Dimetalla-Heterocyclic Carbenes: The Interplay of Chalcocarbonyl and Carbido Ligands

Received 00th January 20xx, Accepted 00th January 20xx Harrison J. Barnett and Anthony F. Hill*

DOI: 10.1039/x0xx00000x

www.rsc.org/

General Considerations

All reactions involving air-sensitive compounds were carried out under a dry and oxygen-free nitrogen atmosphere using standard Schlenk and vacuum line techniques, with the use of dried and degassed solvents.

NMR spectra were obtained at 298 K with Bruker Avance 400 (¹H at 400.1 MHz, ³¹P at 161.9 MHz, and ¹³C at 100.5 MHz), Bruker Avance 600 (¹H at 600.1 MHz, ³¹P at 242.9 MHz, and ¹³C at 192.5 MHz) or Bruker Avance 700 (¹H at 700.1 MHz, ³¹P at 283.5 MHz, and ¹³C at 176.1 MHz) spectrometers. Chemical shifts (δ) are reported in ppm and referenced internally to the solvent peak for ¹H and ¹³C, and external H₃PO₄ reference for ³¹P and Se₂Ph₂ for ⁷⁷Se NMR. The couplings for multiplicities of the NMR resonances, ⁿJ_{AB}, are reported in Hz. Spectra provided generally correspond to samples obtained directly from chromatography and may contain residual solvent as recrystallised samples often display reduced solubility.

ATR solid state spectra were obtained with a PerkinElmer FT-IR Spectrometer. Elemental microanalytical data when available were provided by the London Metropolitan University. High- and Low-Resolution Electrospray Ionisation Mass Spectrometry (ESI-MS) was performed by the ANU Research School of Chemistry mass spectrometry service, using acetonitrile for the matrix.

Crystallographic Details

Data for X-ray crystallography were collected with an Agilent SuperNova CCD diffractometer using Cu-K α radiation (λ = 1.54184 Å) and the CrysAlisPRO software.¹ The structures were solved by direct or Patterson methods and refined by full-matrix least-squares on F^2 using the SHELXS or SHELXT and SHELXL programs.² Hydrogen atoms were

+Corresponding author: Email: a.hill@anu.edu.au

located geometrically and refined using a riding model. Diagrams were produced using the CCDC visualisation program Mercury.³

The known compounds $[Rh_2(u-C)Cl_2(dppm)_2]$ and $[Rh_2(u-C)(\mu-DMAD)Cl_2(dppm)_2]$ were prepared as described in the literature, and remaining reagents were obtained from commercial sources.

Computational Details

Computational studies were performed by using the SPARTAN18[®] suite of programs.⁴ Geometry optimisation (gas phase) was performed at the DFT level of theory using the ω B97X-D dispersion-corrected functional of Head-Gordon.⁵ The Los Alamos effective core potential type basis set (LANL2D ζ) of Hay and Wadt⁶ was used for rhodium and iron; the Pople 6-31G* basis sets⁷ were used for all other atoms. Frequency calculations were performed to confirm that the optimized structure was a minimum and also to identify vibrational modes of interest.

Reaction of $[Rh_2(\mu-C)Cl_2(PPh_3)_4]$ with CS₂.

In an NMR tube, a solution of $[Rh_2(\mu-C)Cl_2(PPh_3)_4]$ (0.010 g, 0.007 mmol) in CDCl₃ (0.5 mL) was treated with carbon disulfide (*ca* 0.01 mL, excess). The ³¹P{¹H} NMR spectra (162 MHz) measured after 24 hours indicated complete and quantitative formation of $[RhCl(CS)(PPh_3)_2]$ ($\delta_P = 31.0$, ¹J_{RhP} = 142 Hz). Over the course of 48 hours, decomposition to PPh₃S ($\delta_P \approx 35$) is seen.

Synthesis of [Rh₂(µ-CS)Cl₂(µ-dppm)₂] (4)

To a flask containing $[Rh_2(\mu-C)Cl_2(\mu-dppm)_2]$ (0.020 g, 0.017 mmol) in CH₂Cl₂ (20 mL), CS₂ was added (0.50 mL, 8.4 mmol). The resulting red solution was stirred for 5 hours, becoming dark green in colour. After this time the volatiles were removed *in vacuo* and the residue was subjected to column chromatography (10 x 1 cm silica gel column), eluting with neat CH₂Cl₂. A green band was collected, and the volatiles were removed under reduced pressure to give a green microcrystalline solid **4** (0.016 g, 0.015 mmol, 77%). IR (ATR, cm⁻¹): 1093 s v_{CS}. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{H} = 3.02$ (dq, J = 11, 4 Hz, 2 H, PCH₂), 3.58 (dt, J = 14, 5 Hz, 2 H, PCH₂), 7.07-7.09 (m, 8 H, C₆H₅), 7.21–7.24 (m, 4 H, C₆H₅),

^{a.} Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia.

Electronic Supplementary Information (ESI) available: Synthetic procedures, spectroscopic and crystallographic data. See DOI: 10.1039/x0xx00000x. CCDC 2013308 - 2013311 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

7.31–7.32 (m, 12 H, C₆H₅), 7.68 (br s, 16 H, C₆H₅). ¹³C{¹H} NMR (151 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ = 27.4 (t, ¹J_{CP} = 10 Hz, PCH₂), 128.1, 128.2, 129.9, 130.6, 132.5, 136.1 (C_6H_5) . The quaternary thiocarbonyl resonance, was not detected due to high multiplicity (AM $_2X_4$ system) and low intensity and solubility. ³¹P{¹H} NMR (162 MHz, CDCl₃, 298 K): δ_P = 17.2 (d, ${}^{1}J_{RhP}$ = 118 Hz). MS (ESI, +ve ion, m/z): Found: 1052.98954 $[M-CI]^+$. Calcd for $C_{51}H_{44}{}^{35}CIP_4{}^{103}Rh_2S$ $[M-CI]^+$: 1052.99128. Anal. Found: C, 52.86; H, 3.79%. Calcd for C₅₁H₄₄Cl₂P₄Rh₂.CH₂Cl₂: C, 53.18; H, 3.95%. A crystal of a toluene solvate suitable for structure determination was grown by slow evaporation of CH₂Cl₂ from a toluene solution. Crystal data for $(C_{51}H_{44}Cl_2P_4Rh_2S)_2 \cdot (C_7H_8)_{2.5}$, $(M_w =$ 2409.37 gmol⁻¹): triclinic, space group *P*-1 (No. 2), a =16.3139(3), b = 19.5375(3), c = 22.4893(4) Å, $\alpha = 71.332(2)^{\circ}$, $\beta = 72.996(2)^{\circ}, \gamma = 79.948(2)^{\circ}, V = 6468.1(2) Å^{3}, Z = 2, T =$ 150.0(1) K, μ (Cu K α) = 22.258 mm⁻¹, D_{calc} = 1.237 Mgm⁻³, gold plate 0.40 x 0.162 x 0.082 mm, 25086 reflections measured $(7.2^{\circ} \le 2\Theta \le 141.6^{\circ})$, 19891 unique ($R_{int} = 0.067$) which were used in all calculations. The final R_1 was 0.073 (I > $2\sigma(I)$ and wR_2 was 0.225 (all data) for 1235 refined parameters with 263 restraints. CCDC 2013308.

Figure S1. Molecular structure 4 in a crystal of 4. (PhMe)_{0.5} (50% displacement ellipsoids, solvent and hydrogen atoms omitted and dppm groups simplified, one of two crystallographically independent molecules shown). Selected bond lengths (Å) and angles (°): Rh1–Rh2 2.7059(4), Rh1–Cl1 2.3591(10), Rh1–Cl 1.914(4), Rh2–Cl2 2.3659(11), Rh2–Cl 1.913(4), S1–Cl 1.619(4), Cl1–Rh1–Rh2 162.51(3), Cl2–Rh2–Rh1 44.98(12), Cl–Rh1–Cl1 152.50(13), Cl2–Rh2–Rh1 161.84(4), Cl1–Rh1–Rh2 44.98(12), Cl–Rh2–Cl2 153.11(13), Rh2–Cl–Rh1 90.00(19), S1–Cl–Rh1 134.6(2), S1–Cl–Rh2 135.4(2). Inset show view orthogonal to the Rh₂C plane.

Synthesis of [Rh₂(µ-CSe)Cl₂(µ-dppm)₂] (5)

To a flask containing $[Rh_2(\mu-C)Cl_2(\mu-dppm)_2]$ (0.050 g, 0.047 mmol) in CH₂Cl₂ (50 mL), excess grey selenium was added (0.014 g, 0.173 mg.atom). The resulting red solution was stirred for 15 hours, becoming dark green in colour. After this time volatiles were removed *in vacuo* and the residue was subjected to column chromatography (10 x 1 cm silica gel column), eluting with neat CH₂Cl₂. A green band was collected, and the volatiles were removed under reduced pressure to give a green microcrystalline solid **5** (0.028 g, 0.025 mmol, 52%). IR (ATR, cm⁻¹): 957 s v_{CSe}. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ = 2.96 (br. d, *J* = 14 Hz, 2 H, PCH₂), 3.68

 $(dt, J = 14, 4 Hz, 2 H, PCH_2), 7.04-7.08 (m, 7 H, C_6H_5), 7.15-$ 7.23 (m, 5 H, C₆H₅), 7.31–7.33 (m, 12 H, C₆H₅), 7.66-7.71 (m, 16 H, C₆H₅). ¹³C{¹H} NMR (151 MHz, CDCl₃, 298 K): δ_C = 26.3 (t, ¹*J*_{CP} = 11 Hz, PCH₂), 128.1, 128.2, 129.9, 130.6, 132.5, 136.1 (C_6H_5) . The selenocarbonyl resonance was not directly detected due to high multiplicity (AM₂X₄) and low intensity and solubility. ${}^{31}P{}^{1}H$ NMR (162 MHz, CDCl₃, 298 K): δ_P = 14.7 (d, ${}^{1}J_{RhP}$ = 119 Hz). 77 Se{1H} NMR (134 MHz, CDCl₃, 298 K) δ_{Se} = not detected due to high splitting. MS (ESI, +ve ion, m/z): Found: 1100.9379 [M–Cl]⁺. Calcd for C₅₁H₄₄³⁵ClP₄¹⁰³Rh₂⁸⁰Se [M–Cl]⁺: 1100.9360. A crystal of a toluene solvate suitable for structure determination was grown by slow evaporation of CH₂Cl₂ from a toluene solution. Crystal data for $2(C_{51}H_{44}Cl_2P_4Rh_2Se)\cdot 3(C_7H_8)$ (*M*_w = 2549.24 gmol⁻¹): triclinic, space group P-1 (No. 2), a = 16.2884(4), b = 20.0388(5), c = 22.3244(6) Å, $\alpha = 70.671(2)^\circ$, $\beta = 75.071(2)^\circ$, $\gamma = 80.200(2)^\circ$, V = 6615.0(3) Å³, Z = 2, T = 150.0(1) K, μ(Cu Kα) = 22.258 mm⁻ ¹, $D_{calc} = 1.280 \text{ Mgm}^{-3}$, dark green block 0.27 x 0.11 x 0.07 mm, 38393 reflections measured (7.0° ≤ 2Θ ≤ 141.8°), 18074 unique ($R_{int} = 0.036$) which were used in all calculations. The final R_1 was 0.083 ($I > 2\sigma(I)$) and wR_2 was 0.260 (all data) for 1201 refined parameters with 459 restraints. CCDC 2013309.

Synthesis of [Rh₂(μ-CS)Cl₂(μ-DMAD)(μ-dppm)₂] (7)

Method A: To a flask containing $[Rh_2(\mu-CS)Cl_2(dppm)_2]$ (4: 0.050 g, 0.047 mmol) was added CH₂Cl₂ (10 mL) followed by dimethylacetylenedicarboxylate (DMAD: 0.10 mL, 1.7 mmol). The resulting green solution was stirred for 60 minutes at room temperature, turning red in colour. Over this time a red precipitate formed and this was isolated by filtration and washed with hexane to remove unreacted DMAD. Drying in vacuo gave a red powder of pure **7** (0.046 g, 0.037 mmol, 79%). IR (ATR, cm⁻¹): 1720 br, s ν_{CO} 1249 br, s $\nu_{\text{CS}}.$ ^1H NMR (400 MHz, CDCl_3, 298 K): δ_{H} = 2.41 (s, 6H, CH₃), 2.88 (br. d, ²J_{HH} = 12 Hz, PCH₂), 3.95 (dp, J = 18, 6 Hz, PCH₂), 7.01 (t, J = 8 Hz, 9 H, C₆H₅), 7.17 (t, J = 7 Hz, 5 H, C_6H_5), 7.30–7.35 (m, 16 H, C_6H_5), 7.73 (q, J = 5 Hz, 8 H, C_6H_5) 7.83 (br. d, J = 6 Hz, C_6H_5). ¹³C{¹H} NMR (151 MHz, CDCl₃, 298 K): $\delta_C =$ 16.6 (t, ¹*J*_{CP} = 11 Hz, PCH₂), 50.3 (OCH₃), 125.7, 128.1, 128.5, 130.2, 130.6, 132.4, 135.2 (C_6H_5), 164.5 (CO_2 ; HMBC with δ_H = 2.43). ³¹P{¹H} NMR (162 MHz, CDCl₃, 298 K): δ_P = 7.09 (d, ¹J_{RhP} = 133 Hz). MS (ESI, +ve ion, *m/z*): Found: 1195.0172. Calcd for C₅₇H₅₀³⁵ClO₄P₄¹⁰³Rh₂S [M–Cl]⁺: 1195.0179. A crystal of a chloroform solvate of the aquo adduct suitable for structure determination was grown by slow evaporation of a wet CHCl₃/petrol mixture. Crystal data for C₅₇H₅₂Cl₂O₅P₄Rh₂S·CHCl₃ $(M = 1369.01 \text{ gmol}^{-1})$: monoclinic, space group $P2_1/c$ (no. 14), a =12.7306(2), b = 15.6417(3), c = 30.6406(4) Å, $\theta = 92.455(1)^{\circ}$, V = 12.7306(2)6095.81(17) Å³, Z = 4, T = 150.0(1) K, μ(Cu Kα) = 22.258 mm⁻¹, D_{calc} = 1.492 Mgm⁻³, red plate 0.125 x 0.055 x 0.032 mm, 11380 reflections measured (8.0° \leq 2 $\Theta \leq$ 142.2°), 9442 unique (R_{int} = 0.028) which were used in all calculations. The final R_1 was 0.049 $(I > 2\sigma(I))$ and wR_2 was 0.128 (all data) for 679 refined parameters without restraints. CCDC 2013310.

Method B: To a flask containing $[Rh_2(\mu_2-C)(\mu_2-DMAD)Cl_2(dppm)_2]$ (0.040 g, 0.033 mmol) was added CH_2Cl_2 (10 mL) followed by S₈ (0.023 g, 0.090 mmol). The resulting red suspension was stirred for 15 hours at room temperature, turning dark red as the starting material dissolved to give a clear solution. The solution was concentrated under reduced volume and subjected to a silica gel column (10 x 1 cm). Eluting with a with 5% mixture of THF in CH₂Cl₂ provided the red band which was freed of volatiles to afford the desired product **7** (0.018 g, 0.015 mmol, 44%). The product was identified comparison of ESI-MS and ³¹P NMR spectroscopic data with those for a sample prepared as described above.

Synthesis of [Rh₂(μ-CSe)Cl₂(μ-DMAD)(μdppm)₂] (8)

Method A: To a flask containing $[Rh_2(\mu_2-C)(\mu_2-C)]$ DMAD)Cl₂(μ -dppm)₂] (0.100 g, 0.083 mmol) was added CH₂Cl₂ (10 mL) followed by grey selenium (0.009 g, 0.11 mg.atom). The resulting red suspension was stirred for 24 hours at room temperature. The supernatant was decanted to remove excess suspended selenium, and the red solution concentrated under reduced pressure to ca 1 mL. Subjecting the solution to a silica gel column (1 x 10 cm), a pink band was eluted using a mixture of 5% THF in CH₂Cl₂. A pink powder precipitated upon addition of petroleum spirits and drying in vacuo gave a pink powder of pure 8 (0.015 g, 0.012 mmol, 14%). IR (ATR, cm⁻¹): 1718 br, s v_{CO} , 893, s v_{CSe} . ¹H NMR (400 MHz, CDCl₃, 298 K): δ_{H} = 2.46 (s, 6H, OCH₃), 2.79-2.86 (m, 2H, PCH₂), 3.79-3.85 (m, 2H, PCH₂), 7.03,7.34, 7.72, 7.83, 8.04 (m x 5, 40 H, C₆H₅). ¹³C{¹H} NMR (151 MHz, CDCl₃, 298 K): δ_c = 16.7 (PCH₂), 50.4 (OCH₃), 125.7, 128.1, 128.4, 130.2, 130.6, 132.6, 132.7, 135.3, 135.9 (dppm C₆H₅), 164.7 (HMBC with $\delta_{\rm H}$ = 2.48). ³¹P{¹H} NMR (162 MHz, CDCl₃, 298 K): δ_P = 4.11 (d, ¹J_{RhP} = 131 Hz). ⁷⁷Se{¹H} NMR (134 MHz, CDCl₃, 298 K) δ_{se} = not detected due to high splitting. MS (ESI, +ve *m/z*): Found: 1242.9637. Calcd ion. for C₅₇H₅₀³⁵ClO₄P₄¹⁰³Rh₂Se [M–Cl]⁺: 1242.9629. A crystal suitable for structure determination was grown by slow evaporation of a wet $CH_2Cl_2/toluene$ mixture. Crystal data for $C_{57}H_{52}Cl_2O_5P_4Rh_2Se \cdot 0.5(CH_2Cl_2) \cdot C_7H_8$ (*M* = 1431.14 gmol⁻¹): monoclinic, space group $P2_1/c$ (No. 14), a = 12.4786(2), b =15.7365(2), c = 31.0651(4) Å, $\theta = 91.657(1)^{\circ}$, V =6097.69(15) Å³, Z = 4, T = 150.0(1) K, μ(Cu Kα) = 22.258 mm⁻ ¹, D_{calc} = 1.559 Mgm⁻³, red plate 0.305 x 0.179 x 0.066, 11460 reflections measured (7.0° $\leq 2\Theta \leq 141.8^{\circ}$), 9756 unique (R_{int} = 0.035) which were used in all calculations. The final R_1 was 0.058 ($l > 2\sigma(l)$) and wR_2 was 0.152 (all data) for 734 refined parameters without restraints. CCDC 2013307.

Method B: To a flask containing $[Rh_2(\mu_2-CSe)Cl_2(dppm)_2]$ (5) (0.040 g, 0.035 mmol) was added CH_2Cl_2 (20 mL). To this green solution was added DMAD (0.05 mL, 0.4 mmol). The resulting dark green solution was stirred for 24 hours at room temperature, turning pink in colour. The solution was concentrated under reduced volume and subjected to a silica gel column. Eluting a red band with 5%

THF in CH₂Cl₂ provided the pink product **8** (0.038 g, 0.030 mmol, 84 %). Product was confirmed through ESI-MS and ³¹P NMR spectroscopy, matching those mentioned above. Despite numerous attempts at purification through chromatography and crystallization, the impurity of polymerized DMAD remained present in the NMR using Method B, though the compound could be accurately characterized using ¹H-¹H COSY, ¹H-¹³C HSQC and HMBC NMR.

- 1 Agilent, CrysAlis PRO, Agilent Technologies Ltd, Yarnton, Oxfordshire, England, 2014.
- 2 (a) G. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr., 2008, 64, 112-122; (b) G. M. Sheldrick, Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 2015, 71, 3-8.
- (a) C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, *J. Appl. Crystallogr.*, 2006, **39**, 453-457; (b) C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *J. Appl. Crystallogr.*, 2008, **41**, 466-470
- 4 *Spartan 18*[®] (2018) Wavefunction, Inc., 18401 Von Karman Ave., Suite 370 Irvine, CA 92612 U.S.A.
- 5 J.-D. Chai and M. Head-Gordon, *Phys. Chem. Chem. Phys.* 2008, **10**, 6615.
- 6 (a) P. J. Hay and W.R. Wadt, J. Chem. Phys., 1985,
 82, 270-283. (b) W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284-298. (c) P. J. Hay, W. R. Wadt, J. Chem. Phys., 1985, 82, 299-310.
- 7 W. J. Hehre, R. Ditchfeld and J. A. Pople, *J. Chem. Phys.*, 1972, **56**, 2257-2261.

Table S1. Experimental and Computational^a CSe-associated data for bridging CSe Ligands

Complex	v_{cse} [cm⁻¹]	r_{cse} [Å]	Se Charge	C–Se Bond Order
Experimental ^b				
$Rh_2(\mu$ -CSe)Cl ₂ (dppm) ₂	957	1.747(8	3)	
$Rh2(\mu$ -CSe)Cl ₂ (μ -DMAD)(dppm) ₂	1000 ^c	1.785(6	5)	
Calculated ^a				
$Rh_2(\mu$ -CSe)Cl ₂ (CO) ₆	1020	1.703	+0.35	2.14
$Rh_2(\mu$ -CSe)Cl ₂ (CO) ₄	1032	1.706	+0.31	2.06
$Rh_2(\mu$ -CSe)Cl ₂ (dmpm) ₂	974	1.756	-0.03	1.74
$Rh_2(\mu\text{-}CSe)Cl_2(dHpm)_2$	990	1.742	+0.06	1.83
$Rh_2(\mu$ -CSe)Cl ₂ (μ -HCCH)(dmpm) ₂	815	1.813	-0.18	1.501
^{<i>a</i>} Calculated at the DFT: $ω$ B96X-D/6-31G*/LANL2Dζ level of theory in the gas phase. Scaling factor = 0.9420. ^{<i>b</i>} Solid-state data acquired in ATR mode. ^c Ambiguous assignment due to weak intensity.				

Table S2 Selected structural data for the complexes $[Rh_2(\mu-CA)Cl_2(dRpm)_2]$

X =	R =	Rh–Rh [Å]	Rh–C [Å]	Rh–Cl [Å]	Rh–C–X [°]
O ^{<i>a</i>}	Ph	2.726(3)	1.90(3), 1.90(3)	2.348(8), 2.348(8)	136(2), 133(2)
Mea	n	2.726	1.90	2.348	135
S	Ph	2.7058(6)	1.912(6), 1.920(6)	2.3608(14), 2.3657(16)	135.1(4), 135.1(4)
		2.7184(6)	1.906(6), 1.922(6)	2.3579(14), 2.3612(16)	135.5(3), 134.0(3)
Меа	n	2.7121	1.915	2.3614	134.9
Se	Ph	2.7575(9)	1.914(10), 1.927(8)	2.351(2),2.347(2)	136.0(5), 132.4(5)
		2.7933(9)	1.935(10), 1.963(10)	2.346(3), 2.357(3)	133.9(5), 134.3(6)
Меа	n	2.7754	1.935	2.350	134.2
O ^b	Me	2.741	1.967, 1.965	2.425, 2.426	135.5, 136.1
Меа	n	2.741	1.966	2.426	135.8
S ^b M	le	2.727	1.930, 1.932	2.426, 2.429	135.0, 135.1
Меа	n	2.727	1.931	2.428	135.1
Seb	Me	2.724	1.921, 1.921	2.428, 2.427	134.9, 134.7
Меа	n	2.724	1.921	2.428	134.8
Seb	Н	2.735	1.934, 1.933	2.394, 2.394	134.9, 135.1
Меа	n	2.735	1.934	2.394	135.0

^aTaken from L. Gelmini, D. W. Stephan and S. J. Loeb, *Inorg. Chim. Acta*, 1985, **98**, L3-L6. ^bCalculated for gas-phase geometry optimised at the DFT: ωB97X-D/6-31G*/LANL2Dζ level of theory.

Table S3. Experimental crystallographic data

	4	5	7	8
Crystal data for	(C ₅₁ H ₄₄ Cl ₂ P ₄ Rh ₂ S) ₂ ·(C ₇ H ₈) _{2.5}	$2(C_{51}H_{44}Cl_2P_4Rh_2Se)\cdot 3(C_7H_8)$	$C_{57}H_{52}Cl_2O_5P_4Rh_2S\cdot CHCl_3$	C ₅₇ H ₅₂ Cl ₂ O ₅ P ₄ Rh ₂ Se·0.5(CH ₂ Cl ₂)·C ₇ H ₈
M _w	2409.37 gmol ⁻¹	2549.24 gmol ⁻¹	1369.01 gmol ⁻¹	1431.14 gmol ⁻¹
Crystal class	Triclinic	Triclinic	Monoclinic	Monoclinic
Space group	<i>P</i> -1 (No. 2)	<i>P</i> -1 (No. 2)	<i>P2</i> ₁ / <i>c</i> (no. 14)	<i>P2</i> ₁ / <i>c</i> (No. 14)
a	<i>a</i> = 16.3139(3) Å	16.2884(4) Å	12.7306(2) Å	12.4786(2) Å
b	<i>b</i> = 19.5375(3) Å	20.0388(5) Å	15.6417(3) Å	15.7365(2) Å
с	22.4893(4) Å	22.3244(6) Å	30.6406(4) Å	31.0651(4) Å
α	71.332(2)°	70.671(2)°	0	0
β	72.996(2)°	75.071(2)°	92.455(1)°	91.657(1)°
γ	79.948(2)°	80.200(2)°	0	0
V	6468.1(2) Å ³	6615.0(3) Å ³	6095.81(17) Å ³	6097.69(15) Å ³
Z	2	2	4	4
Т	150.0(1)	150.0(1) K	150.0(1) K	150.0(1)
μ	22.258 mm ⁻¹ (Cu Kα)	22.258 mm ⁻¹ (Cu Kα)	22.258 mm ⁻¹ (Cu Kα)	22.258 mm ⁻¹ (Cu Kα)
D _{calc}	1.237 Mgm ⁻³	1.280 Mgm ⁻³	1.492 Mgm ⁻³	1.559 Mgm ⁻³
crystal aspect	gold plate	dark green block	red plate	red plate
Dimensions	0.40 x 0.162 x 0.082 mm	0.27 x 0.11 x 0.07 mm	0.125 x 0.055 x 0.032 mm	0.305 x 0.179 x 0.066 mm
Reflections (measured)	25086	38393	11380	11460
20 range	7.2° ≤ 2Θ ≤ 141.6°	7.0° ≤ 2Θ ≤ 141.8°	8.0° ≤ 2Θ ≤ 142.2°	7.0° ≤ 2Θ ≤ 141.8°
Reflections (unique)	19891	18074	9442	9756
R _{int}	0.067	0.036	0.028	R _{int} = 0.035
$R_1\left(l>2\sigma(l)\right)$	0.073	0.083	0.049	0.058
wR ₂ (all data)	0.225	0.260	0.128	0.152
Refined parameters	1235	1201	679	734
Restraints	263	459	0	0
CCDC	2013308	2013309	2013310.	2013307

Geometry Optimisation for [Rh(µ-CO)Cl₂(dmpm)₂]

DFT: ωB97X-D/6-31G*/LANL2Dζ/gas phase

z

Figure S2

Table S3. Cartesian Coordinates

Ato	m x		У
Rh	-1.118278	0.066326	0.803386
Rh	1.131249	0.218132	-0.754548
Cl	3.003864	-0.431048	-2.151960
Cl	-3.068575	-0.809443	1.949070
0	0.132487	2.693842	0.446914
Ρ	0.038346	-0.305014	2.788333
Ρ	-0.021436	0.622760	-2.734750
Ρ	-2.516075	0.289838	-1.046692
Ρ	2.514805	-0.312156	1.042833
С	-1.773820	1.144243	-2.503391
Н	-1.749884	2.209994	-2.244858
Н	-2.373898	1.027841	-3.413203
С	0.071039	1.531331	0.256358
С	1.836966	0.089031	2.710748
Н	1.922322	1.177535	2.815632
Н	2.407477	-0.377236	3.522304
С	4.152710	0.502218	1.062862
Н	4.759890	0.169544	1.911195
Н	4.014827	1.585775	1.112500
Н	4.658859	0.265043	0.123494
С	2.931554	-2.094052	1.117697
Н	3.541957	-2.334407	1.994565
Н	3.480631	-2.339346	0.204287
Н	2.016212	-2.690525	1.128543
С	-0.039416	-2.017548	3.427913
Н	0.503814	-2.115606	4.373490
Н	0.372112	-2.715197	2.695018
Н	-1.093947	-2.265674	3.575178
С	-0.557461	0.695965	4.198362
н	0.000917	0.482886	5.115711
н	-1.617110	0.469955	4.346291
н	-0.465670	1.756693	3.948817

Ato	om x	У		z
С	-4.070181	1.217325	-0.779492	
Н	-3.832624	2.243992	-0.487719	
Н	-4.608712	0.743452	0.045329	
Н	-4.694018	1.225993	-1.679455	
С	0.697521	1.967052	-3.744819	
Н	1.730538	1.695115	-3.978747	
Н	0.711659	2.887518	-3.154483	
Н	0.135712	2.130088	-4.670195	
С	-0.103883	-0.783449	-3.902376	
Н	0.922497	-1.072536	-4.143701	
Н	-0.640925	-0.511335	-4.816922	
Н	-0.593576	-1.638645	-3.431322	
С	-3.100711	-1.323316	-1.688951	
Н	-2.247163	-1.966568	-1.915621	
Н	-3.724434	-1.205546	-2.581251	
Н	-3.678169	-1.800841	-0.892376	

Geometry Optimisation for $[Rh(\mu-CS)Cl_2(dmpm)_2]$

DFT: ωB97X-D/6-31G*/LANL2Dζ/gas phase

Figure S3

Table S4. Cartesian Coordinates					
Ato	m x		У	z	
Rh	-1.119470	0.043308	0.789883		
Rh	1.126735	0.177475	-0.750946		
Cl	2.983059	-0.479523	-2.167921		
Cl	-3.058684	-0.839788	1.955461		
S	0.158561	3.044191	0.502107		
Р	0.041936	-0.312752	2.782197		
Р	-0.028330	0.610393	-2.731530		
Р	-2.522498	0.262728	-1.059191		
Р	2.517204	-0.346427	1.045638		
С	-1.777949	1.137421	-2.497826		
Н	-1.746171	2.197794	-2.219515		
Н	-2.376164	1.039807	-3.410771		

С	0.073859	1.458065	0.241717	
Ato	m x	У		z
С	1.839275	0.082794	2.702487	
н	1.919156	1.173432	2.785770	
н	2.407809	-0.367960	3.523771	
С	4.143784	0.488165	1.040010	
Н	4.758781	0.179173	1.891544	
н	3.987940	1.570153	1.071513	
Н	4.648687	0.241872	0.102474	
С	2.943324	-2.123347	1.139596	
Н	3.560618	-2.350288	2.015052	
Н	3.487614	-2.377827	0.225819	
Н	2.030855	-2.723789	1.163647	
С	-0.036161	-2.013082	3.452823	
Н	0.505334	-2.093408	4.401118	
Н	0.378530	-2.722603	2.733149	
Н	-1.090254	-2.260800	3.602659	
С	-0.563414	0.722581	4.161550	
Н	-0.003464	0.540264	5.084547	
Н	-1.621426	0.494344	4.316591	
Н	-0.476883	1.775260	3.877540	
С	-4.069415	1.193526	-0.768259	
Н	-3.820965	2.213894	-0.463142	
Н	-4.606527	0.711228	0.052444	
н	-4.696791	1.219210	-1.665245	
С	0.708239	1.978495	-3.694038	
Н	1.739251	1.705455	-3.934794	
Н	0.727139	2.876280	-3.069434	
Н	0.150218	2.178335	-4.614580	
С	-0.112203	-0.768286	-3.931888	
Н	0.913451	-1.056760	-4.176086	
н	-0.644627	-0.472412	-4.841753	
Н	-0.608420	-1.630722	-3.481306	
С	-3.106257	-1.343349	-1.713083	
Н	-2.251959	-1.981804	-1.950375	
н	-3.735217	-1.219593	-2.600805	
Н	-3.678109	-1.831124	-0.918619	

z

Geometry Optimisation for [Rh(µ-CSe)Cl₂(dmpm)₂]

DFT: ωB97X-D/6-31G*/LANL2Dζ/gas phase

Figure S4

Table S5. Cartesian Coordinates				
Ator	n x		У	
Rh	-1.118403	0.017032	0.776626	
Rh	1.135207	0.174669	-0.745656	
Cl	2.996606	-0.458311	-2.167898	
Cl	-3.062959	-0.867223	1.931479	
Se	0.138809	3.162245	0.522199	
Р	0.038837	-0.348597	2.771961	
Р	-0.022591	0.580876	-2.732907	
Р	-2.528583	0.272661	-1.065130	
Р	2.529939	-0.327456	1.055565	
С	-1.766894	1.125041	-2.507447	
Н	-1.722861	2.187070	-2.237274	
Н	-2.363964	1.027257	-3.421105	
С	0.065845	1.430544	0.239765	
С	1.829406	0.075674	2.708663	
Н	1.889077	1.166908	2.800841	
Н	2.400265	-0.370993	3.530494	
С	4.130459	0.553699	1.056239	
Н	4.752257	0.261328	1.908642	
Н	3.942072	1.630537	1.089184	
Н	4.644740	0.324268	0.119429	
С	2.999409	-2.093167	1.142997	
н	3.624618	-2.306035	2.016213	
Н	3.546499	-2.332723	0.226936	
Н	2.101743	-2.715588	1.169360	
С	-0.022378	-2.056665	3.423744	
н	0.512400	-2.140041	4.375550	
Н	0.406935	-2.753485	2.700231	
Н	-1.074541	-2.318742	3.562883	
С	-0.591109	0.667535	4.154030	
н	-0.032603	0.488950	5.078625	
н	-1.646133	0.421761	4.301700	
н	-0.519357	1.722743	3.874937	
С	-4.027684	1.265738	-0.740154	

Н	-3.727129	2.268172	-0.422311
Н	-4.575134	0.795529	0.080788
Н	-4.665920	1.335041	-1.627033
С	0.717612	1.925350	-3.725201
Н	1.746395	1.643776	-3.964946
Н	0.742285	2.834778	-3.117787
Н	0.155712	2.109243	-4.646697
С	-0.112179	-0.825677	-3.899387
Н	0.912273	-1.119155	-4.143216
Н	-0.650165	-0.553264	-4.813298
Н	-0.604157	-1.677662	-3.424677
С	-3.183597	-1.304952	-1.720500
Н	-2.359228	-1.969830	-1.989010
Н	-3.829783	-1.146518	-2.590005
Н	-3.752047	-1.782342	-0.917445

0.877692 2.803776 Н 1.847927 2.390973 -0.667069 3.503175 Н н -3.755033 0.675668 -0.956037 н -2.978912 -1.202079 -1.648960 0.476501 1.045982 -3.758279 н Н -0.241473 -0.960040 -3.502196 Н 3.786694 -0.030605 1.061944 2.823617 -1.948236 1.114312 н -0.433945 -0.185356 3.897654 Н Н 0.091735 -2.064256 3.002108

Geometry Optimisation for [Rh(µ-CSe)Cl₂(CO)₆]

DFT: ωB97X-D/6-31G*/LANL2Dζ/gas phase

Geometry Optimisation for [Rh(µ-CSe)(µ-HCCH)Cl₂(dHpm)₂]

DFT: ωB97X-D/6-31G*/LANL2Dζ/gas phase

z

Figure S5

Table S6. Cartesian CoordinatesAtomxy

Rh	-1.139046	-0.194105	0.741387
Rh	1.127726	-0.042638	-0.781438
Cl	2.977772	-0.663131	-2.168140
Cl	-3.056844	-1.067506	1.877852
Se	0.138858	2.944185	0.496294
Ρ	0.038884	-0.697636	2.678308
Ρ	-0.062013	0.219082	-2.758435
Ρ	-2.525118	0.015208	-1.111287
Ρ	2.496793	-0.584358	1.013926
С	-1.787819	0.851666	-2.583175
Н	-1.707751	1.914699	-2.330682
Н	-2.386391	0.746579	-3.490633
С	0.056426	1.227850	0.207710
С	1.820439	-0.211597	2.690818

Figure S6

Ato	m x		У
Rh	0.237287	1.342368	-0.139697
Rh	-0.181075	-1.357964	0.034697
С	-1.371515	1.665285	-1.187074
0	-2.267191	1.923630	-1.834374
С	-0.541679	2.256741	1.541582
0	-0.988900	2.702694	2.485236
С	2.028728	1.248037	0.612738
0	3.093721	1.265207	1.004684
С	1.572112	-1.719633	0.796067
0	2.591090	-2.010748	1.202269
С	-1.835881	-1.303405	-0.988290
0	-2.782649	-1.354374	-1.612038
С	-1.159995	-1.779161	1.804493
0	-1.698144	-1.949477	2.789765
Cl	0.007814	-3.644819	-0.857999
Cl	1.094990	3.337021	-1.301865
С	0.721284	-0.203712	-1.420079
Se	1.480001	-0.417689	-2.930114

8 | Chem. Commun, 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

z

Geometry Optimisation for $[Rh(\mu-CSe)Cl_2(CO)_4]$

DFT: ωB97X-D/6-31G*/LANL2Dζ/gas phase

Figure S7

Table S8. Cartesian Coordinates

Atom x		У		z
Rh	0.055153	1.384068	-0.028586	
Rh	-0.168823	-1.350386	0.258565	
С	-1.429050	1.784151	-1.256251	
0	-2.277005	2.077273	-1.949105	
С	1.431018	1.252944	1.347507	
0	2.212990	1.225609	2.169257	
С	1.643514	-1.844964	0.837645	
0	2.664884	-2.188058	1.190143	
С	-2.069093	-1.068474	-0.087550	
0	-3.184857	-0.944572	-0.251915	
С	0.573806	-0.165259	-1.130220	
Se	1.333460	-0.387206	-2.641312	
Cl	-0.790122	-3.465368	1.089204	
Cl	0.004125	3.690243	0.452618	

Geometry Optimisation for $[Rh(\mu-CSe)Cl_2(\mu-HCCH)(dmpm)_2]$

DFT: ωB97X-D/6-31G*/LANL2Dζ/gas phase

Figure S8

Figure S9. Slice of the HOMO through the equatorial coordination plane (dmpm ligands omitted for clarity).

Figure S10. Slice of the LUMO through the equatorial coordination plane (dmpm ligands omitted for clarity).

Table S11. Cartesian Coordinates

Ator	n x	У		z
Rh	-0.319062	1.383500	-0.938768	
Rh	0.542619	-1.434625	0.761966	
Se	2.189171	-0.393911	-1.793352	
Cl	-1.257217	3.480292	-1.905229	
Cl	0.795963	-3.388058	2.281872	
Р	1.004666	2.591357	0.581821	
Р	-0.938929	-2.608009	-0.634810	
Р	1.832780	-0.065223	2.174202	
Р	-1.764016	0.047967	-2.225866	
С	1.389406	1.730880	2.174236	
Н	2.166176	2.292520	2.707411	
Н	0.467957	1.795270	2.761444	
С	0.801591	-0.152773	-0.651962	
С	-1.027726	-0.332775	1.312546	
С	-1.365538	0.768601	0.647899	
Н	-2.219157	1.394791	0.922845	
Н	-1.573954	-0.701992	2.185000	
С	2.624132	3.113552	-0.084597	
Н	3.164298	2.240462	-0.460247	
Н	3.224477	3.631892	0.669755	
Н	2.439495	3.784399	-0.928693	
С	0.243698	4.138018	1.181090	
Н	0.910730	4.681588	1.857463	
Н	-0.689752	3.896552	1.696966	
Н	-0.007599	4.750136	0.311002	
С	3.625092	-0.113993	1.819997	
Н	4.183032	0.578516	2.458158	
Н	3.797057	0.123281	0.766651	
Н	3.976671	-1.134894	1.995785	
С	1.716197	-0.467411	3.951009	
Н	2.354146	0.185326	4.555452	
Н	2.002408	-1.514037	4.080653	
Н	0.675392	-0.368608	4.271133	
С	-0.114276	-3.539810	-1.973065	
Н	0.524292	-4.299753	-1.513291	
Н	0.527645	-2.865733	-2.546805	
Н	-0.838885	-4.024973	-2.634521	

Ato	m x	У	z	
С	-1.967370	-3.854930	0.212579	
Н	-1.300574	-4.553797	0.723819	
Н	-2.618418	-4.386368	-0.488707	
Н	-2.572311	-3.358740	0.976438	
С	-3.407419	0.784312	-2.525401	
Н	-3.261174	1.755293	-3.005207	
Н	-3.896256	0.960210	-1.563223	
Н	-4.034212	0.136860	-3.146779	
С	-1.129742	-0.344225	-3.893744	
Н	-0.145028	-0.811908	-3.809190	
Н	-1.009670	0.597090	-4.437969	
Н	-1.811332	-1.000488	-4.444228	
С	-2.223041	-1.583617	-1.484426	
Н	-2.729018	-2.194980	-2.241490	
Н	-2.957415	-1.347036	-0.707624	

Figure S11. Variation of the HOMO energy and topology for the series $[Rh_2(\mu-CA)Cl_2(dmpm)_2]$ (A = O, S, Se; DFT: ω B97X-D/6-31G*/LANL2D ζ , gas phase))

Chemical Communications

This journal is © The Royal Society of Chemistry 2020

12 | Chem. Commun, 2020, **00**, 1-3

COMMUNICATION

Figure S13. ¹H NMR Spectrum of [Rh₂(µ-CS)Cl₂(dppm)₂] (4) 600 MHz, 25 °C, CDCl₃

This journal is © The Royal Society of Chemistry 2020

Chem. Commun., 2020, **00**, 1-3 | **13**

Chemical Communications

14 | Chem. Commun, 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

COMMUNICATION

Figure S15. ${}^{13}C{}^{1}H$ NMR Spectrum of [Rh₂(μ -CS)Cl₂(dppm)₂] (4) 151 MHz, 25 °C, CDCl₃

This journal is © The Royal Society of Chemistry 2020

Chem. Commun., 2020, **00**, 1-3 | **15**

Chemical Communications

Figure 16. COSY ¹H NMR Spectrum of $[Rh_2(\mu$ -CS)Cl₂(dppm)₂] (4) 600 MHz, 25 °C, CDCl₃

16 | Chem. Commun, 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

COMMUNICATION

Figure 17. HSQC ¹H(600 MHz)-¹³C(151 MHz) NMR Spectrum of [Rh₂(µ-CS)Cl₂(dppm)₂] (4) 600 MHz, 25 °C, CDCl₃

This journal is © The Royal Society of Chemistry 2020

Chem. Commun., 2020, **00**, 1-3 | **17**

Chemical Communications

Figure S18. ATR-FT-IR of $[Rh_2(\mu$ -CS)Cl₂(dppm)₂] (4)

18 | Chem. Commun, 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

Figure S19. ESI-Mass Spectrum of of [Rh₂(µ-CS)Cl₂(dppm)₂] (4)

Single Mass Analysis

Tolerance = 3.0 PPM / DBE: min = -1.5, max = 35.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

560 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-60 H: 0-60 O: 0-4 P: 0-4 S: 0-1 35CI: 0-1 37CI: 0-1 103Rh: 0-2

HB-1234-1/AJ

0065 32 (0.138) Cm (29:40)

This journal is © The Royal Society of Chemistry 2020

COMMUNICATION

1: TOF MS ES+

Chemical Communications

Figure S20. ¹H NMR Spectrum of [Rh₂(μ -CSe)Cl₂(μ -dppm)₂] (5) – 600 MHz, 25 °C, CDCl₃

20 | Chem. Commun, 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

Figure S21. ³¹P{¹H} NMR Spectrum of [Rh₂(µ-CSe)Cl₂(µ-dppm)₂] (5) 162 MHz, 25 °C, CDCl₃

This journal is © The Royal Society of Chemistry 2020

Chem. Commun., 2020, **00**, 1-3 | **21**

Chemical Communications

Figure S22. ¹³C{¹H} NMR Spectrum of [Rh₂(μ-CSe)Cl₂(μ-dppm)₂] (5) 151 MHz, 25 °C, CDCl₃

22 | Chem. Commun, 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

Figure S23. Wide sweep-width ¹³C{¹H} NMR spectrum of [Rh₂(μ-CSe)Cl₂(μ-dppm)₂] (5) 50-460 ppm, 101 MHz, 25 °C, CDCl₃. [δ(CSe) resonance not located]

This journal is © The Royal Society of Chemistry 2020

Chem. Commun., 2020, **00**, 1-3 | **23**

Chemical Communications

24 | Chem. Commun, 2020, **00**, 1-3

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2020

Figure S25. ¹³C(151 MHz)-¹H(600 MHz)-HMBC NMR Spectrum of [Rh₂(µ-CSe)Cl₂(µ-dppm)₂] (5), 25 °C, CDCl₃.

This journal is © The Royal Society of Chemistry 2020

Chem. Commun., 2020, **00**, 1-3 | **25**

Chemical Communications

26 | Chem. Commun, 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

COMMUNICATION

This journal is © The Royal Society of Chemistry 2020

Chem. Commun., 2020, **00**, 1-3 | **27**

Chemical Communications

Figure S28. ATR-FT-IR spectrum of [Rh₂(µ-CSe)Cl₂(µ-dppm)₂] (5)

28 | Chem. Commun, 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

Figure S29. ATR-FT-IR Difference Spectrum of $[Rh_2(\mu-CS)Cl_2(\mu-dppm)_2]$ (4) – $[Rh_2(\mu-CSe)Cl_2(\mu-dppm)_2]$ (5)

This journal is © The Royal Society of Chemistry 2020

Chem. Commun., 2020, **00**, 1-3 | **29**

COMMUNICATION

Chemical Communications

Figure S30. ESI-MS (Accurate Mass) Spectrum of [Rh₂(µ-CSe)Cl₂(µ-dppm)₂] (5)

30 | Chem. Commun, 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

COMMUNICATION

Figure S31. ¹H NMR Spectrum of [Rh₂(µ-CS)(µ-DMAD)Cl₂(dppm)₂] (7) 600 MHz, 25 °C, CDCl₃

This journal is © The Royal Society of Chemistry 2020

Chem. Commun., 2020, **00**, 1-3 | **31**

Chemical Communications

Figure S32. ³¹P{¹H} NMR Spectrum of [Rh₂(μ-CS)(μ-DMAD)Cl₂(dppm)₂] (7) 162 MHz, 25 °C, CDCl₃

32 | Chem. Commun, 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

COMMUNICATION

Figure S33. ¹³C{¹H} NMR Spectrum [Rh₂(µ-CS)(µ-DMAD)Cl₂(dppm)₂] (7) 150.9 MHz, 25 °C, CDCl₃

This journal is © The Royal Society of Chemistry 2020

Chem. Commun., 2020, **00**, 1-3 | **33**

Figure S34. ¹H (600 MHz)⁻¹³C (151 MHz) HMBC NMR spectrum of [Rh₂(µ-CS)(µ-DMAD)Cl₂(dppm)₂] (7)

COMMUNICATION

Chemical Communications

COMMUNICATION

Figure S35. ¹H⁻¹H COSY NMR Spectrum of [Rh₂(µ-CS)(µ-DMAD)Cl₂(dppm)₂] (7) 600 MHz, 25 °C, CDCl₃

This journal is © The Royal Society of Chemistry 2020

Chem. Commun., 2020, **00**, 1-3 | **35**

Chemical Communications

36 | Chem. Commun, 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

COMMUNICATION

Figure S37. ESI-MS (accurate mass) Spectrum of $[Rh_2(\mu-CS)(\mu-DMAD)Cl_2(\mu-dppm)_2]$ (7)

This journal is © The Royal Society of Chemistry 2020

Chem. Commun., 2020, **00**, 1-3 | **37**

Chemical Communications

38 | Chem. Commun, 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

COMMUNICATION

This journal is © The Royal Society of Chemistry 2020

Chem. Commun., 2020, **00**, 1-3 | **39**

Chemical Communications

40 | Chem. Commun, 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

COMMUNICATION

Figure S41. ⁷⁷Se{¹H} NMR Spectrum of [Rh₂(μ -CSe)(μ -DMAD)Cl₂(μ -dppm)₂] (8) δ (CSe) not identified

This journal is © The Royal Society of Chemistry 2020

Chem. Commun., 2020, **00**, 1-3 | **41**

Chemical Communications

42 | Chem. Commun, 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

Please do not adjust margins

Figure S43. ¹H(600 MHz)-¹³C(151 MHz) HSQC NMR Spectrum of [Rh₂(μ-CSe)(μ-DMAD)Cl₂(μ-dppm)₂] (8) 25 °C, CDCl₃

Chemical Communications

COMMUNICATION

Chemical Communications

Figure S44. COSY NMR Spectrum of [Rh₂(μ-CSe)(μ-DMAD)Cl₂(μ-dppm)₂] (8) 600 MHz, 25 °C, CDCl₃

44 | Chem. Commun, 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

COMMUNICATION

This journal is © The Royal Society of Chemistry 2020

Chem. Commun., 2020, **00**, 1-3 | **45**

Please do not adjust margins

COMMUNICATION

Chemical Communications

Figure S46. ESI-MS Spectrum of [Rh₂(µ-CSe)(µ-DMAD)Cl₂(µ-dppm)₂] (8)

46 | Chem. Commun, 2020, 00, 1-3

This journal is © The Royal Society of Chemistry 2020

Figure S47. ¹H NMR Spectrum of [RhCl(CS)(PPh₃)₂] (2)

This journal is © The Royal Society of Chemistry 2020

Chem. Commun., 2020, **00**, 1-3 | **47**

Chemical Communications

Figure S48. ¹³C{¹H} NMR Spectrum (20% ¹³C enrichment of CS, 100.7 MHz, CDCl₃, 25 °C) of [RhCl(CS)(PPh₃)₂] (2).

48 | Chem. Commun, 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

COMMUNICATION

Figure S49. ³¹P{¹H} NMR Spectrum (20% ¹³C enriched CS, 162.0 MHz, CDCl₃, 25 °C) of [RhCl(CS)(PPh₃)₂] (2)

This journal is © The Royal Society of Chemistry 2020

Chem. Commun., 2020, **00**, 1-3 | **49**