Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

In situ immobilization of YVO₄:Eu phosphor particles on the film of vertically oriented Y₂(OH)₅Cl·*n*H₂O nanosheets

Bora Kang[†], Hyunsub Kim[†] and Song-Ho Byeon*

Department of Applied Chemistry, College of Applied Science and Institute of Natural Sciences, Kyung Hee University, Gyeonggi, 17104, Korea

E-mail: shbyun@khu.ac.kr

Chem. Commun.

Experimental details

Synthesis of Eu³⁺-Doped Layered Yttrium Hydroxide Films on a Glass Slide Substrate.

The chemical bath deposition (CBD) method was employed to grow Eu³⁺-doped layered RE hydroxychloride (Y_{1.90}Eu_{0.10}(OH)₅Cl·*n*H₂O; LYH:Eu) nanosheets perpendicular to the substrate surface. Typically, the chemical bath solution was prepared by completely dissolving 9.5 mmol YCl₃·6H₂O (ACROS ORGANICS, 99.9%), 0.5 mmol EuCl₃·7H₂O (Sigma Aldrich, 99.9%), and 130 mmol NaCl (Alfa Aesar, 99.0%) in 100 mL deionized water under constant stirring. Hexamethylenetetramine (HMTA, 10 mmol, Sigma Aldrich, 99.0%) was used as a hydroxide source. Prior to the film deposition, the glass slide ($2.5 \times 7.5 \text{ cm}^2$) was immersed in acetone and degreased in an ultrasonic bath for 10 min, washed with copious ethanol, and then dried using an air gun. The cleaned glass substrate was tilted at an angle of ~ 45° in a 125 mL plastic bottle, in which the prepared solution was then slowly poured. The sealed bottle was held at 60 °C for 10 h in an oven. After the film growth was complete, the glass substrate was removed from the bath, washed with deionized water and ethanol successively, and dried with an air gun. The downward side of the substrate was used for all characterizations.

Immobilization of YVO₄:Eu Nanoparticles on the LYH:Eu Film of Nanosheets.

An aqueous *meta*-vanadate (VO₃⁻) solution (10 mM) was prepared by dissolving the desired amounts of NaVO₃ (Sigma Aldrich, 98%) in distilled water. To immobilize in situ YVO_4 :Eu particles on the edge of vertically oriented LYH:Eu hydroxide nanosheets, the obtained LYH:Eu films were immersed in 50 mL VO₃⁻ solutions for 1–5 h at room temperature with constant stirring (400 rpm). The solution pH was adjusted to ~7 and ~9 by drop-wise addition of the KOH solution to evaluate the pH dependence of the reaction rate and the size of the YVO₄:Eu particles. After the heterostructured YVO₄:Eu/LYH:Eu film formation was complete, the glass substrate was washed with deionized water and dried with an air gun.

Detection and Removal of Cu²⁺ Using YVO₄:Eu/LYH:Eu Films Grown on Glass Substrates.

A 1.0 M aqueous Cu²⁺ stock solution was prepared by dissolving CuCl₂ (Sigma

Aldrich, reagent grade) in deionized water at room temperature and then diluted to make 1.0 mM, 0.5 mM, and 30 μ M test solutions. The sensitivity of the luminescence quenching of the YVO₄:Eu/LYH:Eu film to the Cu²⁺ concentration was assessed by separately putting a drop of these aqueous CuCl₂ solutions and deionized water on the same YVO₄:Eu/LYH:Eu film and drying in air. For the adsorption reaction of Cu²⁺ cations, the YVO₄:Eu/LYH:Eu film obtained at a pH of ~7 was dipped into 50 mL of the 30 μ M aqueous CuCl₂ solution for 30 min at room temperature with constant stirring. The Cu²⁺-adsorbed film was then washed with copious amounts of water and dried with an air gun.

Desorption of Cu^{2+} from YVO_4 : Eu/LYH: Eu Films.

A 1.0 mM aqueous ethylenediaminetetraacetate (EDTA) solution was prepared by dissolving EDTA disodium salt dehydrate, $C_{10}H_{14}N_2Na_2O_8 \cdot 2H_2O$ (TCI, 99.5%), in deionized water at room temperature. To evaluate the recyclability of the film after desorption of Cu²⁺, the Cu²⁺-adsorbed YVO₄:Eu/LYH:Eu film was immersed in 50 mL of 1.0 mM EDTA solution for 12 h at room temperature with constant stirring, rinsed with copious amounts of deionized water, and dried using an air gun. This adsorption/desorption reaction cycle was repeated twice to demonstrate the reversible luminescence quenching of the YVO₄:Eu/LYH:Eu film.

Characterizations

X-ray diffraction (XRD) patterns of the LYH:Eu and YVO₄:Eu/LYH:Eu films were recorded with a Bruker D8 Advance diffractometer using Cu-Ka radiation. Field emission scanning electron microscopy (FE-SEM) was carried out with a Carl Zeiss LEO SUPRA 55 scanning electron microscope operating at 30 kV. The excitation and emission spectra were recorded on an FP-6600 spectrophotometer (Jasco Corporation) with a Xenon flash lamp. Quantum yields of the obtained films were determined using an integrating sphere technique.

Fig. S1 X-ray diffraction patterns of the LYH:Eu film before and after reaction in a 10 mM aqueous NaVO₃ solution at room temperature, as a function of reaction time. Relative diffraction intensities of tetragonal YVO₄ (JCPDS No.17-0341) are also given for comparison. Based on XRD patterns, the essential formation reaction of YVO₄:Eu in this work is proposed by the equation: $Y_{1.90}Eu_{0.10}(OH)_5Cl \cdot nH_2O + 2VO_3^- \rightarrow 2Y_{0.95}Eu_{0.05}VO_4 + OH^- + Cl^- + (2 + n)H_2O$

Fig. S2 SEM images of the as-grown LYH:Eu film. Scale bar = $2 \mu m$ (a) and 200 nm (b).

Fig. S3 (a) SEM images of LYH:Eu film as a function of reaction time in 10 mM aqueous NaVO₃ solution (scale bar = 1 μ m) at room temperature. (b) Larger area images of corresponding films (scale bar = 1 μ m).

Fig. S4 (a) Small and (b) large area SEM images of LYH:Eu film after reaction in 10 mM aqueous NaVO₃ solution for 24 h (scale bar = 1 μ m).

Fig. S5 (a) Excitation ($\lambda_{em} = 615 \text{ nm}$) and (b) emission ($\lambda_{ex} = 273 \text{ nm}$) spectra of LYH:Eu films before and after reaction in 10 mM aqueous NaVO₃ solution as a function of reaction time at room temperature.

As shown in Fig. S5a, when monitored at 615 nm, practically no absorption band was observed in the excitation spectra of the as-synthesized LYH:Eu film. Even the series of weak peaks generally observed in the 350–400 nm region, which are attributed to the intra-4f electronic transitions of Eu³⁺, were not clearly distinguishable. The reaction of this film in a

NaVO₃ solution induced a significant increase in photoexcitation intensity as a function of reaction time. The highly enhanced, broad excitation band at ~273 nm is ascribed to charge transfer (CT) from the O²⁻ ligands to the central vanadium atom within the VO₄³⁻ group ions, indicating energy transfer from the CT band to the excited states of Eu³⁺ ions in the YVO₄ matrix.^{S1} The emission spectra measured at an excitation wavelength of 273 nm showed the characteristic ⁵D₀ \rightarrow ⁷F_J (J = 0–4) transitions of Eu³⁺, with the dominant ⁵D₀ \rightarrow ⁷F₂ transition around 615 nm leading to the bright red emission of the YVO₄:Eu/LYH:Eu films (Fig. S5b). The strong increase in emission intensity, which was essentially the consequence of efficient energy transfer, was evidently caused by significant formation of YVO₄:Eu phosphor. Such a variation in the PL spectra of the LYH:Eu film was consistent with those observed in XRD patterns and SEM images, confirming the triggering of the conversion to YVO₄:Eu phosphor density of particles at its surface after 2 h reaction and the subsequent increase in size and number density of particles with increasing reaction time.

Fig. S6 Emission spectra under a 312 nm UV lamp of (a) the as-prepared LYH:Eu film, YVO_4 :Eu-immobilized LYH:Eu film (b) before and (c) after the first reaction in 30 μ M aqueous Cu²⁺ solution for 30 min. YVO_4 :Eu-immobilized LYH:Eu film (d) after regeneration in 1.0 mM EDTA solution for 12 h and (e) after the second adsorption reaction in 30 μ M aqueous Cu²⁺ solution for 30 min.

References

S1. K. Riwotzki and M. Haase, J. Phys. Chem. B., 1998, 102, 10129.