Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Enantioselective construction of dispirotriheterocycles featuring a 4-aminopyrazolone motif through a cascade Michael/cyclization process

Shiqiang Wei,^a Xiaoze Bao,^a Wenyao Wang,^a Shah Nawaz,^a Qimin Dai,^b Jingping Qu^a and Baomin Wang*^a

Content

General information	S1
Experimental procedures and characterization of products 3aa-3ag and 4-7	S1
References	S27
NMR spectra for compounds	S27

^a State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.

^b Nenter (Shishou) & Co., Inc., Jingzhou 434000, People's Republic of China

General information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. Column chromatography was performed on silica gel (200~300 mesh). Enantiomeric excesses (ee) were determined by HPLC using corresponding commercial chiral columns as stated at 30 °C with UV detector at 254 nm. Optical rotations were reported as follows: $[\alpha]^T$ D (c g/100 mL, solvent). All ¹H NMR and ¹⁹F NMR spectra were recorded on a Bruker Avance II 400 MHz and Bruker Avance III 471 MHz respectively, ¹³C NMR spectra were recorded on a Bruker Avance II 101 MHz or Bruker Avance III 126 MHz with chemical shifts reported as ppm (in CDCl₃, TMS as internal standard). Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad singlet, dd = double doublet, coupling constants in Hz, integration). HRMS (ESI) was obtained with a HRMS/MS instrument (LTQ Orbitrap XL TM). The absolute configuration of 5 was assigned by the X-ray analysis.

4-Isothiocyanato pyrazolones¹ and 3-ylideneoxindoles² were prepared according to the literature procedures. The racemic products were synthesized using quinine/quinidine = 1:1 as catalyst.

Experimental procedures and characterization of products 3aa-3ag and 4-7

General procedure: synthesis of compound 3aa-3ag

To a Schlenk tube equipped with a magnetic stir bar was charged with compound 1 (0.2 mmol) and C3 (5 mmol %), followed with DCM (2 mL). Compound 2 (0.24 mmol) was then added in one portion. The reaction mixture was stirred at room temperature. When compound 1 was consumed as checked by TLC, the reaction was stopped and purified by column chromatography on silica gel directly to give the product $3 \cdot$

Prepared according to the general procedure within 7 h as white solid (104.4 mg, 89% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/6). [α]_D¹⁹ = 97.7 (c 0.79, CH₂Cl₂); Mp 150.1-153 °C; ¹H NMR (400 MHz, Chloroform-d) δ 9.13 (s, 1H), 8.06 (d, J = 7.9 Hz, 2H), 7.82 (d, J = 6.9 Hz, 2H), 7.63-7.54 (m, 3H), 7.44 (t, J = 7.9 Hz, 2H), 7.41-7.36 (m, 2H), 7.30-7.24 (m, 4H), 7.05 (t, J = 7.7 Hz, 1H), 6.66 (d, J = 7.8 Hz, 1H), 6.47 (t, J = 7.6 Hz, 1H), 5.22 (d, J = 7.6 Hz, 1H), 5.05 (s,

1H), 4.99 (d, J = 16.0 Hz, 1H), 4.92 (d, J = 16.0 Hz, 1H), 3.75-3.67 (m, 1H), 3.57-3.49 (m, 1H),

0.38 (t, J=7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 202.0 , 174.6 , 168.9 , 165.1 , 143.8 , 137.5 , 135.2 , 131.3 , 130.5 , 129.9 , 129.3 , 129.20 , 129.1 , 128.6 , 127.7 , 127.6 , 127.5 , 125.9 , 123.7 , 122.7 , 119.2 , 109.5 , 73.9 , 68.2 , 61.4 , 58.4 , 44.7 , 12.9 ; HRMS (ESI) m/z Calcd for $C_{35}H_{29}N_4O_4S^+$ ([M+H]+) 601.1904, Found 601.1901; Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 8.4 min, t_{minor} = 37.5 min).

Peak	RetTime	Type	Width	Area	Height	Area
				[mAU*s]		8
1	8.437	BB	0.9987	2.81896e4	378.57837	99.3946
2	37.522	MM	1.6306	171.70578	1.75504	0.6054

100

Prepared according to the general procedure within 7 h as white solid (105.6 mg, 86% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/6). [α]_D¹⁹ = 92.6 (c 0.43, CH₂Cl₂); Mp 160.1-162.9 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.81 (s, 1H), 8.04 (dd, J = 8.7, 1.2 Hz, 2H), 7.55 (d, J = 7.7 Hz, 1H), 7.50-7.45 (m, 4H), 7.40 (d, J = 6.7 Hz, 2H), 7.30-7.25 (m, 5H), 7.04 (td, J = 7.8, 1.1 Hz, 1H), 6.65 (d, J = 7.9 Hz, 1H), 6.43 (td, J = 7.6, 1.0 Hz, 1H), 5.12 (s, 1H), 5.07 (dd, J = 7.7, 1.1 Hz, 1H), 4.99 (d, J = 8.0 Hz, 1H), 4.96 (d, J = 12.0 Hz, 1H), 3.86-3.78 (m, 1H), 3.60-3.47 (m, 1H), 2.67 (s,

3H), 0.43 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 201.9, 168.3, 143.8, 139.2, 137.5, 135.2, 132.1, 130.7, 130.4, 129.1, 128.6, 127.7, 127.6, 127.5, 126.5, 125.9, 123.6, 122.7, 119.1, 109.4, 67.6, 61.4, 58.4, 44.7, 20.5, 13.0; HRMS (ESI) m/z Calcd. for C₃₆H₃₁N₄O₄S⁺ ([M+H]⁺) 615.2061, Found 615.2060; Enantiomeric excess was determined to be 98%

(determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, $t_{major} = 9.0$ min, $t_{minor} = 40.8$ min)

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	9.488	PB	0.6855	5784.91992	123.27118	50.6947
2	39.037	MM	6.3312	5626.36475	14.81122	49.3053

Prepared according to the general procedure within 7 h as white solid (110.5 mg, 90% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/6). [α]_D¹⁹ = 70.2 (c 0.64, CH₂Cl₂); CH₂Cl₂); Mp 146.5-148.0 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.85 (s, 1H), 8.06 (d, J = 8.1 Hz, 2H), 7.61 (d, J = 7.2 Hz, 2H), 7.46-7.38 (m 6H), 7.31-7.24 (m, 4H), 7.06 (t, J = 7.7 Hz, 1H), 6.66 (d, J = 7.8 Hz, 1H), 6.48 (t, J = 7.6 Hz, 1H), 5.29 (d, J = 7.6 Hz, 1H), 5.05 (s, 1H), 4.96 (s, 2H), 3.77-3.65 (m, 1H), 3.57-3.49 (m, 1H), 2.41 (s, 3H), 0.39 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 202.1, 168.9, 165.1, 158.0, 143.9, 139.0, 137.6,

135.2, 131.2, 131.1, 130.3, 129.2, 129.2, 129.1, 128.6, 127.6, 127.5, 126.9, 125.9, 123.7, 122.6, 119.1, 109.5, 61.4, 58.3, 44.7, 21.5, 13.0; HRMS (ESI) m/z Calcd. for $C_{36}H_{31}N_4O_4S^+$ ([M+H]⁺) 615.2061, Found 615.2061; Enantiomeric excess was determined to be 99% (determined by

HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, $t_{major} = 9.4$ min, $t_{minor} = 35.8$ min)

Prepared according to the general procedure within 7 h as white solid (106.8 mg, 87% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/6). [α]_D¹⁹ = 70.2 (c 0.64, CH₂Cl₂); Mp 146.5-148.0 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.90 (s, 1H), 8.06 (d, J = 8.0 Hz, 2H), 7.69 (d, J = 8.1 Hz, 2H), 7.47-7.35 (m, 6H), 7.29-7.23 (m, 4H), 7.06 (td, J = 7.8, 1.2 Hz, 1H), 6.66 (d, J = 7.8 Hz, 1H), 6.47 (td, J = 7.6, 1.0 Hz, 1H), 5.23 (dd, J = 7.8, 1.1 Hz, 1H), 5.05 (s, 1H), 5.00 (d, J = 16.0 Hz, 1H), 4.94 (d, J = 16.0 Hz, 1H), 3.75-3.65 (m, 1H), 3.57-3.49 (m, 1H), 2.48 (s, 3H), 0.38 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 202.0 , 168.9 ,

165.1, 143.9, 140.9, 137.6, 135.2, 129.9, 129.8, 129.2, 129.0, 128.6, 128.3, 127.6, 127.5, 125.8, 123.8, 122.5, 119.1, 109.5, 73.8, 68.1, 61.3, 58.3, 44.7, 21.5, 13.0; HRMS (ESI) m/z Calcd. for $C_{36}H_{31}N_4O_4S^+$ ([M+H]+) 615.2061, Found 615.2059; Enantiomeric excess was determined to be

99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 10.8 min, t_{minor} = 34.5 min).

Prepared according to the general procedure within 5 h as white solid (107.5 mg, 87% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/6). [α]_D¹⁹ = 73.4 (c 1.36, CH₂Cl₂); Mp 150.1-153.7 °C; ¹H NMR (400 MHz, Chloroform-d) δ 9.36 (s, 1H), 8.00 (d, J = 7.8 Hz, 2H), 7.87-7.80 (m, 2H), 7.44-7.35 (m, 4H), 7.30-7.22 (m, 6H), 7.09 (td, J = 7.8, 1.2 Hz, 1H), 6.68 (d, J = 7.8 Hz, 1H), 6.56 (d, J = 7.6 Hz, 1H), 5.35 (dd, J = 7.8, 1.1 Hz, 1H), 5.05 (s, 1H), 4.98 (d, J = 16.0 Hz, 1H), 4.91 (d, J = 16.0 Hz, 1H) 3.72-3.64 (, 1H), 3.55-3.47 (m, 1H), 0.36 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (470 MHz, Chloroform-d) δ -109.09 (m). ¹³C NMR (101 MHz,

Chloroform-d) δ 201.8, 169.1, 165.2, 164.1 (d, J = 253.5 Hz), 157.2, 143.9, 135.1, 132.2 (d, J = 9.0 Hz), 129.4, 129.0, 128.6, 127.8, 127.7, 127.5, 125.9, 123.4, 122.7, 119.2, 116.3 (d, J = 21.2

Hz), 109.7, 73.8, 68.3, 61.4, 58.4, 44.7, 13.0; HRMS (ESI) m/z Calcd. for $C_{35}H_{28}FN_4O_4S^+$ ([M+H]+) 619.1810, Found 619.1810; Enantiomeric excess was determined to be 96% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 15.3 min, t_{minor} = 66.9 min)

Prepared according to the general procedure within 18 h as white solid (110.5 mg, 85% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/6). [α]_D¹⁹ = 50.6 (c 0.36, CH₂Cl₂); Mp 163.5-164.7 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.97 (s, 1H), 8.61 (d, J = 8.3 Hz, 1H), 8.06 (d, J = 8.2 Hz, 3H), 7.95 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 7.2 Hz, 1H), 7.63-7.50 (m, 3H), 7.44 (t, J = 7.8 Hz, 2H), 7.34 (d, J = 7.0 Hz, 2H), 7.28-7.20 (m, 4H), 6.92 (t, J = 7.7 Hz, 1H), 6.56 (d, J = 7.8 Hz, 1H), 6.19 (t, J = 7.7 Hz, 1H), 5.14 (s, 1H), 4.92 (s, 2H), 4.81 (d, J = 7.7 Hz, 1H), 3.69-3.61 (m, 1H), 3.51-3.40 (m, 1H), 0.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 202.2, 168.5, 165.1, 143.7, 137.5, 135.1,

134.2, 131.6, 131.1, 129.1, 128.9, 128.9, 128.6, 128.3, 127.8, 127.7, 127.6, 127.4, 127.3, 126.9, 126.6, 126.0, 125.2, 123.5, 122.4, 119.2, 109.4, 67.6, 61.4, 58.5, 44.7, 12.9; HRMS (ESI) m/z Calcd. for $C_{39}H_{31}N_4O_4S^+$ ([M+H]⁺) 651.2061, Found 651.2060; Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 9.9 min, t_{minor} = 69.9 min).

Prepared according to the general procedure within 7 h as white solid (113.1 mg, 87% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/6). [α]_D¹⁹ = 61.0 (c 0.73, CH₂Cl₂); Mp 150.1-153.1 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.98 (s, 1H), 8.26 (s, 1H), 8.12 (d, J = 8.1 Hz, 2H), 8.01 (q, J = 8.6 Hz, 2H), 7.90 (dd, J = 20.0, 8.2 Hz, 2H), 7.60 (t, J = 7.5 Hz, 1H), 7.50-7.44 (m, 3H), 7.41-7.33 (m, 2H), 7.28-7.21 (m, 4H), 6.91 (t, J = 7.7 Hz, 1H), 6.60 (d, J = 7.8 Hz, 1H), 5.98 (t, J = 7.6 Hz, 1H), 5.35 (d, J = 7.7 Hz, 1H), 5.10 (s, 1H), 4.94 (s, 2H), 3.69-3.58 (m, 1H), 3.57-3.45 (m, 1H), 0.34 (t, J = 7.1 Hz, 3H); 13 C NMR (101 MHz, Chloroform-d) δ 202.1, 174.7, 169.0, 165.2, 157.6,

143.8, 137.6, 135.1, 133.9, 129.4, 129.1, 129.1, 129.0, 128.7, 128.6, 127.7, 127.6, 127.6, 127.5, 127.0, 126.2, 125.9, 123.7, 122.4, 119.2, 109.5, 73.8, 68.3, 61.3, 58.5, 44.7, 12.9; HRMS (ESI)

m/z Calcd. for $C_{39}H_{31}N_4O_4S^+$ ([M+H]⁺) 651.2061, Found 651.2058; Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 11.4 min, t_{minor} = 72.7 min)

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.388	BB	0.9503	1.56004e4	233.84885	99.9373
2	72.697	MM	0.3188	9.79043	5.11898e-1	0.0627

Prepared according to the general procedure within 15 h as white solid (93.2 mg, 77% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/6). [α]¹⁹ = 68.8 (c 0.32, CH₂Cl₂); Mp 146.1-148.7 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.74 (s, 1H), 8.03 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 5.1 Hz, 1H), 7.55 (d, J = 3.7 Hz, 1H), 7.46-7.39 (m, 4H), 7.31-7.24 (m, 4H), 7.20 (t, J = 4.4 Hz, 1H), 7.11 (t, J = 7.8 Hz, 1H), 6.79-6.57 (m, 2H), 5.80 (d, J = 7.6 Hz, 1H), 5.02 (d, J = 12.0 Hz, 1H), 4.99 (s, 1H), 4.95 (d, J = 12.0 Hz, 1H), 3.73-3.48 (m, 2H), 0.40 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz,

Chloroform-*d*) δ 202.1, 165.0, 153.4, 144.0, 137.4, 135.1, 130.5, 129.5, 129.0, 128.6, 127.89, 127.9, 127.5, 125.9 , 124.0, 122.7, 119.1, 109.7, 73.5, 68.3, 61.5, 58.8, 44.7, 13.0; HRMS (ESI) m/z Calcd. for $C_{33}H_{27}N_4O_4S^+$ ([M+H]⁺) 607.1468, Found 607.1464; Enantiomeric excess was determined to be 79% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 11.7 min, t_{minor} = 64.4 min)

'COOEt 0 Bn 3ia

Prepared according to the general procedure within 2 h as white solid (97.9)mg, yield) after silica gel (EtOAc/petroleum ether = 1/6). $[\alpha]_{D}^{19} = 85.3$ (c 0.91, CH₂Cl₂); Mp 230.1-233.7 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.79 (s, 1H), 7.95 (d, J = 7.8 Hz, 2H), 7.46-7.37 (m, 4H), 7.36-7.20 (m, 6H), 7.09-7.00 (m, 1H), 6.80 (d, J = 7.8 Hz, 1H), 5.08 (d, J = 16.0 Hz, 1H), 4.99 (s, 1H), 4.95 (d, J = 16.0 Hz, 1H), 3.79-3.71 (m, 1H), 3.65-3.52(m, 1H), 2.55 (s, 3H), 0.45 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz,

Chloroform-d) δ 201.6, 174.2, 169.0, 165.6, 157.6, 144.1, 137.4, 135.1, 129.8, 129.0, 128.7, 128.5, 127.8, 127.6, 125.7, 123.2, 123.1, 118.9, 110.0, 73.3, 68.4, 61.6, 57.6, 44.7, 16.9, 13.0. HRMS (ESI) m/z Calcd. for C₃₀H₂₇N₄O₄S⁺ ([M+H]⁺) 539.1748, Found 539.1747; Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, $t_{major} = 15.1$ min, $t_{minor} = 32.5$ min)

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	ş
1	15.105	MM	1.8828	1.84400e4	163.23233	50.6237
2	27.468	MM	5.3149	1.79856e4	56.40002	49.3763

Prepared according to the general procedure within 2 h as white solid (100.5 mg, 91% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/6). [α]¹⁹ = 85.5 (c 0.91, CH₂Cl₂); Mp 180.1-182.0 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.98 (s, 1H), 8.00 (d, J = 8.2 Hz, 2H), 7.47-7.18 (m, 11H), 7.07 (t, J = 7.6 Hz, 1H), 6.81 (d, J = 7.9 Hz, 1H), 5.07 (d, J = 16.0 Hz, 2H), 5.01 (s, 1H), 4.95 (d, J = 16.0 Hz, 1H), 3.79-3.71 (m, 1H), 3.62-3.54 (m, 1H), 2.88 (q, J = 7.2 Hz, 2H), 1.48 (t, J = 7.1 Hz, 3H), 0.47 (t, J =

7.1 Hz, 3H); 13 C NMR (101 MHz, Chloroform-*d*) δ 201.5, 165.7, 161.4, 144.1, 137.6, 135.1, 129.8, 128.9, 128.7, 128.7, 127.7, 127.6, 125.6, 123.4, 123.2, 119.0, 110.0, 73.6, 68.6, 61.6, 57.7, 44.7, 24.0, 13.1, 9.40; HRMS (ESI) m/z Calcd. for $C_{31}H_{29}N_4O_4S^+$ ([M+H]+) 553.1904, Found 553.1904; Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 11.5 min, t_{minor} = 35.3min)

Peak	${\tt RetTime}$	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	11.395	MM	1.2003	1.09959e4	152.68690	49.5536
2	34.306	MM	8.6825	1.11940e4	21.48764	50.4464

Prepared according to the general procedure within 3 h as white solid (101.9 mg, 90% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/6). [α]_D¹⁹ = 96.1 (c 1.06, CH₂Cl₂); Mp 125.1-130.7 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.63 (s, 1H), 8.00 (d, J = 8.1 Hz, 2H), 7.49-7.37 (m, 4H), 7.35-7.23 (m, 6H), 7.07 (t, J = 7.6 Hz, 1H), 6.81 (d, J = 7.9 Hz, 1H), 5.10 (d, J = 16.0 Hz, 1H), 5.01 (s, 1H), 4.95 (d, J = 16.0 Hz, 1H), 3.80-3.72 (m, 1H), 3.62-3.54 (m, 1H), 3.16-3.10 (m, 1H), 1.55 (d, J =

6.6 Hz, 3H), 1.47 (d, J = 7.0 Hz, 3H), 0.48 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 201.2, 174.2, 168.8, 165.6, 164.4, 144.2, 137.6, 135.1, 129.8, 128.9, 128.7, 127.7, 127.6, 125.6, 123.1, 123.1, 118.8, 110.0, 73.6, 68.4, 61.54, 57.9, 44.7, 30.4, 22.6, 19.7, 13.0; HRMS (ESI) m/z Calcd. for $C_{32}H_{31}N_4O_4S^+$ ([M+H]⁺) 567.2061, Found 567.2057; Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, $t_{major} = 10.2$ min, $t_{minor} = 72.0$ min)

Pea.	k RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
	-						
	1 10.169	BB	1.0564	1.11923e4	140.65085	99.7638	
	2 72.056	MM	0.7466	26.49672	5.91495e-1	0.2362	

Prepared according to the general procedure within 2 h as white solid (106.0 mg, 94% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/6). $[\alpha]_D^{19} = 64.2$ (c 0.45, CH₂Cl₂); Mp 147.1-150.9 °C; H NMR (400 MHz, Chloroform-d) δ 8.52 (s, 1H), 7.94 (d, J = 8.0 Hz), 7.47-7.38 (m, 5H), 7.34-7.19 (m, 5H), 7.02 (t, J = 7.6 Hz, 1H), 6.81 (d, J = 7.9 Hz, 1H), 5.10 (d, J = 16.0 Hz, 1H), 5.02 (s, 1H), 4.98 (d, J = 16.0 Hz, 1H), 3.82-3.76 (m, 1H), 3.64-3.56 (m, 1H), 1.99-1.92 (m, 1H), 1.49-1.38 (m, 1H), 1.34-1.26 (m, 1H), 1.24-1.10 (m,

2H), 0.49 (t, J = 7.1 Hz, 3H); 13 C NMR (101 MHz, Chloroform-d) δ 174.3, 169.0, 165.5, 161.8, 144.2, 135.2, 129.7, 128.9, 128.7, 127.7, 127.6, 125.6, 123.3, 122.9, 118.8, 110.0, 73.7, 68.2, 61.5, 57.7, 44.7, 13.1, 11.0, 9.3, 9.2; HRMS (ESI) m/z Calcd. for $C_{32}H_{29}N_4O_4S^+$ ([M+H]+) 565.1904, Found 565.1906; Enantiomeric excess was determined to be 98% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 12.1 min, t_{minor} = 47.1 min)

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	12.215	BB	1.1112	1.10930e4	156.45311	50.0533
2	42.603	MM	8.3663	1.10693e4	22.05153	49.9467

Prepared according to the general procedure within 2 h as white solid (106.0 mg, 94% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/6). [α]_D¹⁹ = 38.3 (c 0.68, CH₂Cl₂); Mp 156.1-157.9 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.47 (s, 1H), 7.84 (d, J = 8.1 Hz, 2H), 7.46 (t, J = 6.9 Hz, 3H), 7.41 (d, J = 7.3 Hz, 2H), 7.36 (t, J = 7.5 Hz, 2H), 7.33-7.23 (m, 7H), 7.14 (t, J = 7.4 Hz, 1H), 7.07 (t, J = 7.6 Hz, 1H), 6.81 (d, J = 7.9 Hz, 1H), 5.06 (d, J = 15.8 Hz, 2H), 4.91 (d, J = 15.7 Hz, 1H), 4.33 (d, J = 16.4 Hz, 1H), 4.14 (d, J = 16.4 Hz, 1H), 3.84-3.70 (m, 1H),

3.67-3.53 (m, 1H), 0.47 (t, J = 7.1 Hz, 3H); 13 C NMR (101 MHz, Chloroform-d) δ 201.2, 174.4, 169.2, 166.0, 159.9, 144.3, 137.5, 135.1, 134.5, 129.9, 129.9, 128.9, 128.7, 128.7, 127.7, 127.6, 127.2, 125.5, 123.4, 123.2, 118.8, 110.1, 73.6, 68.5, 61.7, 58.3, 44.8, 36.8, 13.1; HRMS (ESI) m/z Calcd. for $C_{36}H_{31}N_4O_4S^+$ ([M+H]+) 615.2061, Found 615.2058; Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, $t_{major} = 14.2$ min, $t_{minor} = 27.2$ min)

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	14.176	MM	2.3496	1.02345e4	72.59669	50.8324
2	25.608	MM	6.3125	9899.36230	26.13711	49.1676

	[min]			Area [mAU*s]	Height [mAU]	Area %
1	14.224 27.150	BB	2.1593	2.12533e4 151.70618		99.2913

Prepared according to the general procedure within 8 h as white solid (89.08 mg, 85% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/6). [α]_D¹⁹ = 105.1 (c 0.87, CH₂Cl₂); Mp 241.3-243.4 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.93 (s, 1H), 8.02 (dd, J = 8.7, 1.2 Hz, 2H), 7.77 (dt, J = 6.9, 1.6 Hz, 2H), 7.63-7.53 (m, 3H), 7.43 (t, J = 8.0 Hz, 2H), 7.29-7.22 (m, 1H), 7.17 (td, J = 7.8, 1.2 Hz, 1H), 6.78 (d, J = 7.8 Hz, 1H), 6.48 (td, J = 7.6, 1.1 Hz, 1H), 5.17 (d, J = 7.6 Hz, 1H), 4.92 (s, 1H),

3.72-3.66 (m, 1H), 3.62-3.54 (m, 1H), 3.23 (s, 3H), 0.52 (t, J=7.1 Hz, 3H); 13 C NMR (101 MHz, Chloroform-d) δ 202.1 , 174.3 , 165.0 , 157.9 , 144.7 , 131.2 , 130.5 , 129.9 , 129.4 , 129.2 , 129.0 , 127.6 , 125.9 , 123.6 , 122.6 , 119.1 , 108.3 , 73.7 , 68.1 , 61.3 , 58.2 , 27.3 , 13.1; HRMS (ESI) m/z Calcd. for $C_{29}H_{25}N_4O_4S^+$ ([M+H]+) 525.1591, Found 525.1587; Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, $t_{major} = 10.0$ min, $t_{minor} = 16.4$ min).

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	9.462	MM	1.1233	4067.50562	60.35198	49.4472
2	13.323	MM	1.2866	4158.45312	53.86988	50.5528

Prepared according to the general procedure within 6 h as white solid (104.4 mg, 85% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/6). [α] $_{\rm D}^{\rm 19}$ = 91.5 (c 1.03, CH₂Cl₂); Mp 152.5-154.2 $^{\rm o}$ C; $^{\rm 1}$ H NMR (400 MHz, Chloroform-d) δ 9.03 (s, 1H), 8.00 (d, J = 7.8 Hz, 2H), 7.81-7.75 (m, 2H), 7.57-7.49 (m, 3H), 7.38 (dd, J = 8.6, 7.4 Hz, 2H), 7.35-7.30 (m, 2H), 7.25-7.14 (m, 4H), 6.80 (d, J = 7.9 Hz, 1H), 6.48 (d, J = 8.0 Hz, 1H), 5.07 (d, J = 1.6 Hz, 1H), 5.00 (s, 1H), 4.90 (d, J = 16.0 Hz, 1H), 4.85 (d, J = 16.0 Hz, 1H), 3.72-3.64 (m, 1H), 3.50-3.42 (m, 1H), 1.75 (s, 3H), 0.31 (t, J = 7.1 Hz, 3H); $^{\rm 13}$ C NMR

(101 MHz, Chloroform-*d*) δ 202.3, 174.6, 169.0, 165.1, 141.4, 137.6, 135.3, 132.1, 130.7, 130.1, 129.5, 129.1, 128.6, 127.7, 127.6, 127.5, 125.9, 124.6, 119.2, 109.3, 73.8, 68.3, 61.3, 58.4, 44.7, 20.9, 12.9. HRMS (ESI) m/z Calcd. for $C_{36}H_{31}N_4O_4S^+$ ([M+H]+) 615.2061, Found 615.2053; Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 11.9 min, t_{minor} = 28.1 min)

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	12.336	MM	1.0733	5317.72754	82.57882	50.9428
2	26.519	MM	3.1634	5120.90625	26.98007	49.0572

Prepared according to the general procedure within 6 h as white solid (107.1 mg, 87% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/6). [α]_D¹⁹ = 77.8 (c 1.09, CH₂Cl₂); Mp 156.7-157.8 °C; H NMR (400 MHz, Chloroform-d) δ 9.06 (s, 1H), 7.86 (dd, J = 6.5, 2.7 Hz, 2H), 7.59-7.49 (m, 3H), 7.41 (t, J = 7.9 Hz, 2H), 7.36 (d, J = 6.7 Hz, 2H), 7.29-7.21 (m, 4H), 6.60 (dd, J = 8.6, 2.4 Hz, 1H), 6.54 (d, J = 8.5 Hz, 1H), 5.31 (d, J = 2.4 Hz, 1H),

5.07 (s, 1H), 4.95 (d, J = 16.0 Hz, 1H), 4.87 (d, J = 16.0 Hz, 1H) 3.69-3.63 (m,1H), 3.58-3.50 (m, 1H), 3.31 (s, 3H), 0.41 (t, J = 7.1 Hz, 3H); 13 C NMR (101 MHz, Chloroform-d) δ 201.9, 174.4, 169.2, 165.1, 157.9, 155.9, 137.3, 135.2, 131.6, 130.8, 129.4, 129.2, 129.0, 128.6, 127.6, 127.5, 125.8, 119.1, 114.3, 111.7, 109.9, 73.7, 68.7, 61.4, 58.6, 56.0, 44.8, 13.0; HRMS (ESI) m/z Calcd. for $C_{36}H_{31}N_4O_5S^+$ ([M+H]+) 631.2010, Found 631.2003; Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 12.6 min, t_{minor} = 51.5 min)

Prepared according to the general procedure within 30 min as white solid (101.1 mg, 82% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/6). [α]_D¹⁹ = 88.8 (c 1.09, CH₂Cl₂); Mp 151.9-152.2 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.98 (s, 1H), 8.03-7.97 (m, 2H), 7.79-7.71 (m, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.4 Hz, 2H), 7.39 (t, J = 8.0 Hz, 2H), 7.35-7.29 (m, 2H), 7.26-7.20 (m, 4H), 6.72 (td, J = 8.6, 2.6 Hz, 1H), 6.52 (dd, J = 8.6,

4.2 Hz, 1H), 5.03 (s, 1H), 4.92 (d, J=16.0, 1H), 4.87 (d, J=16.0, 1H), 4.79 (dd, J=8.7, 2.6 Hz, 1H), 3.80-3.71 (m, 1H), 3.59-3.51 (dq, J=10.7, 7.1 Hz, 1H), 0.43 (t, J=7.1 Hz, 3H). ¹⁹F NMR (470 MHz, Chloroform-d) δ -119.19 (m); ¹³C NMR (101 MHz, Chloroform-d) δ 115.47 (d, J=23.5 Hz), 112.10 (d, J=26.9 Hz), 109.99 (d, J=7.9 Hz). ¹³C NMR (101 MHz, Chloroform-d) δ 201.2, 174.4, 168.7, 164.8, 159.9, 157.80,157.5, 139.8, 137.5, 134.8, 131.1, 130.8, 129.9, 129.4, 129.1, 128.7, 127.8, 127.5, 125.9, 119.1, δ 115.5 (d, J=23.5 Hz), 112.1 (d, J=27.3 Hz), 110.0(d, J=8.1 Hz), 73.9, 68.2, 61.56, 58.0, 44.8, 13.1; HRMS (ESI) m/z Calcd. for $C_{35}H_{28}FN_4O_4S^+$

([M+H]⁺) 619.1810, Found 619.1807; Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, $\lambda = 254$ nm, 30 °C, 0.8 mL/min, $t_{major} = 10.9$ min, $t_{minor} = 31.0$ min)

Prepared according to the general procedure within 15 min as white solid (101.4 mg, 80% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/6). [α]_D¹⁹ = 92.0 (c 1.09, CH₂Cl₂); Mp 156.7-157.8 °C; H NMR (400 MHz, Chloroform-d) δ 9.00 (s, 1H), 7.99 (d, J = 8.2 Hz, 2H), 7.73 (d, J = 7.4 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.6 Hz, 2H), 7.37 (t, J = 7.9 Hz, 2H), 7.32-7.28 (m, 2H), 7.26-7.16 (m, 5H), 6.99 (dd, J = 8.4, 2.0 Hz, 1H), 6.52 (d, J = 8.4 Hz, 1H), 5.10 (d, J = 2.0 Hz, 1H), 5.01 (s, 1H), 4.91 (d, J = 16.0

Hz, 1H), 4.85 (d, J = 16.0 Hz, 1H), 3.80-3.72 (m, 1H), 3.56-3.48 (m, 1H), 0.40 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 201.0, 174.3, 168.7, 164.8, 157.8, 142.4, 134.7, 131.6, 130.6, 129.8, 129.3, 129.3, 129.3, 129.1, 128.7, 128.0, 127.8, 127.5, 125.9, 124.3, 119.1, 110.5,

73.8, 67.9, 61.6, 58.0, 44.8, 13.1; HRMS (ESI) m/z Calcd. for $C_{35}H_{28}ClN_4O_4S^+$ ([M+H]⁺) 635.1514, Found 635.1514; Enantiomeric excess was determined to be 94% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 11.8 min, t_{minor} = 27.3 min)

Prepared according to the general procedure within 15 min as white solid (108.5 mg, 79% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/6). $[\alpha]_D^{19} = 86.9$ (c 1.27, CH₂Cl₂); Mp 154.1-155.9 °C; ¹H NMR (400 MHz, Chloroform-d) δ 9.06 (s, 1H), 8.04 (d, J = 8.0 Hz, 2H), 7.79 (d, J = 7.6 Hz, 2H), 7.67 (t, J = 7.4 Hz, 1H), 7.58 (t, J = 7.6 Hz, 2H), 7.42 (t, J = 7.8 Hz, 2H), 7.35 (d, J = 6.5 Hz, 2H), 7.30-7.22 (m, 4H), 7.19 (dd, J = 8.3, 1.8 Hz, 1H), 6.53

(d, J = 8.3 Hz, 1H), 5.38 (d, J = 1.9 Hz, 1H), 5.05 (s, 1H), 4.95 (d, J = 16.0 Hz, 1H), 4.80 (d, J = 16.0 Hz, 1H), 3.85-3.77 (m, 1H), 3.64-3.51 (m, 1H), 0.45 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz,

Chloroform-*d*) δ 174.2, 168.7, 164.7, 142.9, 137.5, 134.7, 132.3, 131.8, 130.6, 129.7, 129.6, 129.3, 129.1, 128.7, 127.8, 127.5, 126.9, 125.9, 119.1, 115.3, 111.1, 73.8, 67.9, 61.6, 58.1, 44.8, 13.1; HRMS (ESI) m/z Calcd. for $C_{35}H_{28}BrN_4O_4S^+$ ([M+H]+) 679.1009, Found 679.1014; Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 12.5 min, t_{minor} = 26.5 min)

Synthesis of compound d

To a Schlenk tube equipped with a magnetic stir bar was charged with compound **3ag** (0.1mmol, 64.3 mg) and DCM (2mL) at 0 °C, mCPBA (0.3 mmol, 54 mg) was added in one portion, then the reaction was stirred at room temperature for 1 h as white solid (93.2 mg, 77% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/3). $[\alpha]_D^{19} = 60.9$ (c 0.32, CH₂Cl₂); Mp 140.1-142.7 °C;. ¹H NMR (400 MHz, Chloroform-d) δ 8.00 (d, J = 7.5 Hz, 2H), 7.79-7.62 (m, 4H), 7.54 (t, J = 7.9 Hz, 2H), 7.42 (t, J = 7.9 Hz, 2H), 7.26-7.14 (m, 6H), 6.47 (d, J = 8.2 Hz, 1H), 5.32 (s, 1H), 5.02 (d, J = 15.8 Hz, 1H), 4.88 (s, 1H), 4.77 (d, J = 15.9 Hz, 1H), 3.86-3.80 (m, 1H), 3.60-3.56 (m, 1H), 0.44 (t, J = 6.9 Hz, 3H); 13 C NMR (101 MHz, Chloroform-d) δ 173.4 , 171.3, 164.8, 158.4, 142.8, 137.6, 134.5, 133.5, 132.3, 131.8, 129.4, 129.3, 129.0, 128.7, 127.8, 127.2, 126.9, 125.8, 119.0, 111.0, 67.3, 61.6, 59.0, 55.4, 44.6, 13.1; HRMS (ESI) m/z Calcd. for C₃₅H₂₈BrN₄O₅S⁺ ([M+H]⁺) 663.1251, Found 663.1238; Enantiomeric excess was determined to be 96% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 30 °C, 0.8 mL/min, t_{major} = 37.2 min, t_{minor} = 68.7min)

Synthesis of compound 5

To a Schlenk tube equipped with a magnetic stir bar was charged with compound **3ag** (0.2 mmol, 136.6 mg) and K_2CO_3 (0.44 mmol, 60.7 mg), followed with acetone (5 mL) at 0 °C. MeI (0.44 mmol, 62.5 mg) was dropwise added into reaction mixture. Then the reaction was stirred at room temperature overnight as white solid (96.9 mg, 70% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/3). $[\alpha]_D^{19} = 36.1$ (c 0.13, CH_2Cl_2); Mp 266.0-270.4.°C; ¹H NMR (400 MHz, Chloroform-d) δ 8.17 (d, J = 8.0 Hz 2H), 7.89-7.82 (m, 2H), 7.66-7.57 (m, 3H), 7.48-7.44 (m, 4H), 7.40-7.29 (m, 4H), 7.24 (d, J = 7.4 Hz, 1H), 7.15 (d, J = 1.9 Hz, 1H), 6.60 (d, J = 8.4 Hz, 1H), 5.20 (d, J = 15.7 Hz, 1H), 4.78 (d, J = 15.7 Hz, 1H), 4.12 (s, 1H), 4.06-3.87 (m, 2H), 2.57 (s, 3H), 0.93 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 170.2, 168.5, 166.2, 138.3, 135.2, 132.7, 131.1, 130.0, 129.2, 128.8, 128.8, 127.8, 127.6, 127.4, 126.5, 125.0, 118.6, 115.2, 111.1, 84.5, 68.2, 62.2, 60.9, 44.6, 14.3, 13.6; HRMS (ESI) m/z Calcd. for $C_{36}H_{30}BrN_4O_4S^+$ ([M+H]+) 693.1166, Found 693.1160; Enantiomeric excess was determined to be 99% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 25°C, 0.8 mL/min, t_{maior} = 7.8min, t_{minor} = 12.0min)

Peak	RT	Type		Width	Area	Area %
#				[min]		I
		-	٠ ٠			
1	7.818	3 VB		0.349	33998.891	99.840
2	12.01	7 VV		0.349	54.639	0.160

Synthesis of compound 6

To a Schlenk tube equipped with a magnetic stir bar was charged with compound **5** (0.05 mmol, 34.6 mg) and chloroform (1 mL) at 0 °C, mCPBA (0.05 mmol, 8.6 mg) was added in one portion. Then the reaction was stirred at room temperature for 1 h as white solid (33.7 mg, 95% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/3). [α]_D¹⁹ = 199.1 (c 0.22, CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-d) δ 8.11 (d, J = 7.7 Hz, 2H), 7.77-7.81 (m, 2H), 7.66 (q, J = 3.6 Hz, 3H), 7.51-7.42 (m, 4H), 7.41-7.31 (m, 3H), 7.31-7.24 (m, 2H), 7.19 (d, J = 1.9 Hz, 1H), 6.63 (d, J = 8.3 Hz, 1H), 5.04 (d, J = 16.0 Hz, 1H), 4.96 (d, J = 16.0 Hz, 1H), 4.13 (s, 1H), 4.08-3.90 (m, 2H), 2.93 (s, 3H), 1.29 (s, 1H), 0.94 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 169.0, 165.4, 155.2, 142.8, 137.8, 134.9, 133.2, 131.5, 130.1, 129.7, 129.4, 129.1, 128.9, 128.8, 127.9, 127.7, 127.5, 126.4, 125.5, 118.7, 115.3, 111.4, 85.0, 67.1, 62.6, 61.1, 45.1, 40.5, 13.6; HRMS (ESI) m/z Calcd. for C₃₆H₃₀BrN₄O₅S⁺ ([M+H]⁺) 709.1115, Found 709.1132; Enantiomeric excess was determined to be 98% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 25 °C, 0.7 mL/min, t_{major} = 28.8min, t_{minor} = 33.5min.

Peak	RT Type		Width	Area	Area %
#	[min]		[min]	I	
-		-			
1	28.845 BB		1.175	14314.832	99.071
2	33.495 BP		0.932	134.175	0.929

Synthesis of compound 7

To a Schlenk tube equipped with a magnetic stir bar was charged with compound **6** (0.05 mmol, 34.6 mg) and chloroform (1 mL) at 0 °C, mCPBA (0.1 mmol, 17.2 mg) was added in one portion. Then the reaction was stirred at room temperature for 1 h as white solid (33.7 mg, 95% yield) after silica gel chromatography (EtOAc/petroleum ether = 1/3). [α]_D¹⁹ = 108.5 (c 0.54,

CH₂Cl₂); ¹H NMR (400 MHz, Chloroform-d) δ 8.11 – 8.06 (m, 2H), 7.76 (dd, J = 6.7, 2.9 Hz, 2H), 7.66 – 7.63 (m, 2H), 7.51 – 7.40 (m, 5H), 7.26 (s, 5H), 7.18 (d, J = 1.9 Hz, 1H), 6.54 (d, J = 8.4 Hz, 1H), 5.03 (d, J = 16.0 Hz, 1H), 4.94 (d, J = 16.0 Hz, 1H), 4.09 (s, 1H), 4.06-3.98(m, 1H), 3.95-3.87 (m, 1H), 3.28 (s, 3H), 1.26 (s, 1H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 169.0, 165.4, 155.2, 142.8, 137.78, 134.9, 133.2, 131.5, 130.1, 129.78, 129.4, 129.1, 128.9, 128.9, 127.9, 127.7, 127.5, 126.4, 125.5, 118.7, 115.3, 111.4, 85.1, 67.10 , 62.7, 61.1, 45.2, 40.5, 13.6. Enantiomeric excess was determined to be 98% (determined by HPLC using chiral AD-H column, hexane/2-propanol = 70/30, λ = 254 nm, 25 °C, 0.6 mL/min, t_{major} = 16.0min, t_{minor} = 22.5min.

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	16.167	BB	0.6569	1.31524e4	292.31348	51.1929
2	21.546	BB	0.9010	1.25395e4	183.09987	48.8071

Peak	RT	Type		Width	Area	Area %
#	[min]	I		[min]		
			- -			
1	16.048	VB		0.623	15305.246	98.893
2	22.477	BB		0.853	171.303	1.107

Gram scale synthesis of compound 3ag

To a Schlenk tube equipped with a magnetic stir bar was charged with compound **1a** (2 mmol, 594 mg) and **C3** (1% mmol, 6.3 mg), followed with DCM (10 ml). Compound **2g** (2.4 mmol, 926 mg) was added in one portion. The reaction was checked by TLC. When the compound **1a** was consumed up, the reaction was stopped and purified by column chromatography on silica gel directly to give the product **3ag**

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	12.660	VB	1.4573	3.53199e4	284.32172	98.0705	
2	29.501	BB	1.2104	694.89667	6.71990	1.9295	

References

- 1. X. Bao, S. Wei, X. Qian, J. Qu, B. Wang, L. Zou, G. Ge, Org. Lett., 2018, 20, 3394-3398.
- 2. X. Zhu, S. Chiba, Chem. Commun., 2016, 52, 2473-2476.

NMR spectra for compounds

1.0

0.0

9.0

7.5

6.0

