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1. General methods, instrumentation and techniques

Synthesis

All reagents were used without purification. All solvents were of HPLC grade and were dried according
to standard methods. Starting chemical substrates and reagents were used as commercially provided
unless otherwise indicated. Thin-layer chromatography (TLC) was performed on silica gel and the
chromatograms were visualized using UV light (4 =254 or 365 nm). Flash column chromatography was
performed using silica gel (230-400 mesh). 'H, *C, "B and °F NMR spectra were recorded in CDCl;
or THF-ds solution at 20 °C. NMR chemical shifts are expressed in parts per million (J scale). 'H and
B3C NMR spectra are referenced to residual protons of CDCls (6 = 7.26 and 77.16 ppm, respectively) or
TFH-ds (6 = 1.73 and 35.37 ppm, respectively) as internal standard, ''B and 'F NMR spectra are
referenced to 15% BF;-Et;O in CDCls (6 = 0.00 ppm) and trifluorotoluene (6 = -63.72 ppm) as external
standard, respectively. The type of carbon (C, CH, CH, or CHs) was assigned by DEPT-135 NMR
experiments. Additionally, complex spin-system signals were simulated by using MestReNova program
version 10.0.1-14719. FTIR spectra were obtained from neat samples using the attenuated total
reflection (ATR) technique. High-resolution mass spectrometry (HRMS) was performed by using direct
sample injection, electrospray ionization (ESI) and hybrid quadrupole time-of-flight mass analyser

(QTOF; positive- or negative-ion mode are indicated as ESI" and EST, respectively).

Photophysics

Photophysical signatures were recorded using quartz cuvettes of 1 cm optical path-length and diluted
dye solutions (ca. 2-10° M) prepared from a concentrated stock solution in chloroform (ca. 10 M),
after solvent evaporation under reduced pressure, and subsequent dilution with the desired solvent of
spectroscopic grade. UV-vis absorption and fluorescence spectra were recorded on a Varian (model
CARY 4E) spectrophotometer and an Edinburgh Instrument spectrofluorimeter (model FLSP 920),
respectively. Concentrated dye solutions (mM) were measured using quartz cuvettes with an optical
path-length of 0.01 mm and front-face configuration in the fluorescence spectra to avoid reabsorption
and reemission phenomena.

Fluorescence quantum yields (¢r) were determined from corrected spectra (detector sensibility to the
wavelength) by the optically dilute relative method and by using Eq. 1, where /. is the luminescent
intensity at the excitation wavelength, Aex is the absorbance at the excitation wavelength, [IdA4 is the
numerically integrated intensity from the luminescence spectra, and n is the index of refraction of the
solution. The subscripts R and S denote reference and sample, respectively. PM567 in acetone (¢ =

0.85)! was used as the reference.

¢S/¢R= (J.lsdﬂ«/“Rdl) (lR,exc/ |S,exc) (AR,exc/ AS,exc) (nS/ nR)2 Eq 1
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The aforementioned spectrofluorimeter is also equipped with a wavelength-tunable pulsed Fianium
laser. Thus, the Time Correlated Single-Photon Counting (TCSPC) technique was used to record the
fluorescence decay curves. Fluorescence emission was monitored at the maximum emission wavelength
after excitation by the said Fianium at the maximum absorption wavelength. The fluorescence lifetime
(7) was obtained from the slope of the exponential fit of the decay curve, after the deconvolution of the
instrumental response signal (recorded by means of a ludox scattering suspension) by means of an
iterative method. The goodness of the exponential fit was controlled by statistical parameters (chi-
square, Durbin-Watson and the analysis of the residuals).

Excitation energy transfer efficiency, EETE, was determined by measuring the quenching of the donor
fluorescence caused by the energy transfer to the acceptor by using Eq. 2; where ¢b is the fluorescence
quantum yield of the energy donor covalently linked to the energy acceptor, and ¢n°is the corresponding

value for the free donor.

EETE = (1- ¢o/#°)-100 Eq. 2

Computational chemistry

Ground state geometries were optimized with the range-separated wbh97xd hybrid functional, within the
Density Functional Theory (DFT), using the triple valence basis set with a polarization function (6-
311G*). The geometries were considered as energy minimum when the corresponding frequency
analysis did not give any negative value. The absorption spectra were predicted as vertical Franck-
Condon transitions from the optimized ground state geometries using the Time Dependent (td) method
with the aforementioned DFT functional and basis set. The solvent effect (cyclohexane) was taking into
account during the energy minimization and energetic arrangement of the molecular orbitals by means
of the Polarizable Continuum Model (PCM). All the theoretical calculations were carried out using the
GAUSSIAN 16 program suite, implemented in the computational cluster provided by the SGlker
resources of UPV-EHU.

Lasing

Laser efficiency was evaluated from concentrated solutions (milimolar) of dyes in ethyl acetate
contained in 1-cm optical-path rectangular quartz cells carefully sealed to avoid solvent evaporation
during experiments. The liquid solutions were transversely pumped with 5 mJ, 8 ns FWHM pulses from
the second harmonic (532 nm) and the third harmonic (355 nm) of a Q-switched Nd:YAG laser (Lotis
Tl 2134) at a repetition rate of 1 Hz. The exciting pulses were line-focused onto the cell using a
combination of positive and negative cylindrical lenses (f = 15 cm and f = -15 cm, respectively)
perpendicularly arranged. The plane parallel oscillation cavity (2-cm length) consisted of a 90%
reflectivity aluminum mirror acting as back reflector, and the lateral face of the cell acting as output
coupler (4% reflectivity). The pump and output energies were detected by a GenTec powermeter. The
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photostability of the dyes was evaluated by using a pumping energy and geometry exactly equal to that
of the laser experiments at 532 nm. We used spectroscopic quartz cuvettes with 0.1-cm optical path to
allow for the minimum solution volume (40 puL) to be excited. The lateral faces were ground, whereupon
no laser oscillation was obtained. Information about photostabilitiy was obtained by monitoring the
decrease in laser-induced fluorescence (LIF) intensity after 20000 pump pulses and 15 Hz repetition rate
to speed up the experimental running. The fluorescence emission and laser spectra were monitored
perpendicular to the exciting beam, collected by an optical fiber, and imaged onto a spectrometer (Acton
Research corporation) and detected with a charge-coupled device (CCD) (SpectruMM:GS128B). The
fluorescence emission was recorded by feeding the signal to the boxcar (Stanford Research, model 250)
to be integrated before being digitized and processed by a computer. The estimated error in the energy

and photostability measurements was 10%.
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2. Synthetic procedures and characterization data

At-boron functionalization: General procedure

BCl; (1 M in CH,Cly; 0.32 mmol, 2 mol equiv.) was dropwise added over a solution of the corresponding
F-BODIPY (0.16 mmol, 1 mol equiv.) in dry CH>Cl, (5 mL) under Ar atmosphere. The reaction mixture
was stirred at room temperature for 5 min. Then, triethylamine (0.96 mmol, 6 mol equiv.) was added,
followed by addition of the O-nucleophile (2-naphthol or the corresponding carboxylic acid; 0.64 mmol,
4 mol equiv.) and the resulting mixture stirred for 30 min. Then, the reaction mixture was filtered through
Celite® S, washing thoroughly with CH>Cl, and the solvent evaporated under reduced pressure. The
obtained residue was purified by flash chromatography to afford the desired MMA. See Scheme S1.

BCl3 / EtsN / R,0OH

CH,Cly, rt

R'=Etor phenylethynyl

RZ

Scheme S1. General synthetic outline.

Synthesis of 3

According to the described general procedure, commercial PM567 (2,6-diethyl-4,4-difluoro-1,3,5,7,8-
pentamethylBODIPY, 50 mg, 0.16 mmol) was reacted with 1-naphthol (90 mg, 0.62 mmol). The reaction
crude was purified by flash chromatography (silica gel, hexane/CH2Cl; 1:1) to obtain 3 (71 mg, 80%)
as an orange brown solid. Ry = 0.46 (hexane / CH,Cl, 1:1). *H NMR (THF-ds, 300 MHz) § 8.75 (d, J =
8.3 Hz, 2H), 7.66 (d, J = 8.3 Hz, 2H), 7.46 (ddd, J = 8.3, 6.8, 1.5 Hz, 2H), 7.38 (ddd, J = 8.1, 6.8, 1.4
Hz, 2H), 7.12 (d, J = 8.2 Hz, 2H), 6.92 (t, J = 8.0 Hz, 2H), 6.10 (dd, J = 7.8, 0.8 Hz, 2H), 2.92 (s, 3H),
2.47 (s, 6H), 2.28 (s, 6H), 2.22 (q, J = 7.6 Hz, 4H), 0.80 (t, J = 7.5 Hz, 6H) ppm. $3C NMR (THF-ds, 75
MHz) 6153.9 (C), 153.7 (C), 141.0 (C), 137.5 (C), 136.1 (C), 133.7 (C), 133.6 (C), 129.2 (C), 128.0
(CH), 127.1 (CH), 126.3 (CH), 125.0 (CH), 124.2 (CH), 118.8 (CH), 109.5 (CH), 17.7 (CH>), 17.4
(CHs), 15.1 (CHg), 14.7 (CH3), 12.8 (CHs) ppm. B NMR (THF-ds, 160 MHz) 5 1.11 ppm. HRMS
(EST") m/z: [M - H] Calcd. for C3sH3sBN>O; 565.3026; Found 565.3021.
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Synthesis of 4a

According to the described general procedure, PM567 (50 mg, 0.16 mmol) was reacted with
naphthalene-1-carboxylic acid (108 mg, 0.63 mmol). The reaction crude was purified by flash
chromatography (silica gel, CH»Cl,) to obtain 4a (86 mg, 88%) as an orange brown solid. Rr = 0.31
(hexane/ CH,Cl, 2:8). *H NMR (CDCls, 300 MHz) §9.09 (dm, J = 8.9 Hz, 2H), 8.46 (dd, J=7.3, 1.3
Hz, 2H), 8.00 (d, J = 8.2 Hz, 2H), 7.91-7.83 (m, 2H), 7.58-7.45 (m, 6H), 2.80 (s, 3H), 2.45 (s, 6H), 2.42
(s, 6H), 2.33(q, J = 7.6 Hz, 4H), 0.98 (t, J = 7.5 Hz, 6H) ppm. *C NMR (CDCls, 75 MHz) §167.0 (C),
150.1 (C), 140.8 (C), 136.8 (C), 134.1 (C), 133.4 (C), 132.7 (CH), 132.3 (C), 131.9 (C), 130.5 (CH),
129.6 (C), 128.5 (CH), 127.4 (CH), 126.7 (CH), 125.9 (CH), 124.8 (CH), 17.7 (CH3), 17.4 (CHy), 15.0
(CHs), 14.96 (CHs), 13.0 (CH3) ppm. *B NMR (CDCls, 160 MHz) & 0.53 ppm. FTIR v 1701, 1557,
1202 cm™. HRMS (ESI") m/z [M + Na]" Calcd. for C40H30BN2NaO4 645.2901, Found 645.2912.

| Smin

Fig. S1. Differential stability of COO-BODIPY 4a (l), related O-BODIPY 3 (lI) and parent F-
BODIPY PM567 (111) towards harsh acidic conditions. Experimental details: 3 mL of an ethyl acetate
solution of the corresponding dye (ca. 1-10° M) was stirred vigorously with 3 mL HCI 1 M at room
temperature, and the evolution of the integrity of the dyes analyzed by TLC (silica gel;
hexane/dichloromethane 2:3). The F-BODIPY (l11) remains unaltered after 6-h treatment, whereas the
O-BODIPY (1) and the corresponding COO-BODIPY (1) decompose completely after ca. 1-h
treatment and ca. 6-h treatment, respectively. These results confirm the expected stability trend
towards severe acidic conditions: F-BODIPY > COO-BODIPY > O-BODIPY.

Synthesis of 4b

According to the described general procedure, PM567 (50 mg, 0.16 mmol) was reacted with anthracene-
9-carboxylic acid (140 mg, 0.63 mmol). The reaction crude was purified by flash chromatography (silica
gel, CH,Cl, / MeOH 95.5:0.5) to obtain 4b (94 mg, 83%) as an orange solid. Rr = 0.26 (CH,Cl,). 'H
NMR (CDCls, 300 MHz) 6 8.35 (s, 2H), 7.90 (d, J = 8.2 Hz, 4H), 7.79 (d, J = 8.3 Hz, 4H), 7.37 (ddd,
J=8.1,6.7, 1.3 Hz4H), 7.30 (ddd, J = 8.4, 6.7, 1.4 Hz, 4H), 2.58 (s, 6H), 2.57 (s, 3H), 2.44 (9, J = 7.6
Hz, 4H), 2.35 (s, 6H), 1.18 (t, J = 7.6 Hz, 6H) ppm. 3C NMR (CDCls, 75 MHz) 6 170.0 (C), 150.1 (C),
140.7 (C), 137.2 (C), 133.3 (C), 132.9 (C), 131.7 (C), 131.1 (C), 128.3 (CH), 127.7 (CH), 127.5 (C),
125.84 (CH), 125.8 (CH), 125.2 (CH), 17.5 (CH>), 17.4 (CH3), 15.1 (CH3), 14.8 (CHs), 14.3 (CHs) ppm.
1B NMR (CDCls, 160 MHz) §0.52 ppm. FTIRv 1692, 1554, 1205 cm™. HRMS (ESI") m/z [M + Na]"
Calcd. for CssHa3sBN2NaO4 745.3214, Found 745.3224.
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Synthesis of 4c

According to the described general procedure, PM567 (50 mg, 0.16 mmol) was reacted with pyrene-1-
carboxylic acid (155 mg, 0.63 mmol). The reaction crude was purified by flash chromatography (silica
gel, CH,Cl,) to obtain 4¢ (118 mg, 97%) as a red solid. Ry = 0.28 (hexane / CH,Cl, 2:8).*H NMR (CDClz
300 MHz) 69.46 (d, J = 9.5 Hz, 2H), 8.95 (d, J = 8.1 Hz, 2H), 8.28-8.22 (m, 6H), 8.20-8.10 (m, 6H),
8.05 (t,J = 7.6 Hz, 2H), 2.80 (s, 3H), 2.55 (s, 6H), 2.44 (s, 6H), 2.35(q, J = 7.5 Hz, 4H), 1.00 (t, J= 7.5
Hz, 6H) ppm. *H NMR (CDCls, 500 MHz) §9.46 (d, J = 9.4 Hz, 2H), 8.95 (d, J = 8.1 Hz, 2H), 8.26 (d,
J=8.0Hz, 2H), 8.25 (d, J = 7.6 Hz, 2H), 8.24 (d, J = 7.5 Hz, 2H), 8.18 (d, J = 9.1 Hz, 4H), 8.12 (d, J =
8.9 Hz, 2H), 8.05 (t, J = 7.6 Hz, 2H), 2.80 (s, 3H), 2.55 (s, 6H), 2.44 (s, 6H), 2.35 (q, J = 7.5 Hz, 4H),
1.00 (t, J = 7.5 Hz, 6H) ppm. **C NMR (CDCls, 75 MHz) 6 167.6 (C), 150.2 (C), 140.9 (C), 136.9 (C),
134.0(C), 133.5(C), 132.5(C), 131.25 (C), 131.23 (C), 130.6 (C), 129.3 (CH), 129.1 (CH), 129.0 (CH),
127.4 (CH), 126.6 (C), 126.3 (CH), 126.1 (CH), 125.9 (CH), 125.9 (CH), 125.1 (C), 124.6 (C), 124.4
(CH), 17.7 (CHs), 17.4 (CH,), 15.02 (CH3), 14.98 (CHs3), 13.1 (CHs) ppm. B NMR (CDCls, 160 MHz)
6 0.74 ppm. FTIRv 1696, 1555, 1264, 1203 cm™. HRMS (ESIY) m/z [M + Na]" Calcd. for
Cs;H43BN2NaO4 793.3214, Found 793.3229. HRMS (ESI) m/z [M - H] Calcd. for Cs;H4BN>O4
769.3238; Found 769.3261.

Synthesis of 4d

According to the described general procedure, PM567 (50 mg, 0.16 mmol) was reacted with 6-
carboxycoumarin (120 mg, 0.63 mmol). The reaction crude was purified by flash chromatography (silica
gel, CH,Cl,) to obtain 4d (93 mg, 86%) as an orange solid. Ry = 0.38 (CH,Cl./ MeOH 9:1)."H NMR
(CDCl;, 300 MHz) 6 8.34 (dd, J = 8.6, 2.0 Hz, 2H), 8.26 (d, J = 2 Hz, 2H), 7.77 (d, J = 9.6 Hz, 2H),
7.40 (d, J = 8.6 Hz, 2H), 6.47 (s, 9.6 Hz, 2H), 2.78 (s, 3H), 2.40 (s, 6H), 2.33 (s, 6H), 2.30 (q, /= 7.6
Hz, 4H), 0.95 (t, J= 7.5 Hz, 6H) ppm. *C NMR (CDCls, 75 MHz) & 164.7 (C), 160.2 (C), 156.7 (C),
149.9 (C), 143.5 (CH), 141.0 (C), 137.2 (C), 133.3 (C), 133.2 (CH), 132.5 (C), 130.1 (CH), 129.1 (C),
118.6 (C), 117.3 (CH), 117.0 (CH), 17.5 (CH3), 17.4 (CH>), 14.95 (CHz3), 14.87 (CH3), 12.7 (CH3) ppm.
"B NMR (CDCls, 160 MHz) §0.50 ppm. FTIR v 1736, 1707, 1625, 1555, 1205 cm™. HRMS (EST") m/z
[M + Na]* Caled. for C33sH3sBN>NaOg 681.2384, Found 681.2389.

Synthesis of 4f

According to the described general procedure, PM567 (27 mg, 0.08 mmol) was reacted with rhodamine
640 perchlorate (200 mg, 0.34 mmol). The reaction crude was purified by flash chromatography (silica
gel, CH,Cl,/ MeOH 97:3) to obtain 4f (80 mg, 65%) as an purple solid. Rr = 0.34 (CH»Cl,/ MeOH
97:3). '"H NMR (CDCl3,300 MHz) §8.15-8.07 (m, 2H), 7.78-7.67 (m, 4H), 7.11-7.03 (m, 2H), 6.47 (s,
4H), 3.60-3.40 (m, 16H), 3.08-2.89 (m, 8H), 2.72-2.49 (m, 8H), 2.32 (s, 3H), 2.14 (q, J = 7.4 Hz, 4H),
2.10 (s, 6H), 2.06-1.88 (m, 16H), 1.82 (s, 6H), 0.70 (t,J= 7.5 Hz, 6H) ppm."*C NMR (CDCl;s, 75 MHz)
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5163.9 (C), 157.3 (C), 152.2(C), 151.1 (C), 149.5 (C), 140.6 (C), 136.6 (C), 134.0 (C), 132.9 (C), 132.7
(C), 132.3 (CH), 132.1 (C), 131.5 (CH), 130.9 (CH), 130.0 (CH), 126.6 (CH), 123.5 (C), 113.1 (C),
105.2 (C), 51.0 (CHa), 50.5 (CH), 27.8 (CHa), 20.8 (CHa), 20.1 (CHa), 19.8 (CHa), 17.5 (CHs), 17.1
(CHa), 14.9 (CHs), 14.6 (CHs), 12.1 (CHs) ppm."'B NMR (CDCls, 160 MHz) & -0.08 ppm. FTIR v1713,
1463, 1300 cm''. HRMS (ESI*) m/z: [M]** Caled. for Cs,HssBNsOs 630.3312; Found 630.3318. HRMS
(EST) m/z: [M] Calcd. for C104 98.9485, Found 98.9484.

Synthesis of 5c¢

According to the described general procedure, 2,6-bis(phenylethynyl)-4,4-difluoro-1,3,5,7,8-
pentamethylBODIPY? (25 mg, 0.05 mmol) was reacted with pyrene-1-carboxylic acid (53 mg, 0.22
mmol). The reaction crude was purified by flash chromatography (silica gel, hexane / CH>Cl, 1:1) to
obtain 5¢ (45 mg, 91%) as a red solid. Rr = 0.29 (hexane / CH,Cl, 4:6). 'H NMR (CDCls, 300 MHz) &
9.54 (d, J=9.5 Hz, 2H), 9.04 (d, J = 8.1 Hz, 2H), 8.32-8.17 (m, 10H), 8.14 (d, /= 8.9 Hz, 2H), 8.06 (t,
J=17.6 Hz, 2H), 7.46-7.37 (m, 4H), 7.28-7.21 (m, 6H), 2.94 (s, 3H), 2.77 (s, 6H), 2.71 (s, 6H) ppm. *C
NMR (CDCls, 75 MHz) 6 167.5 (C), 155.2 (C), 143.7 (C), 142.3 (C), 134.4 (C), 133.9 (C), 131.7 (C),
131.4 (CH), 131.2 (C), 130.6 (C), 129.6 (CH), 129.4 (CH), 129.3 (CH), 128.4 (CH), 128.1 (CH), 127.4
(CH), 126.3 (CH), 126.2 (CH), 126.1 (CH), 125.7 (CH), 125.4 (C), 125.2 (C), 124.5 (C), 124.4 (CH),
123.6 (C), 116.3 (C), 96.4 (C), 82.1 (C), 17.8 (CH3), 16.7 (CH3), 14.4 (CH3) ppm. ''B NMR (CDCls,
160 MHz) §0.57 ppm. FTIR v 1695, 1546, 1261, 1197, 1004 cm™'. HRMS (ESI) m/z [M - H] Calcd.
for CesH42BN2O4 913.3238, Found 937.3239.

Synthesis of Se

According to the described general procedure, 2,6-bis(2-phenylethynyl)-4,4-difluoro-1,3,5,7,8-
pentamethylBODIPY? (20 mg, 0.04 mmol) was reacted with 8-(4-carboxyphenyl)-1,3,5,7-
tetramethylBODIPY? (63 mg, 0.17 mmol). The reaction crude was purified by flash chromatography
(silica gel, hexane / AcOEt 8:2) to obtain 5e (33 mg, 66%) as a reddish violet solid. Rr = 0.30 (CH2Cl>).
'H NMR (CDCls, 700 MHz) & 8.28 (d, J = 8.3 Hz, 4H), 7.47-7.44 (m, 4H), 7.40 (d, J = 8.4 Hz, 4H),
7.34-7.30 (m, 6H), 5.98 (s, 4H), 2.90 (s, 3H), 2.67 (s, 6H), 2.60 (s, 6H), 2.56 (s, 12H), 1.37 (s, 12H)
ppm. “C NMR (CDCls, 176 MHz) 6 165.7 (C), 156.1 (C), 154.9 (C), 143.8 (C), 143.1 (C), 142.5 (C),
140.6 (C), 139.7 (C), 133.7 (C), 132.6 (C), 131.5 (CH), 131.1 (C), 130.7 (CH), 128.53 (CH), 128.49
(CH), 128.4 (CH), 123.4 (C), 121.6 (CH), 116.4 (C), 96.6 (C), 81.9 (C), 17.7 (CHz3), 16.7 (CH3), 16.7
(CH3), 14.8 (two CH3), 14.2 (CH3) ppm. "B NMR (CDCls, 160 MHz) 50.69 (t, Js.r= 33.1 Hz), 0.34 (s)
ppm. ’F NMR (CDCls, 471 MHz) & -146.7 (q, Js-r= 30.7 Hz) ppm. FTIR v 1712, 1548, 1464, 1198 cn
. HRMS (ESI") m/z [M + Na]* Caled. for C70He1B3FsNeNaO4 1181.4867, Found 1181.4888.
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3.1H, 13C, 1B and °F NMR spectra of new compounds
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I'B NMR (THF-ds, 160 MHz) of 3
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IH NMR (CDCls, 300 MHz) of 4a
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"B NMR (CDCls, 160 MHz) of 4a
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IH NMR (CDCls, 300 MHz) of 4b
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"B NMR (CDCl;, 160 MHz) of 4b
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IH NMR (CDCl3, 500 MHz) of 4c
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"B NMR (CDCl;s, 160 MHz) of 4c
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IH NMR (CDCl3, 300 MHz) of 4d
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"B NMR (CDCls, 160 MHz) of 4d
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IH NMR (CDCls, 300 MHz) of 4f
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"B NMR (CDCl;s, 160 MHz) of 4f
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IH NMR (CDCl3, 300 MHz) of 5¢
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"B NMR (CDCl;s, 160 MHz) of 5¢c
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IH NMR (CDCls, 700 MHz) of 5e
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"B NMR (CDCl;s, 160 MHz) of 5e
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4. Phtophysical and lasing properties

Table S1. Photophysical properties of O-BODIPY -based MMA 3 COO-BODIPY -based MMAs 4a-d,
4f and 5c¢,e in solution (2 uM) of solvents representative of apolar and polar media.

Dye Jab? Emax P n°© ¢ d z¢ ka | Knr 9 EETE"
solvent (nm) (10*Mtem?)  (nm) (ns) (10%s1) (10%7)
3
c-hex 524.5 75 541.0  0.03  0.44 (68%) 95
5.33 (32%)
EtOAC 519.5 7.0 536.0 0.01  0.19 (92%) 95
5.36 (8%)
ACN 517.0 6.5 5325  0.02  0.15 (94%) 95
5.39 (6%)
4a
c-hex 524.5 75 5415  0.82 6.18 1.33 0.29 98
EtOAC 520.5 6.1 536.0 0.80 6.58 1.21 0.31 98
ACN 520.0 5.8 536.5  0.82 7.10 1.16 0.25 98
4b
c-hex 526.0 (363) 4.5 (1.7) 5475  0.94 7.391 1.27 0.08 98
EtOAc [523.0(382) 6.0(2.8) 5470  0.80 7.831 1.02 0.25 99
ACN 5245 (364)  4.3(2.5) 549.0  0.70 9.201 076  0.32 99
4c
c-hex 524.5(355) 7.2 (5.8) 540.5  0.83 6.21 1.34 0.27 98
EtOAc |520.5(354) 6.4 (6.3) 5370 0.86 6.51 1.32 0.22 98
ACN 520.0 (348) 5.8 (5.6) 539.5  0.88 6.86 128 017 98
4d
THF 522.0 7.4 5375  0.82 6.27 1.31 0.29 98
EtOAC 520.5 6.9 5370 0.82 6.46 1.26 0.28 98
ACN 519.5 6.5 5355  0.88 6.77 1.30 0.17 98
4f
0.20 (59%)
EtOAc |5785(513) 6.7 (6.2) 5985  0.07  0.80 (27%) 97
4.02 (14%)
0.13 (44%)
ACN 577.0(511) 9.5 (8.6) 593.0  0.08  0.44 (44%) 97
4.39 (12%)
5c
c-hex 564.0 (356) 4.2 (3.2) 589.0  0.85 4.23 202 034 95
EtOAc |556.5(355) 6.2 (6.4) 5870  0.56 4.26 1.32 1.03 95
ACN 556.5 (354) 4.2 (4.0) 5925  0.54 4.01 1.35 1.14 95
5e
c-hex 562.5 (502) 6.5 (20.4) 588.5  0.66 4.78 1.38 0.71 97
EtOAc |557.5(499) 5.6 (19.1) 501.0 0.57 4.62 1.24 0.93 99
ACN 555.0 (497) 4.4 (17.7) 590.5  0.43 4.16 1.03 071 929

aAbsorption wavelength; PExtinction coefficient of the main maxima; °Fluorescence wavelength;
dFluorescence quantum vyield; ®Fluorescence lifetime (independent of the excitation); 'Radiative rate
constant; 9Non-radiative rate constant; "Excitation energy transfer efficiency (%); 'Amplitude-average
lifetime of the biexponential fit with two long-lifetime components (around 2-4 the minor one and 8-9 the
major one). c-hex: cyclohexane. EtOAc: ethyl acetate. ACN: acetonitrile. THF: tetrahydrofuran.
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Table S2. Lasing efficiencies exhibited by COO-BODIPY-based MMAs 4a-d, 4f and 5c,e when
transversely pumped at 532 nm or 355 nm in ethyl acetate solution (Effss; and Effsss, respectively), as
well as wavelength of the obtained laser peak (Ais). Corresponding data from O-BODIPY MMA (3) and
laser dye PM567 pumped under otherwise identical experimental conditions are included for
comparison purposes.

Dye Effss2  Effsss Alas
(%) (%)  (nm)

PM567 | 48 33 566
3 26 19 563
4a 64 50 564
4b 60 48 567
4c 63 57 563
4d 62 53 560
4f 16 9 616
5¢c 65 55 598
5e 50 38 607

Table S3. Theoretically calculated molecular dipole moments (in Debyes) in the ground (So, wh97xd/6-
311g*) and first excited (Si, td wb97xd/6-311g*) state for MMASs 3, 4a-d, 4f and 5c¢,e. For larger MMA
4f, the calculation in the excited state was computationally not available (NA).

Dye (Sle(bsy(zs) ([ifyzs)
3 471 478
sa | 599 6.10
4 | 930 9.35
a | 919 9.99
ad | 613 6.63
s | 725 NA
5c | 851 8.79
5¢ | 695 7.7
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Fig. S2. Comparison of the fluorescence and laser (pumping at 532 nm) efficiency (columns) and
wavelength (scatter) of MMASs 3, 4a-d, 4f and 5c,e with respect to parent PM567, in ethyl acetate. For
detailed data, see Table S1 (fluorescence) and Table S2 (laser).
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Fig. S3. Normalized UV-vis absorption (bold lines, left) and fluorescence spectra upon vis excitation
(dashed lines, left) of O-BODIPY-based MMA 3 and COO-BODIPY analog 4a in cyclohexane, and
UV-vis absorption spectra of the monochromophoric dyes PM567 and naphthalene in cyclohexane
(filled spectra, left), as well as ground-state optimized geometries of 3 and 4a (wb97xd/6-311g*,
right). The computed geometries highlight the different spatial arrangement of the pendant
naphthalene chromophores in both dyes and the distortion of the BODIPY chromophore in 3. Note the
disposition of the boron atom (out of the dipyrrin plane) in the bottom ground-state perspective of 3,
but not in 4a (computed deviations ca. 33° and <1.5°, respectively).
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Fig. S4. Normalized absorption and fluorescence spectra of O-BODIPY -based MMA 3 and COO-
BODIPY analog 4a at different dye concentrations in ethyl acetate.
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Fig. S5. Computed (wbh97xd/6-311g*) contour maps and energies (in eV) of key molecular orbitals
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involved in the main UV-vis transitions in O-BODIPY -based MMA 3 and COO-BODIPY -based 4a,
both based on naphthalene.
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Fig. S6. Variation of the laser-induced fluorescence (LIF) intensity (relative to the initial LIF intensity
in percentage terms) of O-BODIPY MMA 3, COO-BODIPY MMA 4a and parent commercial laser-
dye PM567 with respect to the number of pumping pulses (laser-source wavelength: 532 nm; pulse
duration: 8 ns; pulse energy: 5 mJ; pulse rate 15 Hz). COO-BODIPY MMAs 4b-d, 4f and 5c,e exhibit
the same behavior to that plotted from 4a.
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Fig. S7. Normalized UV-vis absorption spectra (bold lines) and fluorescence spectra upon UV-
exciting the donor subunit pending from the boron atom (dashed lines) of 2,6-bis(phenylethy-
nyl)BODIPY -based MMAs 5¢,e in cylclohexane, as well as UV-vis absorption spectra of the

monochromophoric pyrene, PM546 (2,6-diethyl-4,4-difluoro-1,3,5,8-pentamethylBODIPY and 2,6-
bis(phenylethynyl)-4,4-difluoro-1,3,5,7,8-pentamethylBODIPY (acetylenephenylBODIPY) in
cyclohexane (filled spectra).

S29



4a 5e
—4b

Normalize absorption
L I L 1 L | L 1 L Il
L
o
L | 1 | ) | 1 | L |

Tt T T 1
300 350 400 450 500 550 300 350 400 450 500 550

Wavelength (nm) Wavelength (nm)

Fig. S8. Theoretically predicted (td wb97xd/6-311g*) absorption spectra (normalized by the acceptor
absorption-band energy) of fluorescent MMAs 3 and 4b-d (left) and 5c,e (right).

L+1

Fig. S9. Computed (wbh97xd/6-311g*) contour maps and energies of the molecular orbitals involved in
the main UV-vis transitions in representative PM567-derived MMASs based on anthracene (4b), pyrene
(4c) and coumarin (4d) as the energy-donor chromophores. The corresponding HOMO-2 and
LUMO+2 are just the same that the shown HOMO-1 and LUMO+1, but placed in the other energy-
donor subunit (they are omitted for the sake of simplicity).
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Fig. S10. Computed (wh97xd/6-311g*) contour maps and energies of the molecular orbitals
(wb97xd/6-311g*) involved in the main UV-vis transitions in n-extendedBODIPY -derived MMASs
based on pyrene (5¢) or BODIPY (5e) as the energy-donors chromophores. The corresponding
HOMO-2 and LUMO+2 are just the same that the shown HOMO-1 and LUMO+1, but placed in the
other energy-donor subunit (they are omitted for the sake of simplicity).
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Fig. S11. Normalized excitation spectra (monitored at the emission of the energy acceptor) of MMAs
4a-d and 5c,e in cyclohexane.
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Fig. S12. Computed (wh97xd/6-311g*) localization and energies (eV) of key molecular orbitals in
MMA 4f to illustrate the ongoing BODIPY -to-rhodamine PET, competing with the BODIPY -to-
rhodamine EET, upon BODIPY excitation.
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Fig. S13. Normalized UV-vis absorption (bold line), fluorescence spectra (dashed line; after BODIPY -
and rhodamine-chromophore selective excitation), and excitation spectra (dotted line; monitored at the
rhodamine emission) of the PM567-based MMA 4f in acetonitrile, as well as UV-vis absorption
spectra of the monochromophoric dyes PM567 and rhodamine 640 perchlorate (Rh640) in acetonitrile
(filled spectra)
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