (d, J = 8.2 Hz, 2H), 7.75 (d, J = 8.1 Hz, 2H), 7.71 (d, J = 8.2 Hz, 2H), 7.56 (d, J = 8.2 Hz, 2H), 7.11 (t, J = 7.8 Hz, 1H), 6.98 (d, J = 7.6 Hz, 1H), 6.81 (s, 1H), 6.73 (d, J = 7.9 Hz, 1H), 5.54 (s, 2H), 2.27 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 161.33, 160.15, 142.47, 139.54, 139.35, 137.59, 132.84 (q, J = 32.5 Hz), 132.52 (q, J = 31.7 Hz), 130.69, 129.04, 128.18, 127.33, 125.26 (q, J = 3.7 Hz), 125.20, 125.12 (q, J = 3.8 Hz), 124.16 (q, J = 271 Hz), 123.61 (q, J = 271 Hz), 122.15, 67.09, 21.30. HRMS (ESI) Calcd for C$_{24}$H$_{18}$F$_6$N$_3$ [M+H]$^+$ 462.1399; found 462.1403.

2,4-Diphenyl-1,3,5-triazine (5a): White solid; Mp: 73-74 °C; 1H NMR (400 MHz, CDCl$_3$) δ 9.26 (s, 1H), 8.65-8.63(m, 4H), 7.64 – 7.59 (m, 2H), 7.58 – 7.53 (m, 4H).
2,4-bis(m-Tolyl)-1,3,5-triazine (5b): White solid; Mp: 85-86 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.25 (s, 1H), 8.45 (d, \(J = 6.5\) Hz, 4H), 7.46-7.41 (m, 4H), 2.50 (s, 6H). \(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 171.50, 166.63, 138.54, 135.55, 133.66, 129.38, 128.71, 21.52. ESI-MS: [M+H]\(^+\) 262.

2,4-bis(p-Tolyl)-1,3,5-triazine (5c): White solid; Mp: 160-161 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.19 (s, 1H), 8.52 (d, \(J = 8.2\) Hz, 4H), 7.35 (d, \(J = 8.0\) Hz, 4H), 2.46 (s, 6H). \(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 171.22, 166.57, 143.44, 132.98, 129.52, 128.89, 21.73. ESI-MS: [M+H]\(^+\) 262.

2,4-bis(2-Fluorophenyl)-1,3,5-triazine (5d): White solid; Mp: 68-69 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.39 (s, 1H), 8.36 (dt, \(J_1 = 7.7\) Hz, \(J_2 = 1.8\) Hz, 2H), 7.57-7.50 (m, 2H), 7.37 – 7.29 (m, 2H), 7.28 – 7.24 (m, 2H). \(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 170.48 (d, \(J = 5.1\) Hz), 166.58, 162.29 (d, \(J = 260.5\) Hz), 134.00 (d, \(J = 9.0\) Hz), 132.25, 124.40 (d, \(J = 3.0\) Hz), 124.05 (d, \(J = 8.0\) Hz), 117.32 (d, \(J = 22.2\) Hz). ESI-MS: [M+H]\(^+\) 270.

2,4-bis(3-Bromophenyl)-1,3,5-triazine (5e): White solid; Mp: 178-179 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.28 (s, 1H), 8.77 (t, \(J = 1.7\) Hz, 2H), 8.58 (d, \(J = 7.9\) Hz, 2H), 7.75 (dq, \(J_1 = 7.9, J_2 = 1.0\) Hz, 2H), 7.45 (t, \(J = 7.9\) Hz, 2H). \(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 170.35, 166.93, 137.35, 135.89, 131.87, 130.39, 127.54, 123.11. ESI-MS: [M+H]\(^+\) 392.
2,4-bis(4-Chlorophenyl)-1,3,5-triazine (5f): White solid; Mp: 189-190 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.24 (s, 1H), 8.60 – 8.55 (m, 4H), 7.55 – 7.50 (m, 4H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 170.56, 166.85, 139.38, 133.88, 130.25, 129.14. ESI-MS: [M+H]\(^+\) 303.

\[
\begin{array}{c}
\text{Br} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{Br} \\
\end{array}
\]

2,4-bis(4-Bromophenyl)-1,3,5-triazine (5g): White solid; Mp: 195-196 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.24 (s, 1H), 8.49 (d, \(J = 8.7\) Hz, 4H), 7.69 (d, \(J = 8.7\) Hz, 4H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 170.69, 166.86, 134.30, 132.11, 130.40, 128.07. ESI-MS: [M+H]\(^+\) 392.

\[
\begin{array}{c}
\text{F} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{F} \\
\end{array}
\]

2,4-bis(3,4-Difluorophenyl)-1,3,5-triazine (5h): White solid; Mp: 173-174 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.24 (s, 1H), 8.48 – 8.37 (m, 4H), 7.39 – 7.29 (m, 2H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 169.71, 166.90, 153.74 (dd, \(J = 255, 12.9\) Hz), 150.69 (dd, \(J = 248, 12.9\) Hz), 132.39 (dd, \(J = 5.9, 3.4\) Hz), 125.70 (dd, \(J = 7.2, 3.5\) Hz), 118.08 (dd, \(J = 18.9, 1.3\) Hz), 117.75 (d, \(J = 17.7\) Hz). HRMS (ESI) Calcd for C\(_{15}\)H\(_8\)F\(_4\)N\(_3\) [M+H]\(^+\) 306.0649; found 306.0659.

\[
\begin{array}{c}
\text{F} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{F} \\
\end{array}
\]

2,4-bis(Pyridin-4-yl)-1,3,5-triazine (5i): White solid; Mp: 182-183 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.44 (s, 1H), 8.90 (d, \(J = 5.9\) Hz, 4H), 8.51 – 8.37 (m, 4H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 170.58, 167.57, 150.97, 142.34, 122.18. ESI-MS: [M+H]\(^+\) 235.

\[
\begin{array}{c}
\text{N} \quad \text{N} \quad \text{N} \quad \text{N} \\
\end{array}
\]

7. References

8. Copies of NMR Spectra