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Computational methods 

Simplification procedure is a method of splitting the coordination network to building units (complexing 
atoms, polynuclear complex groups, ligands) and representing the whole network as the underlying net, 
which if the net of the centres of the building units connected according to their connection in the initial 
network (Fig. S1).1 The underlying net can be considered as encoding of the assembly of the 
coordination network from the building units. There are rigorous algorithms to separate the building 
units using chemical and topological criteria.2 The connectivity of the building units and the underlying 
net as a whole is described by a number of topological descriptors; those used in this work can be 
arranged in three groups. 

 

Figure S1.  Simplified (underlying) nets of a coordination network (left) in the standard (centre) and 
cluster (right) representation for the crystal structure of [(4,4'-bipyridine)2(diphosphide)2(CO)8 
(cyclopentadienyl)4Mo4Ag2 ][(OC(CF3)3)4Al)]2⋅CH2Cl2 (YILMEO).3 Hydrogen atoms and disordered anions 
[Al{OC(CF3)3}4]- are not shown.  

The result of the simplification procedure is a representation of the initial coordination network. The 
same network can be represented in different ways depending on which building units are chosen for 
the simplification. In this work, we use two kinds of representation of the coordination network:4 (i) 
standard representation, where the building units are metal atoms and organic ligands, and cluster 
representation, where the building units are polynuclear complex groups or metal clusters (if any) and 
linkers between them; it also corresponds to the single node method. If the structure can be 
represented in the cluster representation, this representation is chosen as final in the tables of our 
knowledge database. Thus, although the same structure can be represented in different ways, all these 
representations are built according to rigorous algorithms, and if we consider the same type of 
representation for all structures under consideration there is no ambiguity in choosing the nodes of the 
underlying net.  

An alternative topological description of the crystal structure is tiling. If the underlying net describes the 
topology of the coordination network, tiling deals with the topology of the free space in the network. 
Tiles are generalized polyhedra, which can contain curved faces and 2-coordinated vertices (Fig. S2). 
Usually, tiling is being built for the simplified (underlying) net following a rigorous algorithm.5 In most 
cases, a unique natural tiling can be constructed with this algorithm; the natural tiles correspond to the 
smallest cages of the network, while the shared faces of the tiles mimic the channels between the cages. 
Not any net admits tiling; moreover, natural tilings can be constructed not for all nets that admit tilings. 
In fact, this means that the smallest cages cannot be selected in such nets. The tiles are designated by 
their face symbol, which contains a sequence of the face sizes and the numbers of the faces of a 
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particular size, for example the face symbol [62.82] means tile bounded by two 6-membered rings and 
two 8-membered rings. The topological types of tiles are rigorously determined by the graph of their 
edges; for the natural tiles of the zeolite frameworks the t-xxx symbols are applied, for example t-kaa, 
which has the face symbol [62.82] (Fig. S2).6 

 

Figure S2. An example of natural tiles and tiling for zeolite BCT. 

Some of the most commonly used algorithms for calculation of topology and geometry of free space in 
crystal structures are based on the analysis of the graph (Voronoi net) obtained by the Voronoi 
decomposition of the crystal space. Previously we propose a number of such algorithms, and applied 
them to the zeolite frameworks.7 Within this approach, the channels connectivity is fully characterized 
by the Voronoi net. The radii of cavities and channels are determined by the distances from vertices and 
edges of the Voronoi net to the closest points of the van der Waals surface of the structure. The shape, 
volume, and surface area of pores are calculated from geometries of the polyhedra constructed for the 
vertices of the Voronoi net. The total porosity is computed as P = (Vcell-Vvdw)/Vcell, where Vcell is the 
volume of the unit cell and Vvdw is the part of the unit cell volume occupied by the atoms, which are 
represented by intersecting spheres of van der Waals radii. We use the Alvarez system of van der Waals 
radii.8 The volume of an atom is calculated as the volume of Voronoi polyhedron, whose intermolecular 
faces are moved to the van der Waals surface of the atom. The free space descriptors used in this work 
are given below. 

Topological descriptors 

1. Local coordination descriptors include: 

(i) Coordination numbers (CNs) of complexing metal atom and ligand are equal to the number of bonds 
or links, which are formed by the given structural group. Polynuclear complex group or polydentate 
molecular ligand can have two different CNs: the total number of bonds, which their donor atoms form 
with other building units (CNbond), and the number of links with the building units in the underlying net 
(CNlink); the latter CN is equal to the number of building units connected to the group or ligand (Fig. S3). 
The types of We used the for the classification of the coordination figures have been determined with 
the library described in [9]. 
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Figure S3. Coordination numbers, modes (top) and figures (bottom) of ligands in crystal structure [(3,3'-
[hydrazine-1,2-diylidenebis(eth-1-yl-1-ylidene)]dipyridine)2(4,4'-oxydibenzoato)2Co2]⋅DMAA (BIYVOX).10 
Hydrogen atoms are omitted for clarity. The types of coordination figures are designated according to 
Hartshorn,11 and extended with the sequence of valence angle values in ascending order with a step of 
15 degrees. Thus, symbol A-2{150} denotes a bent coordination figure with an angle of 150 degrees; 
symbol RAP-4{302,120,135,1502} corresponds to a quasi-rectangular coordination figure.  

(ii) Coordination mode of ligand describes how the ligand uses its donor atoms for the connection with 
other building units. We use the notation Lmbtkpg proposed in [12], where L = M, B, T, K, P or G depending 
on the number of the donor atoms of the ligand (1, 2, 3, 4, 5 or 6, respectively), and the integers mbtkpg 
are equal to the numbers of metal atoms connected with 1, 2, 3, 4, 5 or 6 donor atoms (Fig. S3). 
Obviously, coordination mode characterizes the ligand in the initial coordination network, not in the 
underlying net. 

(iii) Coordination figure of structural unit shows the shape of its environment in the underlying net, i.e. 
the geometrical configuration of the centers of the adjacent structural units (Fig. S3). Coordination 
figure generalizes the well-known concept of coordination polyhedron; while the latter is always related 
to an atom, the former describes the coordination of any structural unit. This generalization leads to a 
much wider diversity of coordination figures compared to coordination polyhedra; special algorithms 
were developed to discriminate different forms of coordination figures.13,14 

2. Overall topology descriptors include: 

(i) Dimensionality of the coordination network or the corresponding underlying net; there can be 
molecular (0D), chain (1D), layered (2D) or framework (3D) structural groups. Mathematical rigor 
requires using the term n-periodic instead of n-dimensional, but the latter term is conventional in 
coordination chemistry. 

(ii) Underlying topology characterizes the overall connectivity of the underlying net; there are several 
methods to determine the underlying topology; the nets, which have the same topology, can be 
matched without breaking or creating edges, adding or removing nodes. The coordination polymers, 
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which have the same underlying topology, belong to the same topological type. There are several 
nomenclatures to assign the names for topological types:  

(a) RCSR three-letter symbols;15 for example, pcu designates primitive cubic net;  

(b) ToposPro NDn symbols,2 where N is the set of coordination numbers of all independent nodes of the 
net; D is one of the letters C, L, or T, which designate the net dimensionality (C – chain, L – layered, T – 
framework); n enumerates topologically different nets with a given ND sequence. For instance, the 
symbol 3,4,5T2 denotes the 2nd (by the order) framework net with three 3-, 4- and 5-coordinated 
independent nodes. For the molecular structural groups the symbols NMk-n are applied, where k is the 
number of vertices in the group; 

(c) EPINET sqcN symbols,16 where N is an integer, for example, the primitive cubic net is designated sqc1; 

(d) Fischer's symbols k/m/fn for three-periodic sphere packings;17  the primitive cubic net has the 
Fischer's symbol 6/4/c1; 

(e) Zeolite capital three-letter symbols.18   

3. Tiling descriptors include: 

(i) Face symbol of tile bears the information about the size and number of the tile faces. For example, 
hexagonal prism has face symbol [46.62]. Face symbols of all tiles together with their stoichiometric 
coefficients form the tiling signature (Fig. S2). 

(ii) Topological type of tile is determined by the edge graph of the tile; the tiles belonging to the same 
topological type have isomorphic edge graphs. Topological types of all natural tiles in the 252 known 
zeolite frameworks are stored in the ToposPro TTT collection; their names are constructed from a three-
letter symbol with the t- prefix, for example, t-toc corresponds to the tile in the sodalite framework 
(truncated octahedron with face symbol [46.68]; see also Fig. S2). 

(iii) Geometrical distortion of tile is estimated by the mean square deviation (Σ) of the vertices of the tile 
from the standard geometrical form. Both the tile and the form are reduced to the same volume by a 
similarity operation that is equivalent to reducing of the underlying nets to the same density (3.0 g/cm3 
with assigning a formal molar mass of 1.0 g/mol to all nodes). In this work, the standard geometrical 
forms of tiles were obtained from the most symmetrical embeddings of the corresponding underlying 
nets published in the RCSR database.15  An increase in the variety of geometric shapes of tiles from left 
to right confirms a decrease in the rigidity of the net in the same sequence. The larger the part of tiles 
with a small Σ (sod or nbo, Fig. S4), the more rigid is the corresponding topological type of tile and the 
underlying net, and vice versa, a large number of tiles with large Σ indicates a deformable net (cds, lvt or 
sra, Figs. S4, S5). 

(iv) Connectivity Index (CI) is calculated as the ration of two integers: the number of tiles edges (e) and 
the number of tile vertices (v). For example the tiles in the dia, sra and lvt nets have e = 12, 18, 20 and v 
= 10, 14, 16, thus giving rise to CI = 12/10 = 6/5, 18/14 = 9/7 and 20/16 = 5/4, respectively (Fig. S5). The 
integers e and v are interrelated with the number of tile faces (f) by the Euler equation: v – e + f = 2. This 
equation predetermines the minimal limit for CI: v = e, CI = 1, since on this condition f = 2, which is 
impossible for 3D polyhedra. CI = 3/2 is a minimal value for a tile, where each vertex is locally stable, i.e. 
its position cannot be changed without changing the positions of the neighbouring vertices and/or the 
edge lengths. 
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Figure S4. Dependence of the occurrence of tiles (w) on their degree of distortion Σ for various 
topologies in the single underlying nets of coordination polymers. The inset contains the same 
dependencies but for 50, 129, and 1034 structures containing interpenetrating arrays of nets with the 
nbo, cds or dia topology. 
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Figure S5. (Top) The overlapping diagrams for geometrically distorted tiles in 745 dia (927 tiles; CI = 6/5; 
Σ = 1.15 Å2; left), 411 sra (455 tiles; CI = 9/7; Σ = 2.52 Å2; centre) and 99 lvt (104 tiles; CI = 5/4; Σ = 3.09 
Å2; right) underlying nets of coordination polymers compared with the most symmetrical shapes of the 
tiles (middle) and the corresponding natural tilings (bottom). The colouring of the distorted tiles 
depends on their geometrical distortion (Σ), from red (small distortion) to blue (large distortion).  

The simplification procedure, determination of the natural tiling and all descriptors described above are 
realized in the program package ToposPro,19  which was used in this work. To determine the topological 
types of the underlying nets and tiles we used the ToposPro TTD and TTT collections. 
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Geometrical and topological descriptors of the free space in crystal  

We used the following descriptors to characterize the free space: 

(i) Total porosity (P) that is the part of the structure volume occupied by both accessible and isolated 
pores. 

(ii) Radius of the largest included sphere (Ri) that can be embedded in the structure without intersection 
with the van der Waals surface of atoms. In other words, Ri corresponds to the largest cavity in the 
structure. For example, the structure of 2-fold interpenetrated zinc metal-organic framework 
Zn3(BTPCA)2(H2O)3 ∙ 3py ∙ 3DMSO20 (H3BTPCA = 1,1’ ,1’’-(benzene-1,3,5-triyl)tripiperidine-4-carboxylic 
acid) has large tetrahedral cages (R = 4.5Å), which encapsulate pyridine and dimethylsulfoxide 
molecules. However, all these cages are isolated since the interpenetrated frameworks lock the 
windows of the cages. 

(iii) Radius of free sphere (Rf) is the radius of the largest spherical probe that can migrate through the 
widest 1-, 2-, or 3-periodic channel systems. The descriptor can be used for the evaluation of the 
maximal size of molecules that are able to move through the structure. 

(iv) Radius of free included sphere (Rfi) is the radius of the largest spherical probe that can be included in 
the widest 1-, 2-, or 3-periodic channel systems. Usually Rfi is equal to Ri. These parameters differ from 
each other only if the largest cavity is separated from the widest periodic system of channels. 

(v) Periodicity of the channel system (PC).  

(vi) Part of the structure volume occupied by the channel system. This descriptor accounts for only the 
pores that are accessible for the given spherical probe in a periodic channel system. Thus, this descriptor 
can be used for evaluation of the sorbent capacity with respect to specific molecules. 

(vii) Number of independent channel systems (Z) accessible for a spherical probe of a given radius. 

(viii) Direction of a one-periodic system of channels or direction of the normal to a two-periodic 
channels system. An example of a metal-organic coordination polymer containing multidirectional 
channel systems is bio-MOF-100,21  where 1-periodic channels spread in four different directions.  The 
independent intra-framework channel systems can have even higher periodicity. For example, the 
structure of 2-nitroimidazolate cadmium hydrate20 contains two independent non-crossing 3-periodic 
channel systems. 

All of these descriptors can be computed using ToposPro and special Python scripts according to the 
algorithms described in [2, 7, 19]. 
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Data analysis  

For the statistical analysis, we used the data from the Cambridge Structural Database, which contains 
more than one million records. The main stages of the data analysis and the extraction of knowledge 
from the data were described in detail in [9], where the prediction of the dimensionality and topology of 
the crystal structure was the main problem to be solved. The current paper is devoted to the analysis 
and prediction of the porosity of 3D frameworks, and this goal affected the conditions for the selection 
of the structural data, although the stages of the analysis remained the same. 

An important step is the preparation of the structural data for the analysis. The structures with strongly 
disordered frameworks, in which ligands were found to be valence bonded to each other, were excluded 
from consideration. The extraframework species were removed for the correct estimation of the 
porosity. Duplicated structural studies were marked in the sample, and one of them was selected as the 
representative of the group. The structural studies were considered duplicated if their chemical 
composition, space-group symmetry, and framework topology, accounting for interpenetration, 
coincided. When constructing statistical distributions, 5735 duplicates were excluded from 
consideration (see Table S1, column Doubles). 

We have used the ToposPro program package to filter data and to calculate the descriptors of atoms, 
structural building units, and the structures as a whole. The ToposPro TTD, TTO and TTL collections2 
were used as the sources of additional information on the descriptors. We examined the correlations of 
the porosity with the following topological and geometric descriptors: 

• dimensionality of the coordination framework; 
• topological type of the underlying net in the standard and cluster representations; 
• number of interpenetrating frameworks; 
• topology and geometric shape of tiles; 
• dimensionality and radii of the free and included spheres for the channel systems; 
• shape of coordination figures of structural building units. 

The overlappings of the tiles from different structures were constructed with the CFShape program.14 
Before overlapping, the unit cell dimensions of the underlying nets were normalized to the same crystal 
density. 

To search for correlations between overall topology and porosity of the framework (Table S6), we have 
split the porosity values into four groups (quartiles): Q1 with P < 0.25; Q2 with P = 0.25–0.50; Q3 with P 
= 0.50–0.75, and Q4 with P > 0.75.  
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Table S3. The occurrence of topological types of all 3D structures (All) and porous coordination polymers 
(MOFs) for single (Z=1) and interpenetrating (Z>1 is separated from the topology symbol by ‘#’) 
networks in the standard representation. 

Topology All, Z=1 MOFs,  Z=1 Topology All,  Z>1 MOFs,  Z>1 
 N w, % N w, %  N w, % N w, % 
dia 640 2.71 401 3.19 4#dia 224 5.09 126 5.02 
pcu 560 2.37 250 1.99 2#dia 220 5.00 145 5.78 
pts 444 1.88 262 2.08 3#dia 196 4.45 117 4.67 
sra 373 1.58 236 1.88 2#xah 176 4.00 81 3.23 
cds 217 0.92 138 1.10 5#dia 123 2.79 73 2.91 
xah 205 0.87 71 0.56 2#pcu 118 2.68 73 2.91 
bpq 205 0.87 105 0.83 2#ths 103 2.34 33 1.32 
srs 201 0.85 138 1.10 2#fet 78 1.77 41 1.63 
bnn 195 0.82 123 0.98 2#srs 77 1.75 43 1.71 
ins 172 0.73 107 0.85 2#sqc65 76 1.73 36 1.44 
mog 160 0.68 107 0.85 2#cds 74 1.68 52 2.07 
tcs 154 0.65 80 0.64 2#pts 64 1.45 36 1.44 
nia 149 0.63 53 0.42 3#xah 60 1.36 38 1.52 
dmc 135 0.57 90 0.72 2#mog 55 1.25 36 1.44 
4,8T1 125 0.53 38 0.30 6#dia 52 1.18 36 1.44 
Other 19712 83.36 10378 82.52 Other 2708 61.49 1542 61.48 
Total 23647  12577  Total 4404  2508  
 

Table S4. The occurrence of topological types of all 3D structures (All) and porous coordination polymers 
(MOFs) for single (Z=1) and interpenetrating (Z>1) networks in the cluster representation. 

Topology All, Z=1 MOFs,  Z=1 Topology All,  Z>1 MOFs,  Z>1 
 N w, % N w, %  N w, % N w, % 
pcu 1698 16.30 916 16.64 2#pcu 673 32.80 360 32.70 
bcu 589 5.65 312 5.67 3#pcu 179 8.72 98 8.90 
dia 335 3.22 202 3.67 2#dia 133 6.48 73 6.63 
rtl 329 3.16 201 3.65 4#pcu 56 2.73 23 2.09 
flu 205 1.97 112 2.03 3#dia 48 2.34 35 3.18 
nbo 187 1.79 84 1.53 2#fsc 38 1.85 23 2.09 
tfz-d 181 1.74 104 1.89 2#tfz-d 34 1.66 21 1.91 
cds 175 1.68 109 1.98 2#rtl 32 1.56 16 1.45 
fcu 171 1.64 48 0.87 2#sit 31 1.51 17 1.54 
flu-3,6-C2/c 158 1.52 75 1.36 4#dia 22 1.07 10 0.91 
fsc 138 1.32 68 1.24 2#hex 21 1.02 10 0.91 
hex 135 1.30 82 1.49 2#lvt 21 1.02 10 0.91 
rob 130 1.25 88 1.60 2#the 20 0.97 11 1.00 
pts 127 1.22 88 1.60 2#hms 17 0.83 9 0.82 
acs 126 1.21 74 1.34 2#pto 17 0.83 11 1.00 
Other 5734 55.04 2941 53.44  710 34.60 374 33.97 
Total 10418  5504   2052  1101  
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Table S5. Occurrence of self-dual nets in coordination polymer structures 

Symbol Standard Cluster Symbol Standard Cluster 
 N(Z=1) N(Z>1) N(Z=1) N(Z>1)  N(Z=1) N(Z>1) N(Z=1) N(Z>1) 
bbr - - - - pte - - - - 
cbs - - - - pyr 16 1 39 10 
cdq 3 - 3 7 qtz-x - - 7 1 
cds 217 121 175 32 rtw - - - - 
ctn 20 1 15 2 sda - - 3 - 
dia 619 898 335 236 smt - - - - 
est 1 - - - srs 194 111 26 14 
ete - 1 - - sto - - - - 
fsf 1 - - - svn - - - - 
ftw 1 - 32 - swl - - - - 
gsi 4 - - - sxd 3 1 10 1 
hms 28 37 3 17 tfa 5 11 3 - 
hst - - 1 - tfc 6 1 6 4 
lcy 1 - 21 7 ths 122 182 1 5 
mab 33 - 120 14 tph - - 1 - 
mcf - - - - ttv - - - - 
mco - - 1 - unj 1 - 5 - 
mgc - - - - vck - - - - 
pcu 498 145 1698 915 vtx - - - - 
 

Table S6. The distribution of frequently occurring topologies (standard and cluster) of the single 
coordination frameworks by quartiles of the porosity. 

Topology* Q1 Q2 Q3 Q4 Topology Q1 Q2 Q3 Q4 
dia 2.06 3.00 3.57 0.39 alb-4,8-Imma→lvt - - 0.04 1.97 
pcu 2.79 1.56 3.22 0.79 tbo - - 0.04 1.97 
pts 1.47 1.73 2.29 0.79 4,4,4,8T13→cor - - - 1.97 
srs 0.59 0.61 0.82 3.15 3,3,6,8,8T1→csq - - - 1.97 
3,4,8T15→fcu 0.15 - 0.79 3.15 tcs 0.88 0.59 0.36 - 
fff→pcu - - 0.14 3.15 4,16T2→scu - - 0.64 1.18 
4,12T1→nts - - 0.39 2.76 sod - 0.17 1.11 0.39 
3,6,8,8T1→flu - - 0.32 2.76 mog 0.88 0.53 0.25 - 
alb-4,8-P42/mmc→pts - 0.01 0.18 2.76 3,5T1 1.03 0.53 0.04 - 
cds 0.74 1.23 0.43 0.39 fsc 0.15 0.42 0.89 - 
4,4,4,4,4,6,6T1→muo - - - 2.76 flu 1.03 0.27 0.04 - 
bnn 1.32 0.92 0.50 - lvt 0.29 0.52 0.43 - 
sra 0.74 1.15 0.46 - ths 0.15 0.45 0.64 - 
4,8T24→nbo - - 0.75 1.57 4,4,6T19 0.88 0.19 0.14 - 
bpq 0.15 0.71 1.47 - 4,8T1 - 0.08 1.11 - 
nts→tbo - - 0.25 1.97 fet→pcu - 0.47 0.64 - 
rtl 1.62 0.46 0.11 - fsx-4,5-C2/c 1.03 - - - 
nia 1.32 0.33 0.54 - fsy - 0.50 0.43 - 
5,8T16→fsc - 0.01 0.11 1.97 ins 0.29 0.52 0.11 - 
ith-3,9-R3m 2.06 - - - srs→dia 0.29 0.50 0.11 - 
*The topology of the cluster representation (if any) is indicated after the arrow. 
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Table S7. Abundant underlying nets of coordination polymers with isohedral tilings and their 
connectivity indices (CI). 

Net CI Net CI Net CI Net CI 
dia 6/5 srs 15/14 dmp 11/10 hex 3/2 
pcu 3/2 bnn 3/2 ths 10/9 lvt 5/4 
sra 9/7 bpq 10/7 bbf 4/3 qtz 7/6 
cds 7/6 tcs 14/9 nbo 4/3   
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Figure S6. Dependence of number of new topological types of the underlying nets of 3D coordination 
polymers on the year of the first publication of a structure with this topology (left) and the 
corresponding integral dependence (right). 

 

Figure S7. Dependence of porosity on the number of interpenetrating dia nets in the crystal structure of 
a coordination polymer. 
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Figure S8. Dependence of the porosity of the coordination polymers on the number of vertices in the tile 
of the underlying net tiling. Only isohedral (consisting of the single type of tile) tilings are considered. 
The borders of the standard deviation gap are shown by red and grey thin lines.  

 

 

Figure S9. Dependence of the porosity of the coordination polymers on the topological type of the tile of 
the underlying net tiling. The first 20 abundant tiles of the isohedral tilings and considered. The borders 
of the standard deviation gap are shown by red and grey thin lines.  
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Figure S10. A fragment of the coordination network (left) and the corresponding natural tiles (right) in 
the interpenetrating array of two sod underlying nets in the crystal structure of [((3,5-
dicarboxylatophenoxy)phthalato)(N-(pyridin-4-yl)pyridin-4-amine)Co2] (IJOGAR).23 

 

 

Figure S11. (Top) The overlapping diagrams for geometrically distorted tiles [34.62.82] (CI = 10/7), [65] (CI 
= 5/4), and [412.124] (CI = 24/17) in 14 bpq (left), 11 lon (centre) and 25 met (right) underlying nets of 
coordination polymers compared with the most symmetrical shapes of the tiles (middle) and the 
corresponding natural tilings (bottom). The colouring of the distorted tiles depends on their geometrical 
distortion (Σ), from red (small distortion) to blue (large distortion). 
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Figure S12. The natural tiles and tiling of the 4,8T1 net. 
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