Supporting Information

Synthesis of P-Chiral Phosphine Compounds by Palladium-Catalyzed C–P Coupling Reactions

Cuiying Wang, a Chang-Duo Yue, a Jia Yuan, a Jia-Lian Zheng, a Ying Zhang, a Hong Yu, a Jian Chen, a Sixuan Meng, a Yang Yu, c Guang-Ao Yu, b* and Chi-Ming Che b*

& These authors contributed equally to this work.

Table of Contents

1. General considerations ... S2
2. Procedures for palladium-catalyzed C–P coupling reactions ... S2
3. Procedures for palladium-catalyzed C–P coupling reactions under microwave conditions S12
4. X-ray Structural Determination .. S15
5. References ... S16
6. 1H, 13C, 19F and 31P NMR spectra for all products .. S17
7. HPLC spectra for all products .. S77
1. General considerations

All manipulations of air-sensitive materials were carried out under an atmosphere of dry argon by using modified Schlenk line and glovebox techniques. Aryl halides, heteroaryl halides, bases, and catalysts were purchased from Alfa-Aesar and J&K Scientific Ltd. All solvents were distilled from appropriate drying agents under argon before use. The \(^1 \text{H}, ^{13} \text{C}, ^{19} \text{F} \) and \(^{31} \text{P} \) NMR spectroscopic data were recorded on Bruker Mercury Plus 400 MHz NMR spectrometers. Chemical shifts (\(\delta \)) for \(^1 \text{H} \) and \(^{13} \text{C} \) are referenced to internal solvent resonances and reported relative to SiMe\(_4\). Chemical shifts for \(^{19} \text{F} \) are reported relative to an external CFCl\(_3\) standard. Chemical shifts for \(^{31} \text{P} \) are reported relative to an external 85% H\(_3\)PO\(_4\) standard. High resolution mass analysis is performed on Varian 7.0T Fourier-transform mass spectrometry with ESI resource. High performance liquid chromatography (HPLC) was performed on Agilent 1100 series chromatographs using a Daicel Chiracel AD-H (4.6 mm \(\times \) 250 mm) or OD-H (4.6 mm \(\times \) 250 mm) or AS-H (4.6 mm \(\times \) 250 mm) column or IBN-H (4.6 mm \(\times \) 250 mm) with \(n \)-hexane/\(i \)-PrOH as an eluent. Microwave reaction was determined by Discover SP microwave instrument. (\(S \))-\textit{tert}-butyl(methyl)phosphine borane and (\(R \))-\textit{tert}-butyl(methyl)phosphine borane was synthesized according to the published procedures. \[1\]

![Scheme S1. Synthesis of optically pure P-stereogenic tert-butyl(methyl)phosphine borane\[1\]](image)

2. Procedures for palladium-catalyzed C–P coupling reactions

To a reaction tube, (\(S \))-\textit{tert}-butyl(methyl)phosphine borane (35.0 mg, 0.3 mmol), aryl and heteroaryl halides (0.5 mmol), Pd(OAc)\(_2\) (3.4 mg, 0.015 mmol), dppf (27.7 mg, 0.03 mmol), tBuONa (57.6 mg, 0.6 mmol) and toluene (3 mL) were added under argon. The mixture was stirred for 72 h at room temperature. After removal of volatile materials under reduced pressure, the crude product was purified by chromatograph on silica gel. (\(n \)-hexane / dichloromethane).

\((R\)-\textit{tert}-butyl(methyl)(napthalen-1-yl)phosphine Borane\)[2] Performed according to the general procedure to afford 41.0 mg (71%) of (\(R \))-2a as white solid. \(^1\text{H} \) NMR (400 MHz, CDCl\(_3\)): \(\delta \) 8.90 (d, \(J = 8.0 \) Hz, 1 H, Ar), 7.99 (d, \(J = 8.0 \) Hz, 1 H, Ar), 7.87 (d, \(J = 8.0 \) Hz, 1 H, Ar), 7.75 - 7.80 (m, 1 H, Ar), 7.61 - 7.75 (m, 1 H, Ar), 7.49 - 7.53 (m, 2 H, Ar),
1.78 (d, J = 12.0 Hz, 3 H, CH₃), 1.16 (d, J = 16.0 Hz, 9 H, C(CH₃)₃), 0.79 - 1.57 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 135.4 (d, JCP = 10.6 Hz, Ar), 133.9 (d, JCP = 7.7 Hz, Ar), 133.4 (d, JCP = 4.0 Hz, Ar), 132.4 (d, JCP = 2.6 Hz, Ar), 128.8 (s, Ar), 128.2 (d, JCP = 5.9 Hz, Ar), 126.6 (s, Ar), 126.3 (s, Ar), 125.0 (d, JCP = 44.8 Hz, Ar), 124.3 (d, JCP = 9.2 Hz, Ar), 30.5 (d, JCP = 31.5 Hz, C(CH₃)₃), 25.8 (d, JCP = 2.9 Hz, C(CH₃)₃), 8.9 (d, JCP = 39.6 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 23.8 (q, J = 69.7 Hz). HPLC (Daicel Chiralcel AS-H, n-hexane/i-PrOH = 95/5, UV = 254 nm, flow rate = 1.0 mL/min) tₑ₆ = 5.452 min (minor) and tₙ₂ = 6.546 min (major), ee = 91%. [α]ᵦ²⁵ = +8.5 (c = 2.0, CHCl₃).

(R)-tert-butyl(methyl)(phenyl)phosphine Borane.² Performed according to the general procedure to afford 41 mg (71%) of (R)-2b as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.71 (t, J = 8.0 Hz, 2 H, Ar), 7.39 – 7.58 (m, 3 H, Ar), 1.58 (d, J = 8.0 Hz, 3 H, CH₃), 1.11 (d, J = 12.0 Hz, 9 H, C(CH₃)₃), 0.12 – 0.97 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 132.9 (d, JCP = 8.0 Hz, Ar), 131.1 (s, Ar), 128.3 (s, Ar), 128.2 (s, Ar), 28.5 (d, JCP = 33.3 Hz, C(CH₃)₃), 25.1 (d, JCP = 2.9 Hz, C(CH₃)₃), 5.2 (d, JCP = 37.8 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 25.0 (q, J = 64.8 Hz). HPLC (Daicel Chiralcel AS-H, n-hexane/i-PrOH = 95/5, UV = 254 nm, flow rate = 1.0 mL/min) tₑ₆ = 7.131 min (minor) and tₙ₂ = 8.103 min (major), ee = 65%. [α]ᵦ²⁵ = +23.0 (c = 2.0, CHCl₃).

(R)-tert-butyl(3,5-dimethylphenyl)(methyl)phosphine Borane. Performed according to the general procedure to afford 50 mg (75%) of (R)-2c as yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.30 (s, 1 H, Ar), 7.27 (s, 1 H, Ar), 7.12 (s, 1 H, Ar), 2.36 (s, 6 H, CH₃), 1.53 (d, J = 8.0 Hz, 3 H, CH₃), 1.10 (d, J = 12.0 Hz, 9 H, C(CH₃)₃), 0.24 – 0.86 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 137.8 (d, JCP = 9.9 Hz, Ar), 132.8 (d, JCP = 2.6 Hz, Ar), 130.4 (d, JCP = 8.4 Hz, Ar), 127.2 (d, JCP = 50.3 Hz, Ar), 28.4 (d, JCP = 33.4 Hz, C(CH₃)₃), 25.2 (d, JCP = 2.6 Hz, C(CH₃)₃), 21.3 (s, CH₃), 5.3 (d, JCP = 37.8 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 24.3 (q, J = 69.7 Hz). HRMS (ESI): m/z: [M+H-BH₃]+ calculated for C₁₃H₂₁P: 209.1454, found 209.1455. HPLC (Daicel Chiralcel AS-H, n-hexane/i-PrOH = 95/5, UV = 220 nm, flow rate = 1.0 mL/min) tₐ₁ = 4.240 min (minor) and tₙ₂ = 5.678 min (major), ee = 94%. [α]ᵦ²⁵ = +38.0 (c = 2.0, CHCl₃).

(R)-tert-butyl(methyl)(o-tolylyphosphine Borane.² Performed according to the general procedure to afford 34 mg (42%) of (R)-2d as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.52 - 7.56 (m, 1 H, Ar), 7.37 (t, J = 8.0 Hz, 1 H, Ar), 7.13 – 7.26 (m, 2 H, Ar), 2.66 (s, 3 H, CH₃), 1.64 (d, J = 8.0 Hz, 3 H, CH₃), 1.14 (d, J = 16.0 Hz, 9 H, C(CH₃)₃), 0.43 – 1.10 (m, 3 H, BH₃). ¹³C NMR (101 MHz, CDCl₃): δ 144.1 (d, JCP = 10.5 Hz, Ar), 133.9 (d, JCP = 6.1 Hz, Ar), 132.1 (d, JCP = 8.8 Hz, Ar), 131.0 (d, JCP = 2.4 Hz, Ar), 125.7 (d, JCP = 46.0 Hz, Ar), 125.3 (d, JCP = 8.3 Hz, Ar), 30.5 (d, JCP = 31.9 Hz, C(CH₃)₃), 25.4 (d, JCP = 2.7 Hz, C(CH₃)₃), 23.3 (d, J = 3.3 Hz, CH₃), 8.8 (d, JCP = 39.0 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 25.1 (q, J = 61.6 Hz). HPLC (Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV = 230 nm, flow rate = 0.5 mL/min) tₐ₁ = 12.580 min (minor) and tₙ₂ = 14.134 min (major), ee = 90%. [α]ᵦ²⁵ = +1.0 (c = 2.0, CHCl₃).
(R)-tert-butyl(4-{tert-butyl}phenyl)(methyl)phosphine Borane. Performed according to the general procedure to afford 67.5 mg (90%) of (R)-2e as yellow solid. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.61 – 7.65 (m, 2 H, Ar), 7.45 – 7.47 (m, 2 H, Ar), 1.55 (d, \(J = 8.0\) Hz, 3 H, CH\(_3\)), 1.33 (s, 9 H, C(CH\(_3\))\(_3\)), 1.11 (d, \(J = 12.0\) Hz, 9 H, C(CH\(_3\))\(_3\)), 0.48 – 1.05 (m, 3 H, BH\(_3\)). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 154.4 (d, \(J_{CP} = 2.4\) Hz, Ar), 132.7 (d, \(J_{CP} = 8.4\) Hz, Ar), 125.3 (d, \(J_{CP} = 9.7\) Hz, Ar), 124.2 (d, \(J_{CP} = 6.1\) Hz, Ar), 34.9 (s, C(CH\(_3\))\(_3\)), 31.2 (s, C(CH\(_3\))\(_3\)), 28.6 (d, \(J_{CP} = 33.3\) Hz, C(CH\(_3\))\(_3\)), 25.2 (d, \(J_{CP} = 3.0\) Hz, C(CH\(_3\))\(_3\)), 5.4 (d, \(J_{CP} = 30.3\) Hz, CH\(_3\)). \(^{31}\)P NMR (162 MHz, CDCl\(_3\)): \(\delta\) 23.7 (q, \(J = 66.4\) Hz). HRMS (ESI): m/z: [M+H-BH\(_3\)]\(^+\) calculated for C\(_8\)H\(_8\)P: 237.1767, found 237.1766. HPLC (Daicel Chiralcel AS-H, n-hexane/i-PrOH = 99/1, UV = 234 nm, flow rate = 1 mL/min) \(t_{R1} = 5.365\) min (major) and \(t_{R2} = 6.045\) min (minor), ee = 90%. [\(\alpha\)]\(_D\)\(^{25}\) = +13.0 (c = 2.0, CHCl\(_3\)).

(R)-tert-butyl(4-methoxyphenyl)(methyl)phosphine Borane. Performed according to the general procedures to afford 47 mg (70%) of (R)-2f as white solid. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.69 – 7.78 (m, 2 H, Ar), 6.96 – 6.98 (m, 2 H, Ar), 3.85 (s, 3 H, OCH\(_3\)), 1.54 (d, \(J = 8.0\) Hz, 3 H, CH\(_3\)), 1.09 (d, \(J = 16.0\) Hz, 9 H, C(CH\(_3\))\(_3\)), 0.35 – 0.91 (m, 3 H, BH\(_3\)). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 161.8 (d, \(J_{CP} = 2.4\) Hz, Ar), 134.5 (d, \(J_{CP} = 9.4\) Hz, Ar), 118.4 (d, \(J_{CP} = 6.2\) Hz, Ar), 113.9 (d, \(J_{CP} = 10.3\) Hz, Ar), 55.3 (s, OCH\(_3\)), 28.7 (d, \(J_{CP} = 30.3\) Hz, C(CH\(_3\))\(_3\)), 25.2 (d, \(J_{CP} = 2.7\) Hz, C(CH\(_3\))\(_3\)), 5.5 (d, \(J_{CP} = 30.3\) Hz, CH\(_3\)). \(^{31}\)P NMR (162 MHz, CDCl\(_3\)): \(\delta\) 23.2 (q, \(J = 61.6\) Hz). HRMS (ESI): m/z: [M+H-BH\(_3\)]\(^+\) calculated for C\(_{12}\)H\(_{10}\)OP: 211.1246, found 211.1248. HPLC (Daicel Chiralcel AS-H, n-hexane/i-PrOH = 98/2, UV = 254 nm, flow rate = 0.8 mL/min) \(t_{R1} = 21.843\) min (minor) and \(t_{R2} = 23.093\) (major), ee = 98%. [\(\alpha\)]\(_D\)\(^{25}\) = +5.0 (c = 2.0, CHCl\(_3\)).

(R)-4-{1,3-dioxolan-2-yl}phenyl(methyl)phosphine Borane. Performed according to the general procedure to afford 34 mg (42%) of (R)-2g as yellow solid. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.69 – 7.78 (m, 2 H, Ar), 7.56 – 7.58 (m, 2 H, Ar), 5.84 (s, 1 H, CH), 4.10 – 4.15 (m, 2 H, CH\(_2\)), 4.04 – 4.09 (m, 2 H, CH\(_2\)), 1.57 (d, \(J = 9.7\) Hz, 3 H, CH\(_3\)), 1.10 (d, \(J = 14.0\) Hz, 9 H, C(CH\(_3\))\(_3\)), 0.13 – 0.99 (m, 3 H, BH\(_3\)). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 141.1 (s, Ar), 133.0 (d, \(J_{CP} = 8.1\) Hz, Ar), 128.7 (d, \(J_{CP} = 50.5\) Hz, Ar), 126.3 (d, \(J_{CP} = 9.1\) Hz, Ar), 103.0 (s, CH), 65.4 (s, CH\(_2\)), 28.6 (d, \(J_{CP} = 40.4\) Hz, C(CH\(_3\))\(_3\)), 25.1 (d, \(J_{CP} = 2.7\) Hz, C(CH\(_3\))\(_3\)), 5.3 (d, \(J_{CP} = 40.4\) Hz, CH\(_3\)). \(^{31}\)P NMR (162 MHz, CDCl\(_3\)): \(\delta\) 25.2 (q, \(J = 66.4\) Hz). HRMS (ESI): m/z: [M+H-BH\(_3\)]\(^+\) calculated for C\(_{14}\)H\(_{20}\)OP: 253.1352, found 253.1352. HPLC (Daicel Chiralcel AS-H, n-hexane/i-PrOH = 98/2, UV = 250 nm, flow rate = 1.0 mL/min) \(t_{R1} = 26.610\) min (major) and \(t_{R2} = 34.227\) min (minor), ee = 89%. [\(\alpha\)]\(_D\)\(^{25}\) = +11.0 (c = 2.0, CHCl\(_3\)).

S4
(R)-4-(1,3-dioxolan-2-yl)phenyl)(tert-butyI)(methyl)phosphine Borane. Performed according to the general procedure to afford 34 mg (42%) of (R)-2h as yellow solid. 1H NMR (400 MHz, CDCl$_3$): δ 7.75 – 7.80 (m, 2 H, Ar), 7.66 – 7.68 (m, 2 H, Ar), 7.60 – 7.61 (m, 2 H, Ar), 7.45 – 7.49 (m, 2 H, Ar), 7.37 – 7.41 (m, 1 H, Ar), 1.61 (d, J = 9.7 Hz, 3 H, CH$_3$), 1.15 (d, J = 14.0 Hz, 9 H, C(CH$_3$)$_3$), 0.41 – 0.87 (m, 3 H, CH$_2$). 13C NMR (101 MHz, CDCl$_3$): δ 143.9 (s, Ar), 139.9 (s, Ar), 133.3 (d, $J_{C,P}$ = 8.7 Hz, Ar), 128.9 (s, Ar), 128.0 (s, Ar), 127.2 (s, Ar), 126.9 (d, $J_{C,P}$ = 9.5 Hz, Ar), 126.3 (d, $J_{C,P}$ = 51.3 Hz, Ar), 28.6 (d, $J_{C,P}$ = 34.3 Hz, C(CH$_3$)$_3$). 1.16 (d, $J_{C,P}$ = 59.9 Hz). HRMS (ESI): m/z: [M+H-BH$_3$]+ calculated for C$_{16}$H$_{31}$OP: 221.1246, found 221.1246. HPLC (Daicel Chiralcel OD-H, n-hexane/i-PrOH = 95/5, UV = 254 nm, flow rate = 0.8 mL/min) t_{R1} = 9.399 min (major) and t_{R2} = 12.921 min (minor), ee = 84%. $[\alpha]_D^{25}$ = +58.0 (c = 2.0, CHCl$_3$).

(R)-4-(borane tert-butyI)(methyl)phosphino)phenyl)methanol. Performed according to the general procedure to afford 64 mg (95%) of (R)-2i as white solid. 1H NMR (400 MHz, CDCl$_3$): δ 7.68 (t, J = 8.7 Hz, 2 H, Ar), 7.44 (d, J = 7.6 Hz, 2 H, Ar), 4.72 (s, 2 H, CH$_2$), 2.37 (s, 1 H, CH$_3$OH), 1.56 (d, J = 9.7 Hz, 3 H, CH$_3$), 1.09 (d, J = 14.0 Hz, 9 H, C(CH$_3$)$_3$). 1.17 – 0.91 (m, 3 H, CH$_2$). 13C NMR (101 MHz, CDCl$_3$): δ 144.1 (s, Ar), 133.0 (d, $J_{C,P}$ = 8.4 Hz, Ar), 126.4 (d, $J_{C,P}$ = 51.5 Hz, Ar), 126.4 (d, $J_{C,P}$ = 10.1 Hz, Ar), 64.4 (s, CH$_3$), 28.4 (d, $J_{C,P}$ = 33.0 Hz, C(CH$_3$)$_3$). 25.0 (d, $J_{C,P}$ = 2.6 Hz, C(CH$_3$)$_3$). 5.2 (d, $J_{C,P}$ = 37.8 Hz, CH$_3$). 31P NMR (162 MHz, CDCl$_3$): δ 22.4 (q, J = 68.0 Hz). HRMS (ESI): m/z: [M+H-BH$_3$]+ calculated for C$_{16}$H$_{30}$OP: 211.1246, found 211.1246. HPLC (Daicel Chiralcel OD-H, n-hexane/i-PrOH = 90/10, UV = 254 nm, flow rate = 1.0 mL/min) t_{R1} = 9.344 min (major) and t_{R2} = 12.921 min (minor), ee = 84%. $[\alpha]_D^{25}$ = +58.0 (c = 2.0, CHCl$_3$).

(R)-tert-butyI(4-chlorophenyl)(methyl)phosphine Borane. Performed according to the general procedure to afford 46 mg (68%) of (R)-2j as white solid. 1H NMR (400 MHz, CDCl$_3$): δ 7.61 – 7.69 (m, 2 H, Ar), 7.41 – 7.48 (m, 2 H, Ar), 1.57 (d, J = 9.7 Hz, 3 H, CH$_3$), 1.10 (d, J = 14.1 Hz, 9 H, C(CH$_3$)$_3$). 0.11 – 0.95 (m, 3 H, CH$_2$). 13C NMR (101 MHz, CDCl$_3$): δ 137.8 (s, Ar), 134.2 (d, $J_{C,P}$ = 8.9 Hz, Ar), 128.6 (d, $J_{C,P}$ = 9.9 Hz, Ar), 126.6 (d, $J_{C,P}$ = 50.5 Hz, Ar), 28.6 (d, $J_{C,P}$ = 30.3 Hz, C(CH$_3$)$_3$). 25.1 (d, $J_{C,P}$ = 2.7 Hz, C(CH$_3$)$_3$). 5.3 (d, $J_{C,P}$ = 38.4 Hz, CH$_3$). 31P NMR (162 MHz, CDCl$_3$): δ 25.5 (q, J = 59.9 Hz). HRMS (ESI): m/z: [M+H-BH$_3$]+ calculated for C$_{16}$H$_{31}$ClP: 215.0751, found 215.0752. HPLC (Daicel Chiralcel AS-H, n-hexane/i-PrOH = 99/1, UV = 234 nm, flow rate = 1.0 mL/min) t_{R1} = 9.339 min (major) and t_{R2} = 11.765 min (minor), ee = 94%. $[\alpha]_D^{25}$ = +1.5 (c = 2.0, CHCl$_3$).
(R)-tert-butyl(methyl)[4-(trifluoromethyl)phenyl]phosphine Borane. Performed according to the general procedure to afford 47 mg (60%) of (R)-2k as yellow solid. 1H NMR (400 MHz, CDCl3): δ 7.83 - 7.88 (m, 2 H, Ar), 7.72 (d, J = 8.0 Hz, 2 H, Ar), 7.65 (m, 2 H, Ar), 1.61 (d, J = 9.5 Hz, 3 H, CH3), 1.12 (d, J = 14.2 Hz, 9 H, C(CH3)3), 0.21 - 0.94 (m, 3 H, BH3). 13C NMR (101 MHz, CDCl3): δ 133.3 (d, Jc,p = 8.4 Hz, Ar), 133.2 (d, Jc,p = 2.0 Hz, Ar), 133.0 (d, Jc,p = 5.1 Hz, Ar), 132.4 (s, Ar), 123.6 (q, Jc,F = 273.7 Hz, CF3), 122.2 (s, Ar), 28.6 (d, Jc,p = 32.6 Hz, C(CH3)3), 25.1 (d, Jc,p = 2.6 Hz, C(CH3)3), 5.2 (d, Jc,p = 37.0 Hz, CH3). 31P NMR (162 MHz, CDCl3): δ 26.9 (q, J = 40.5 Hz). 19F NMR (377 MHz, CDCl3): δ -63.1 (s). HRMS (ESI): m/z: [M+H-BH3]+ calculated for C12H12F3P: 249.1014, found 249.1016. HPLC (Daicel Chiralcel AS-H, n-hexane/i-ProOH = 99/1, UV = 254 nm, flow rate = 1.0 mL/min) tR1 = 6.392 min (minor) and tR2 = 6.672 min (major), ee = 89%. [α]D25 = +5.5 (c = 2.0, CHCl3).

(R)-1-[tert-butyl(methyl)phosphino]phenyl)ethan-1-one. Performed according to the general procedure to afford 22 mg (25%) of (R)-2l as white solid. 1H NMR (400 MHz, CDCl3): δ 7.79 - 8.05 (m, 2 H, Ar), 7.82 (t, J = 7.4 Hz, 2 H, Ar), 2.64 (d, J = 2.8 Hz, 3 H, COCH3), 1.61 (d, J = 6.8 Hz, 3 H, CH3), 1.12 (d, J = 14.2 Hz, 9 H, C(CH3)3). 13C NMR (101 MHz, CDCl3): δ 197.6 (s, COCH3), 138.8 (s, Ar), 133.2 (d, Jc,p = 8.1 Hz, Ar), 127.7 (d, Jc,p = 9.1 Hz, Ar), 28.8 (d, Jc,p =30.3 Hz, C(CH3)3), 28.5(s, COCH3), 25.1 (d, Jc,p = 2.7 Hz, C(CH3)3), 5.2 (d, Jc,p = 38.4 Hz, CH3). 31P NMR (162 MHz, CDCl3): δ 26.5 (q, J = 61.6 Hz). HRMS (ESI): m/z: [M+H-BH3]+ calculated for C13H12OP: 223.1246, found 223.1247. HPLC (Daicel Chiralcel OD-H, n-hexane/i-ProOH = 90/10, UV = 254 nm, flow rate = 1.0 mL/min) tR1 = 7.292 min (major) and tR2 = 8.536 min (minor), ee = 63%. [α]D25 = +1.5 (c = 2.0, CHCl3).

(R)-4-[tert-butyl(methyl)phosphino]phenyl)methanone. Performed according to the general procedure to afford 22 mg (25%) of (R)-2m as yellow solid. 1H NMR (400 MHz, CDCl3): δ 7.77 - 7.90 (m, 6 H, Ar), 7.61 - 7.65 (m, 1 H, Ar), 1.63 (d, J = 8.0 Hz, 3 H, CH3), 1.14 (d, J = 12.0 Hz, 9 H, C(CH3)3), 0.11 - 1.02 (m, 3 H, BH3). 13C NMR (101 MHz, CDCl3): δ 196.1 (s, CO), 139.8 (s, Ar), 136.8 (s, Ar), 133.0 (s, Ar), 132.8 (d, Jc,p = 8.1 Hz, Ar), 132.4 (s, Ar), 131.6 (s, Ar), 130.2(s, Ar), 129.4 (d, Jc,p = 10.0 Hz, Ar), 128.5 (s, Ar), 126.5 (s, Ar), 28.7 (d, Jc,p =32.3 Hz, C(CH3)3), 25.2 (d, Jc,p = 2.7 Hz, C(CH3)3), 5.2 (d, Jc,p = 37.4 Hz, CH3). 31P NMR (162 MHz, CDCl3): δ 26.5 (q, J = 76.1 Hz). HRMS (ESI): m/z: [M+H-BH3]+ calculated for C14H14OP: 285.1408, found 285.1413. HPLC (Daicel Chiralcel OD-H, n-hexane/i-ProOH = 98/2, UV = 250 nm, flow rate = 1.0 mL/min) tR1 = 54.504 min (minor) and tR2 = 57.362 min (major), ee = 65%. [α]D25 = +52.0 (c = 2.0, CHCl3).

S6
COOEt

3

COOEt

3

(R)-**ethyl 4-borane tert-butyl(methyl)phosphino**benzoate. Performed according to the general procedure to afford 37 mg (40%) of (R)-2a as yellow solid. **1H NMR (400 MHz, CDCl3): δ 8.08 – 8.14 (m, 2 H, Ar), 7.76 – 7.83 (m, 2 H, Ar), 4.41 (q, J = 7.0 Hz, 2 H, CH3CH2), 1.61 (d, J = 9.8 Hz, 3 H, CH3), 1.41 (t, J = 7.0 Hz, 3 H, CH3), 1.11 (d, J = 14.0 Hz, 9 H, C(CH3)3), 0.19 – 0.94 (m, 3 H, BH3). **13C NMR (101 MHz, CDCl3): δ 165.9 (s, CO2Et), 133.4 (d, JCP = 2.0 Hz, Ar), 132.9 (d, JCP = 8.3 Hz, Ar), 132.8 (d, JCP = 2.0 Hz, Ar), 129.1 (d, JCP = 9.5 Hz, Ar), 61.4 (s, CO2CH2CH3), 28.7 (d, JCP = 33.3 Hz, C(CH3)3), 25.1 (d, JCP = 2.8 Hz, C(CH3)3), 14.3 (s, CO2CH2CH3), 5.2 (d, JCP = 37.4 Hz, CH3). **31P NMR (162 MHz, CDCl3): δ 26.4 (q, J = 66.4 Hz). HRMS (ESI): m/z: [M+H-BH3]+ calculated for C20H20O2P: 206.1094, found 206.1093. HPLC (Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV = 230 nm, flow rate = 0.8 mL/min) tR = 15.308 min (major) and tR = 16.976 min (minor), ee = 92%. [α]D25 = +11.0 (c = 2.0, CHCl3).

(R)-**4-(borane tert-butyl(methyl)phosphino)benzonitrile.** Performed according to the general procedure to afford 24 mg (36%) of (R)-2o as white solid. **1H NMR (400 MHz, CDCl3): δ 7.85 (d, J = 6.0 Hz, 2 H, Ar), 7.77 (d, J = 5.0 Hz, 2 H, Ar), 1.63 (d, J = 7.0 Hz, 3 H, CH3), 0.98 – 1.19 (d, J = 14.0 Hz, 9 H, C(CH3)3), 0.11 – 0.95 (m, 3 H, BH3). **13C NMR (101 MHz, CDCl3): δ 153.4 (s, CO2Et), 133.5 (d, JCP = 8.1 Hz, Ar), 117.9 (s, CN), 115.0 (d, JCP = 40.0 Hz, Ar), 28.6 (d, JCP = 30.0 Hz, C(CH3)3), 25.1 (d, JCP = 2.7 Hz, C(CH3)3), 5.1 (d, JCP = 40.4 Hz, CH3). **31P NMR (162 MHz, CDCl3): δ 28.1 (q, J = 71.3 Hz). HRMS (ESI): m/z: [M+H-BH3]+ calculated for C19H17NP: 206.1093, found 206.1094. HPLC (Daicel Chiralcel OD-H, n-hexane/i-PrOH = 90/10, UV = 250 nm, flow rate = 1.0 mL/min) tR = 7.383 min (major) and tR = 8.712 min (minor), ee = 74%. [α]D25 = +4.7 (c = 2.0, CHCl3).

COOEt

3

COOEt

3

(R)-**tert-butyl(4-methoxynaphthalen-1-yl)(methyl)phosphine Borane.** Performed according to the general procedure to afford 37 mg (40%) of (R)-2p as white solid. **1H NMR (400 MHz, CDCl3): δ 8.79 (d, J = 8.4 Hz, 1 H, Ar), 8.33 (d, J = 8.4 Hz, 1 H, Ar), 7.74 (s, 1 H, Ar), 7.47 – 7.63 (m, 2 H, Ar), 6.86 (d, J = 8.2 Hz, 1 H, Ar), 4.05 (s, 3 H, OCH3), 1.76 (d, J = 9.0 Hz, 3H, CH3), 1.15 (d, J = 14.0 Hz, 9 H, C(CH3)3), 0.21 - 0.88 (m, 3 H, BH3). **13C NMR (101 MHz, CDCl3): δ 158.4 (d, JCP = 3.0 Hz, Ar), 136.4 (d, JCP = 11.1 Hz, Ar), 134.7 (d, JCP = 6.1 Hz, Ar), 127.9 (d, JCP = 5.1 Hz, Ar), 127.1 (s, Ar), 126.0 (d, JCP = 8.1 Hz, Ar), 125.6 (s, Ar), 122.4 (s, Ar), 115.7 (d, JCP = 49.5 Hz, Ar), 102.7 (d, JCP = 11.1 Hz, Ar), 55.7 (s, OMe), 30.7 (d, JCP = 32.3 Hz, C(CH3)3), 25.9 (d, JCP = 3.0 Hz, C(CH3)3), 9.0 (d, JCP = 39.4 Hz, CH3). **31P NMR (162 MHz, CDCl3): δ 22.4 (q, J = 68.0 Hz). HRMS (ESI): m/z: [M+H-BH3]+ calculated for C26H25OP: 261.1403, found 261.1403. HPLC (Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV = 250 nm, flow rate = 1 mL/min) tR = 7.585 min (minor) and tR = 12.549 min (major), ee = 46%. [α]D25 = +16.0 (c = 2.0, CHCl3).

S7
(R)-tert-butyl(9,9-dimethyl-9H-fluoren-2-yl)(methyl)phosphine Borane. Performed according to the general procedure to afford 76 mg (82%) of (R)-2q as white solid. 1H NMR (400 MHz, CDCl3): δ 7.72 – 7.81 (m, 3 H, Ar), 7.67 (t, J = 8.6 Hz, 1 H, Ar), 7.43 – 7.49 (m, 1 H, Ar), 7.34 – 7.38 (m, 2 H, Ar), 1.62 (t, J = 7.6 Hz, 3 H, CH3), 1.51 (d, J = 4.0 Hz, 6 H, Ar), 1.12 (d, J = 16.0 Hz, 9 H, C(CH3)3), 0.11 – 0.09 (m, 3 H, BH3). 13C NMR (101 MHz, CDCl3): δ 154.1 (s, Ar), 153.5 (d, Jc,p = 9.1 Hz, Ar), 142.2 (s, Ar), 138.0 (d, Jc,p = 10.0 Hz, Ar), 131.8 (s, Ar), 131.7 (d, Jc,p = 5.0 Hz, Ar), 128.4 (s, Ar), 127.2 (d, Jc,p = 8.1 Hz, Ar), 126.0 (s, Ar), 122.8 (s, Ar), 120.7 (s, Ar), 119.7 (d, Jc,p = 10.0 Hz, Ar), 47.0 (s, C(CH3)3), 28.6 (d, Jc,p = 34.4 Hz, C(CH3)3), 27.0 (s, C(CH3)3), 25.2 (d, Jc,p = 2.8 Hz, C(CH3)3), 5.5 (d, Jc,p = 38.4 Hz, CH3).

31P NMR (162 MHz, CDCl3): δ 25.3 (q, J = 72.9 Hz). HRMS (ESI): m/z: [M+H-BH3]+ calculated for C26H28P: 297.1767, found 297.1769. HPLC (Daicel Chiralcel IBN-H, n-hexane/i-ProOH = 99/1, UV = 254 nm, flow rate = 0.5 mL/min) tR1 = 11.612 min (minor) and tR2 = 12.325 min (major), ee = 74%. [α]D25 = +7.5 (c = 2.0, CHCl3).

(R)-tert-butyl(methyl)(phenanthren-9-yl)phosphine Borane. Performed according to the general procedure to afford 79 mg (85%) of (R)-2r as white solid. 1H NMR (400 MHz, CDCl3): δ 8.96 (d, J = 8.1 Hz, 1 H, Ar), 8.68 – 8.74 (m, 2 H, Ar), 8.08 (d, J = 12.4 Hz, 1 H, Ar), 7.94 (d, J = 7.7 Hz, 1 H, Ar), 7.61 – 7.80 (m, 4 H, Ar), 1.87 (d, J = 9.0 Hz, 3 H, CH3), 1.21 (d, J = 14.1 Hz, 9 H, C(CH3)3), 0.11 - 0.94 (m, 3 H, BH3). 13C NMR (101 MHz, CDCl3): δ 136.2 (d, Jc,p = 4.0 Hz, Ar), 132.7 (d, Jc,p = 7.1 Hz, Ar), 131.7 (d, Jc,p = 2.0 Hz, Ar), 130.6 (d, Jc,p = 7.1 Hz, Ar), 130.0 (d, Jc,p = 10.0 Hz, Ar), 129.5 (s, Ar), 129.4 (d, Jc,p = 17.2 Hz, Ar), 128.8 (s, Ar), 127.1 (d, Jc,p = 6.1 Hz, Ar), 126.6 (s, Ar), 124.3 (d, Jc,p = 47.5 Hz, Ar), 122.8 (d, Jc,p = 38.4 Hz, Ar), 30.7 (d, Jc,p = 30.3 Hz, C(CH3)3), 26.1 (d, Jc,p = 2.8 Hz, C(CH3)3), 9.2 (d, Jc,p = 40.4 Hz, CH3). 31P NMR (162 MHz, CDCl3): δ 24.6 (q, J = 58.3 Hz). HRMS (ESI): m/z: [M+H-BH3]+ calculated for C26H28P: 281.1454, found 281.1455. HPLC (Daicel Chiralcel AS-H, n-hexane/i-ProOH = 90/10, UV = 254 nm, flow rate = 1.0 mL/min) tR1 = 13.414 min (minor) and tR2 = 28.472 min (major), ee =91%. [α]D25 = +13.5 (c = 2.0, CHCl3).

(R)-3-(borane tert-butyl(methyl)phosphino)-N,N-dimethylaniline. Performed according to the general procedure to afford 37 mg (52%) of (R)-3a as yellow solid. 1H NMR (400 MHz, CDCl3): δ 7.26 – 7.39 (m, 1 H, Ar), 7.09 (d, J = 12.0 Hz, 1 H, Ar), 6.92 – 6.96 (m, 1 H, Ar), 6.82 (d, J = 8.0 Hz, 1 H, Ar), 2.98 (s, 6 H, N(CH3)2), 1.54 (d, J = 12.0 Hz, 3 H, CH3), 1.12 (d, J = 24.0 Hz, 9 H, C(CH3)3), 0.18 – 0.74 (m, 3 H, BH3). 13C NMR (101 MHz, CDCl3): δ 150.1 (d, Jc,p = 11.8 Hz, Ar), 128.8 (d, Jc,p = 10.3 Hz, Ar), 127.3 (d, Jc,p = 51.5 Hz, Ar), 120.1 (d, Jc,p = 6.0 Hz, Ar), 117.2 (d, Jc,p = 12.8 Hz, Ar), 114.8 (d, Jc,p = 2.3 Hz, Ar), 40.4 (s, N(CH3)2), 28.5 (d, Jc,p = 30.3 Hz, C(CH3)3), 25.4 (d, Jc,p = 2.7 Hz, C(CH3)3), 5.4 (d, Jc,p = 38.4 Hz, CH3). 31P NMR (162 MHz, CDCl3): δ 25.6 (q, J = 64.8 Hz). HRMS (ESI): m/z: [M+H-BH3]+ calculated for C13H20NP: 224.1563, found 224.1562. HPLC (Daicel Chiralcel OD-H, n-hexane/i-ProOH = 98/2,
UV = 250 nm, flow rate = 0.8 mL/min \(t_{91} = 8.667 \text{ min (minor)} \) and \(t_{92} = 10.155 \text{ min (major)} \), ee = 80%. \([\alpha]_{D25}^{25} = +24.0 \) (c = 2.0, CHCl₃).

(R)-4-(4-(borane tert-butyl(methyl)phosphino)phenyl)morpholine. Performed according to the general procedure to afford 44 mg (53%) of (R)-3b as white solid. \(^1\)H NMR (400 MHz, CDCl₃): \(\delta \) 7.55 – 7.60 (m, 2 H, Ar), 6.91 – 6.94 (m, 2 H, Ar), 3.84 – 3.87 (m, 4 H, \(\text{CH}_2 \)), 2.52 – 2.55 (m, 4 H, CH₂). \(^13\)C NMR (101 MHz, CDCl₃): \(\delta \) 15.3 (s, Ar), 120.5 (d, \(J = 13.9 \text{ Hz} \), 3 H, CH); 1.09 (d, \(J = 10.0 \text{ Hz} \), 3 H, Ar), 116.0 (d, \(J_c = 9.1 \text{ Hz} \), Ar), 114.1 (d, \(J_c = 10.1 \text{ Hz} \), Ar), 66.6 (s, CH₂), 47.8 (s, CH₂), 28.7 (d, \(J_c = 34.3 \text{ Hz} \), C(CH₃)), 25.1 (d, \(J_c = 3.0 \text{ Hz} \), C(CH₂)), 5.3 (d, \(J_c = 38.4 \text{ Hz} \), CH₂). HRMS (ESI): \(m/z \): [M+H-BH₃]⁺ calculated for \(C_{13}H_{23}NOP: 266.1406 \), found 266.1407. HPLC (Daicel Chiralcel OD-H, n-hexane/i-PrOH = 90/10, UV = 250 nm, flow rate = 1.0 mL/min) \(t_{81} = 11.953 \text{ min (major)} \) and \(t_{82} = 16.618 \text{ min (minor)} \), ee = 46%. \([\alpha]_{D25}^{25} = +24.0 \) (c = 2.0, CHCl₃).

(R)-1-(4-(borane tert-butyl(methyl)phosphino)phenyl)-1H-pyrrole. Performed according to the general procedure to afford 57 mg (74%) of (R)-3c as white solid. \(^1\)H NMR (400 MHz, CDCl₃): \(\delta \) 7.74 – 7.79 (m, 2 H, Ar), 7.46 – 7.49 (m, 2 H, Ar), 7.13 – 7.15 (m, 2 H, Ar), 6.38 – 6.39 (m, 2 H, Ar), 1.59 (d, \(J = 3.0 \text{ Hz} \), 3 H, CH₃), 1.13 (d, \(J = 4.0 \text{ Hz} \), 9 H, C(CH₃)₃), 0.11 – 1.07 (m, 3 H, Me). \(^13\)C NMR (101 MHz, CDCl₃): \(\delta \) 142.7 (d, \(J_c = 3.0 \text{ Hz} \), Ar), 134.4 (d, \(J_c = 9.9 \text{ Hz} \), Ar), 124.2 (d, \(J_c = 51.2 \text{ Hz} \), Ar), 119.5 (d, \(J_c = 10.0 \text{ Hz} \), Ar), 119.0 (s, Ar), 111.4 (s, Ar), 28.7 (d, \(J_c = 33.3 \text{ Hz} \), C(CH₃)), 25.1 (d, \(J_c = 3.0 \text{ Hz} \), C(CH₂)), 5.3 (d, \(J_c = 37.4 \text{ Hz} \), CH₂). HRMS (ESI): \(m/z \): [M+H-BH₃]⁺ calculated for \(C_{15}H_{27}NOP: 246.1406 \), found 246.1407. HPLC (Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV = 254 nm, flow rate = 0.8 mL/min) \(t_{81} = 13.659 \text{ min (minor)} \) and \(t_{82} = 15.300 \text{ min (major)} \), ee = 94%. \([\alpha]_{D25}^{25} = +0.5 \) (c = 2.0, CHCl₃).

(R)-9-(4-(borane tert-butyl(methyl)phosphino)phenyl)-9H-carbazole. Performed according to the general procedure to afford 67.8 mg (63%) of (R)-3d as white solid. \(^1\)H NMR (400 MHz, CDCl₃): \(\delta \) 8.15 (d, \(J = 8.0 \text{ Hz} \), 2 H, Ar), 7.93 – 7.98 (m, 2 H, Ar), 7.70 – 7.72 (m, 2 H, Ar), 7.41 – 7.49 (m, 4 H, Ar), 7.30 – 7.34 (m, 2 H, Ar), 1.67 (d, \(J = 8.0 \text{ Hz} \), 3 H, CH₃), 1.21 (d, \(J = 16.0 \text{ Hz} \), 9 H, C(CH₃)₃), 0.26 – 0.93 (m, 3 H, BH₂). \(^13\)C NMR (101 MHz, CDCl₃): \(\delta \) 140.5 (d, \(J_c = 2.0 \text{ Hz} \), Ar), 140.2 (s, Ar), 134.5 (d, \(J_c = 9.1 \text{ Hz} \), Ar), 126.7 (s, Ar), 126.3 (d, \(J_c = 10.0 \text{ Hz} \), Ar), 126.1 (s, Ar), 123.7 (s, Ar), 120.5 (d, \(J_c = 6.1 \text{ Hz} \), Ar), 109.7 (s, Ar), 28.7 (d, \(J_c = 33.3 \text{ Hz} \), C(CH₂)), 25.2 (d, \(J_c = 3.0 \text{ Hz} \), C(CH₃)).
\[5.4 \text{ (d, } J_{C-P} = 37.4 \text{ Hz, CH}_3) \] 31P NMR (162 MHz, CDCl\(_3\)): \(\delta 25.6 \text{ (q, } J = 53.5 \text{ Hz). HRMS (ESI)}: m/z: [M+H-BH_3]^+ \text{ calculated for } \text{C}_3\text{H}_3\text{NP: 346.1719, found 346.1721. HPLC (Daicel Chiralcel AS-H, } n\text{-hexane}/\text{-i-PrOH = 98/2, UV = 254 nm, flow rate = 0.5 mL/min) } t_{R1} = 18.239 \text{ min (major) and } t_{R2} = 20.275 \text{ min (minor), ee = 69%. } [\alpha]_D^{25} = +4.5 \text{ (c = 2.0, CHCl}_3) \].

\[\text{(R)-4-(borane tert-butyl(methyl)phosphino)-N,N-diphenylaniline. Performed according to the general procedure to afford 58 mg (47%) of (R)-3e as white solid. } ^1\text{H NMR (400 MHz, CDCl}_3\text{): } \delta 7.46 - 7.51 \text{ (m, 2 H, Ar), 7.28 - 7.32 (m, 4 H, Ar), 7.09 - 7.14 (m, 6 H, Ar), 7.02 - 7.04 (m, 2 H, Ar), 1.52 \text{ (d, } J = 8.0 \text{ Hz, 3 H, CH}_3)\text{, 1.11 (d, } J = 12.0 \text{ Hz, 9 H, C(CH}_3)_2\text{), 0.26 - 0.86 (m, 3 H, BH}_3\text{). 13C NMR (101 MHz, CDCl}_3\text{): } \delta 150.3 \text{ (d, } J_{C-P} = 2.0 \text{ Hz, Ar), 146.7 \text{ (s, Ar), 133.8 (d, } J_{C-P} = 9.1 \text{ Hz, Ar), 125.6 (s, Ar), 124.2 (s, Ar), 120.4 \text{ (d, } J_{C-P} = 10.0 \text{ Hz, Ar), 118.4 (s, Ar), 117.8 (s, Ar), 28.7 (d, } J_{C-P} = 33.3 \text{ Hz, C(CH}_3)_2\text{), 25.2 (d, } J_{C-P} = 3.0 \text{ Hz, C(CH}_3)_2\text{), } 5.4 \text{ (d, } J_{C-P} = 38.4 \text{ Hz, CH}_3)\text{. 31P NMR (162 MHz, CDCl}_3\text{): } \delta 25.4 \text{ (q, } J = 61.6 \text{ Hz). HRMS (ESI)}: m/z: [M+H-BH}_3\text{]^+ calculated for } \text{C}_3\text{H}_3\text{NP: 348.1876, found 348.1877. HPLC (Daicel Chiralcel OD-H, } n\text{-hexane}/\text{-i-PrOH = 98/2, UV = 250 nm, flow rate = 1.0 mL/min) } t_{R1} = 5.476 \text{ min (minor) and } t_{R2} = 5.912 \text{ min (major), ee = 84%. } [\alpha]_D^{25} = +8.0 \text{ (c = 2.0, CHCl}_3) \].

\[\text{(R)-4-(borane tert-butyl(methyl)phosphino)-N,N-bis(4-iodophenylaniline. Performed according to the general procedure to afford 93.7 mg (51%) of (R)-3f as white solid. } ^1\text{H NMR (400 MHz, CDCl}_3\text{): } \delta 7.46 - 7.51 \text{ (m, 2 H, Ar), 7.28 - 7.32 (m, 4 H, Ar), 7.13 \text{ (d, } J = 8.0 \text{ Hz, 4 H, Ar), 7.02 - 7.04 (m, 2 H, Ar), 1.52 \text{ (d, } J = 8.0 \text{ Hz, 3 H, CH}_3)\text{, 1.12 (d, } J = 12.0 \text{ Hz, 9 H, C(CH}_3)_2\text{), 0.26 - 0.86 (m, 3 H, BH}_3\text{). 13C NMR (101 MHz, CDCl}_3\text{): } \delta 149.2 \text{ (d, } J_{C-P} = 3.0 \text{ Hz, Ar), 146.1 \text{ (s, Ar), 138.6 (s, Ar), 134.0 \text{ (d, } J_{C-P} = 9.1 \text{ Hz, Ar), 127.7 \text{ (d, } J_{C-P} = 39.9 \text{ Hz, Ar), 121.6 \text{ (d, } J_{C-P} = 10.1 \text{ Hz, Ar), 120.5 (s, Ar), 87.6 (s, Ar), 28.6 (d, } J_{C-P} = 33.3 \text{ Hz, C(CH}_3)_2\text{), 25.2 (d, } J_{C-P} = 2.0 \text{ Hz, C(CH}_3)_2\text{), 5.3 (d, } J_{C-P} = 38.4 \text{ Hz, CH}_3)\text{. 31P NMR (162 MHz, CDCl}_3\text{): } \delta 23.7 \text{ (q, } J = 38.9 \text{ Hz). HRMS (ESI)}: m/z: [M+H-BH}_3\text{]^+ calculated for } \text{C}_3\text{H}_3\text{iNP: 599.9808, found 599.9811. HPLC (Daicel Chiralcel OD-H, } n\text{-hexane}/\text{-i-PrOH = 90/10, UV = 254 nm, flow rate = 1.0 mL/min) } t_{R1} = 9.428 \text{ min (major) and } t_{R2} = 11.065 \text{ min (minor), ee = 94%. } [\alpha]_D^{25} = +1.5 \text{ (c = 2.0, CHCl}_3) \].

\[\text{(R)-2-(borane tert-butyl(methyl)phosphino)-6-fluoropyridine. Performed according to the general procedure to afford 59 mg (62%) of (R)-3g as white solid. } ^1\text{H NMR (400 MHz, CDCl}_3\text{): } \delta 7.88 - 7.92 \text{ (m, 1 H, Ar), 7.69 - 7.73 (m, 1 H, Ar), 7.37 \text{ (d, } J = 8.0 \text{ Hz, 1 H, Ar), 1.60 (d, } J = 8.0 \text{ Hz, 3 H, CH}_3)\text{, 1.11 (d, } J = 16.0 \text{ Hz, 9 H, C(CH}_3)_2\text{), 0.26 - 0.98 (m, 3 H, BH}_3\text{). 13C NMR (101 MHz, CDCl}_3\text{): } \delta 154.5 \text{ (d, } J_{C-P} = 61.6 \text{ Hz, Ar), 151.5 \text{ (d, } J_{C-P} = 11.1 \text{ Hz, Ar), 138.4 (d, } J_{C-P} = 10.0 \text{ Hz, Ar), 129.1 \text{ (d, } J_{C-P} = 23.2 \text{ Hz, Ar), 125.7 (d, } J_{C-P} = 2.0 \text{ Hz, Ar), 28.8 (d, } J_{C-P} = 32.3 \text{ Hz, C(CH}_3)_2\text{), 25.2 (d, } J_{C-P} = 3.0 \text{ Hz, C(CH}_3)_2\text{), 4.5 (d, } J_{C-P} = 39.4 \text{ Hz, CH}_3)\text{. 31P NMR (162 MHz, CDCl}_3\text{): } \delta 30.3 \text{ (q, } J = 61.6 \text{ Hz). 19F NMR (376 MHz, CDCl}_3\text{): } \delta -68.4 \text{ (s). HRMS (ESI)}: m/z: [M+H-BH}_3\text{]^+ calculated for } \text{C}_3\text{H}_3\text{iFNP: 200.0999, found 200.1001. HPLC (Daicel Chiralcel OD-H, } n\text{-hexane/i-PrOH = 90/10, UV = 254 nm, flow rate = 1.0 mL/min) } t_{R1} = 9.500 \text{ min (major) and } t_{R2} = 10.482 \text{ min (minor), ee = 94%. } [\alpha]_D^{25} = +2.0 \text{ (c = 2.0, CHCl}_3) \].}
Chiralcel AS-H, n-hexane/i-ProOH = 98/2, UV = 250 nm, flow rate = 1.0 mL/min) \(t_{R1} = 11.503 \) min (minor) and \(t_{R2} = 12.124 \) min (major), ee = 97\%. \([\alpha]_{D}^{25} = +12.0 (c = 2.0, CHCl_3)\).

\((R)\)-methyl 6-(borane-(R)-methyl)phosphino)picolinate. Performed according to the general procedure to afford 35.7 mg (47\%) of \((R)\)-3h as white solid. \(^1\)H NMR (400 MHz, CDCl_3): \(\delta \) 8.11 – 8.15 (m, 2 H, Ar), 7.86 – 7.91 (m, 1 H, Ar), 3.97 (s, 3 H, Ar), 7.57 – 7.64 (m, 1 H, Ar), 7.42 – 7.45 (m, 1 H, Ar), 2.10 (d, \(J = 8.0 \) Hz, \(3 \) H, \(CD_2 \)). \(^1^3\)C NMR (101 MHz, CDCl_3): \(\delta \) 165.2 (s, CO), 154.3 (d, \(J_{C-P} = 64.6 \) Hz, Ar), 148.1 (d, \(J_{C-P} = 11.1 \) Hz, Ar), 136.7 (d, \(J_{C-P} = 8.1 \) Hz, Ar), 132.9 (d, \(J_{C-P} = 25.3 \) Hz, Ar), 125.8 (d, \(J_{C-P} = 2.0 \) Hz, Ar), 52.8 (s, CH_3), 28.8 (d, \(J_{C-P} = 32.3 \) Hz, C(CH_3)_2), 25.3 (d, \(J_{C-P} = 2.5 \) Hz, C(CH_3)_3), 4.6 (d, \(J_{C-P} = 39.4 \) Hz, CH_2). \(^{31}\)P NMR (162 MHz, CDCl_3): \(\delta \) 30.3 (q, \(J = 66.4 \) Hz). HRMS (ESI): m/z: [M+H-BH_3]^+ calculated for C_{16}H_{21}NO_4P: 240.1148, found 240.1150. HPLC (Daicel Chiralcel AS-H, n-hexane/i-ProOH = 95/5, UV = 230 nm, flow rate = 1.0 mL/min) \(t_{R1} = 8.140 \) min (minor) and \(t_{R2} = 9.308 \) min (major), ee = 73\%. \([\alpha]_{D}^{25} = +42.0 (c = 2.0, CHCl_3)\).

\(\text{(R)-2-(borane tert-buty1(methyl)phosphino)quinoline.} \) Performed according to the general procedure to afford 68 mg (56\%) of \((R)\)-3i as white solid. \(^1\)H NMR (400 MHz, CDCl_3): \(\delta \) 8.20 – 8.22 (m, 1 H, Ar), 8.15 (d, \(J = 8.0 \) Hz, 1 H, Ar), 8.02 – 8.05 (m, 1 H, Ar), 7.87 (d, \(J = 8.0 \) Hz, 1 H, Ar), 7.75 – 7.79 (m, 1 H, Ar), 7.60 – 7.64 (m, 1 H, Ar), 1.76 (d, \(J = 8.0 \) Hz, \(3 \) H, \(CH_2 \)), 1.18 (d, \(J = 16.0 \) Hz, 9 H, C(CH_3)_2), 0.25 – 1.11 (m, 3 H, BH_3). \(^{1^3}\)C NMR (101 MHz, CDCl_3): \(\delta \) 154.7 (s, Ar), 154.1 (s, Ar), 148.0 (d, \(J_{C-P} = 13.1 \) Hz, Ar), 135.1 (d, \(J_{C-P} = 10.0 \) Hz, Ar), 130.1 (s, Ar), 129.9 (s, Ar), 127.8 (s, Ar), 125.6 (d, \(J_{C-P} = 26.3 \) Hz, Ar), 29.1 (d, \(J_{C-P} = 32.3 \) Hz, C(CH_3)_2), 25.4 (d, \(J_{C-P} = 3.0 \) Hz, C(CH_3)_3), 4.6 (d, \(J_{C-P} = 40.4 \) Hz, CH_3). \(^{31}\)P NMR (162 MHz, CDCl_3): \(\delta \) 30.1 (q, \(J = 63.2 \) Hz). HRMS (ESI): m/z: [M+H-BH_3]^+ calculated for C_{16}H_{19}NP: 232.1250, found 232.1250. HPLC (Daicel Chiralcel AS-H, n-hexane/i-ProOH = 98/2, UV = 250 nm, flow rate = 0.8 mL/min) \(t_{R1} = 6.452 \) min (minor) and \(t_{R2} = 6.937 \) min (major), ee = 81\%. \([\alpha]_{D}^{25} = +49.5 (c = 2.0, CHCl_3)\).

\(\text{(R)-8-(borane tert-buty1(methyl)phosphino)quinoline.} \) Performed according to the general procedure to afford 20.7 mg (20\%) of \((R)\)-3j as white solid. \(^1\)H NMR (400 MHz, CDCl_3): \(\delta \) 8.91 – 8.93 (m, 1 H, Ar), 8.50 – 8.55 (m, 1 H, Ar), 8.19 (d, \(J = 8.0 \) Hz, 1 H, Ar), 7.96 (d, \(J = 8.0 \) Hz, 1 H, Ar), 7.57 – 7.64 (m, 1 H, Ar), 7.42 – 7.45 (m, 1 H, Ar), 2.10 (d, \(J = 8.0 \) Hz, 3 H, \(CH_2 \)), 2.38 (d, \(J = 12.0 \) Hz, 9 H, C(CH_3)_2), 0.26 – 0.90 (m, 3 H, BH_3). \(^{1^3}\)C NMR (101 MHz, CDCl_3): \(\delta \) 149.6 (d, \(J_{C-P} = 2.0 \) Hz, Ar), 149.4 (s, Ar), 140.2 (d, \(J_{C-P} = 16.2 \) Hz, Ar), 136.6 (s, Ar), 132.0 (d, \(J_{C-P} = 2.5 \) Hz, Ar), 128.4 (d, \(J_{C-P} = 5.1 \) Hz, Ar), 126.0 (s, Ar), 125.9 (s, Ar), 125.9 (s, Ar), 30.3 (d, \(J_{C-P} = 34.3 \) Hz, C(CH_3)_2), 26.6 (d, \(J_{C-P} = 3.0 \) Hz, C(CH_3)_2), 8.6 (d, \(J_{C-P} = 39.4 \) Hz, CH_3). \(^{31}\)P NMR (162 MHz, CDCl_3): \(\delta \) 31.0 (q, \(J = 58.3 \) Hz). HRMS (ESI): m/z: [M+H-BH_3]^+ calculated for C_{16}H_{22}NP: 232.1250, found 232.1250. HPLC (Daicel Chiralcel OD-H, n-hexane/i-ProOH = 98/2, UV = 250 nm, flow rate = 1.0 mL/min) \(t_{R1} = 6.324 \) min (minor) and \(t_{R2} = 7.473 \) min (major), ee = 71\%. \([\alpha]_{D}^{25} = +42.0 (c = 2.0, CHCl_3)\).
(R)-2-(borane tert-butyl(methyl)phosphino)-5-methoxy pyrazine. Performed according to the general procedure to afford 40.0 mg (59%) of (R)-3k as white solid. 1H NMR (400 MHz, CDCl$_3$): δ 8.66 (s, 1 H, Ar), 8.31 (s, 1 H, Ar), 4.01 (s, 3 H, OCH$_3$), 1.58 (d, J = 8.0 Hz, 3 H, CH$_3$), 1.14 (d, J = 12.0 Hz, 9 H, C(CH$_3$)$_3$), 0.20 – 0.98 (m, 3 H, BH$_3$). 13C NMR (101 MHz, CDCl$_3$): δ 161.0 (d, J_{CP} = 20.0 Hz, Ar), 147.5 (d, J_{CP} = 28.3 Hz, Ar), 138.7 (d, J_{CP} = 66.7 Hz, Ar), 136.2 (d, J_{CP} = 10.0 Hz, Ar), 55.0 (s, OMe), 28.9 (d, J_{CP} = 33.3 Hz, C(CH$_3$)$_3$), 25.3 (d, J_{CP} = 3.0 Hz, C(CH$_3$)$_3$), 4.7 (d, J_{CP} = 39.4 Hz, CH$_3$). 31P NMR (162 MHz, CDCl$_3$): δ 24.4 (q, J = 59.9 Hz). HRMS (ESI): m/z: [M+H-BH$_3$]$^+$ calculated for C$_{15}$H$_{18}$N$_2$PO: 213.1151, found 213.1152. HPLC (Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV = 254 nm, flow rate = 0.8 mL/min) t_{R1} = 5.752 min (major) and t_{R2} = 6.206 min (minor), ee = 77%. $[\alpha]_{D}^{25}$ = +9.5 (c = 2.0, CHCl$_3$).

(R)-2-(borane tert-butyl(methyl)phosphino)-3-chloroquinoline. Performed according to the general procedure to afford 64 mg (76%) of (R)-3l as yellow solid. 1H NMR (400 MHz, CDCl$_3$): δ 8.15 – 8.17 (m, 1 H, Ar), 8.05 – 8.08 (m, 1 H, Ar), 7.83 – 7.92 (m, 2 H, Ar), 1.81 (d, J = 8.0 Hz, 3 H, CH$_3$), 1.28 (d, J = 12.0 Hz, 9 H, C(CH$_3$)$_3$), 0.18 – 1.14 (m, 3 H, BH$_3$). 13C NMR (101 MHz, CDCl$_3$): δ 150.3 (d, J_{CP} = 22.6 Hz, Ar), 149.9 (d, J_{CP} = 9.3 Hz, Ar), 141.4 (s, Ar), 140.3 (s, Ar), 132.9 (s, Ar), 130.8 (s, Ar), 129.6 (s, Ar), 128.3 (s, Ar), 31.5 (d, J_{CP} = 29.3 Hz, C(CH$_3$)$_3$), 26.0 (d, J_{CP} = 2.0 Hz, C(CH$_3$)$_3$), 7.7 (d, J_{CP} = 41.4 Hz, CH$_3$). 31P NMR (162 MHz, CDCl$_3$): δ 37.9 (q, J = 53.5 Hz). HRMS (ESI): m/z: [M+H-BH$_3$]$^+$ calculated for C$_{15}$H$_{18}$ClN$_2$P: 267.0812, found 267.0813. HPLC (Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV = 250 nm, n-hexane/i-PrOH = 98/2, UV = 250 nm, flow rate = 0.8 mL/min) t_{R1} = 11.847 min (minor) and t_{R2} = 13.672 min (major), ee = 94%. $[\alpha]_{D}^{25}$ = +2.5 (c = 2.0, CHCl$_3$).

3. Procedures of palladium-catalyzed C–P coupling reactions under microwave conditions

To a reaction tube, (R)-tert-butyl(methyl)phosphine borane (35 mg, 0.3 mmol), aryl and heteroaryl halides (0.5 mmol), Pd(OAc)$_2$ (3.37 mg, 0.015 mmol), dpf (27.75 mg, 0.03 mmol), tBuONa (57.66 mg, 0.60 mmol) and toluene (3 mL) were added under argon. The mixture was stirred for 6 h under microwave conditions. After removal of the volatile materials under reduced pressure, the crude product was purified by chromatograph on silica gel. (n-hexane / dichloromethane).

(S)-tert-butyl(methyl)(naphthalen-1-yl)phosphine Borane.2 Performed according to the microwave reactions procedure to afford 47.2 mg (64%) of (S)-2a as white solid. 1H NMR (400 MHz, CDCl$_3$): δ 8.90 (d, J = 8.0 Hz, 1 H, Ar), 7.99 (d, J = 8.0 Hz, 1 H, Ar), 7.87 (d, J = 8.0 Hz, 1 H, Ar), 7.75 – 7.80 (m, 1 H, Ar), 7.61 – 7.75 (m, 1 H, Ar), 7.49 - 7.53 (m, 2 H, Ar), 1.78 (d, J = 12.0 Hz, 3 H, CH$_3$), 1.16 (d, J = 16.0 Hz, 9 H, C(CH$_3$)$_3$), 0.79 - 1.57 (m, 3 H, BH$_3$). 31P NMR (162 MHz, CDCl$_3$): δ 23.9 (q, J = 66.4 Hz). HPLC (Daicel Chiralcel AS-H, n-hexane/i-PrOH = 95/5, UV = 250 nm, flow rate = 1.0 mL/min) t_{R1} = 5.430 min (major), ee = 99%. $[\alpha]_{D}^{25}$ = -23.0 (c = 2.0, CHCl$_3$).
(5)-tert-butyl(methyl)(phenyl)phosphine Borane. Performed according to the microwave reactions procedure to afford 50.6 mg (87%) of (5)-2b as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.69 – 7.73 (m, 2 H, Ar), 7.43 – 7.52 (m, 3 H, Ar), 1.58 (d, J = 12.0 Hz, 3 H, CH₃), 1.11 (d, J = 12.0 Hz, 9 H, C(CH₃)₃), 0.24 – 1.07 (m, 3 H, BH₃). ³¹P NMR (162 MHz, CDCl₃): δ 25.0 (q, J = 63.2 Hz). HPLC (Daicel Chiralcel AS-H, n-hexane/i-PrOH = 95/5, UV = 230 nm, flow rate = 1.0 mL/min) tᵣ₁ = 7.908 min (major) and tᵣ₂ = 8.829 min (minor), ee = 99%. [α]ᵣ25 = -14.5 (c = 2.0, CHCl₃).

(5)-tert-butyl(methyl)(o-tolyl)phosphine Borane. Performed according to the microwave reactions procedure to afford 40.7 mg (65%) of (5)-2d as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.52 – 7.56 (m, 1 H, Ar), 7.35 – 7.39 (m, 1 H, Ar), 7.23 – 7.26 (m, 2 H, Ar), 2.66 (s, 3 H, CH₃), 1.64 (d, J = 8.0 Hz, 3 H, CH₃), 1.14 (d, J = 16.0 Hz, 9 H, C(CH₃)₃), 0.19 – 1.10 (m, 3 H, BH₃). ³¹P NMR (162 MHz, CDCl₃): δ 25.1 (q, J = 59.9 Hz). HPLC (Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV = 230 nm, flow rate = 0.5 mL/min) tᵣ₁ = 13.211 min (major) and tᵣ₂ = 14.302 min (minor), ee = 92%. [α]ᵣ25 = -12.5 (c = 2.0, CHCl₃).

(5)-tert-butyl(4-(tert-butyl)phenyl)(methyl)phosphine Borane. Performed according to the microwave reactions procedure to afford 35.3 mg (50%) of (5)-2e as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.61 – 7.65 (m, 2 H, Ar), 7.45 – 7.47 (m, 2 H, Ar), 1.55 (d, J = 8.0 Hz, 3 H, CH₃), 1.33 (d, J = 12.0 Hz, 9 H, C(CH₃)₃), 0.18 – 1.05 (m, 3 H, BH₃). ³¹P NMR (162 MHz, CDCl₃): δ 23.7 (q, J = 66.4 Hz). HPLC (Daicel Chiralcel AS-H, n-hexane/i-PrOH = 99/1, UV = 254 nm, flow rate = 1.0 mL/min) tᵣ₁ = 4.992 min (minor) and tᵣ₂ = 5.519 min (major), ee = 88%. [α]ᵣ25 = -7.3 (c = 2.0, CHCl₃).

(5)-tert-butyl(4-methoxyphenyl)(methyl)phosphine Borane. Performed according to the microwave reactions procedure to afford 53.7 mg (80%) of (5)-2f as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.61 – 7.65 (m, 2 H, Ar), 6.96 – 6.98 (m, 2 H, Ar), 3.85 (s, 3 H, OCH₃), 1.54 (d, J = 8.0 Hz, 3 H, CH₃), 1.09 (d, J = 16.0 Hz, 9 H, C(CH₃)₃), 0.35 – 0.91 (m, 3 H, BH₃). ³¹P NMR (162 MHz, CDCl₃): δ 23.2 (q, J = 69.7 Hz). HPLC (Daicel Chiralcel AS-H, n-hexane/i-PrOH = 98/2, UV = 250 nm, flow rate = 0.8 mL/min) tᵣ₁ = 21.932 min (major) and tᵣ₂ = 24.014 min (minor), ee = 95%. [α]ᵣ25 = -8.3 (c = 2.0, CHCl₃).

(5)-[1,1′-biphenyl]-4-yl(tert-butyl)(methyl)phosphine Borane. Performed according to the microwave reactions procedure to afford 57.4 mg (70%) of (5)-2h as white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.75 – 7.81 (m, 2 H, Ar), 7.66 – 7.68 (m, 2 H, Ar), 7.61 (d, J = 4.0 Hz, 2 H, Ar), 7.45 – 7.49 (m, 2 H, Ar), 7.37 – 7.41 (m, 1 H, Ar), 1.61 (d, J = 12.0 Hz, 3 H, CH₃), 1.14 (d, J = 12.0 Hz, 9 H, C(CH₃)₃), 0.24 – 0.95 (m, 3 H, BH₃). ³¹P NMR (162 MHz, CDCl₃): δ 24.7 (q, J = 77.8 Hz). HPLC (Daicel Chiralcel OD-H, n-hexane/i-PrOH = 95/5, UV = 250 nm, flow rate = 0.8 mL/min) tᵣ₁ = 7.872 min (minor) and tᵣ₂ = 8.778 min (major), ee = 93%. [α]ᵣ25 = -12.0 (c = 2.0, CHCl₃).
(S)-tert-butyl(4-chlorophenyl)(methyl)phosphine Borane. Performed according to the microwave reactions procedure to afford 46.6 mg (68%) of (S)-2j as white solid. 1H NMR (400 MHz, CDCl$_3$): δ 7.60 – 7.69 (m, 2 H, Ar), 7.37 – 7.51 (m, 2 H, Ar), 1.57 (d, $J = 12.0$ Hz, 3 H, CH$_3$), 1.10 (d, $J = 16.0$ Hz, 9 H, C(CH$_3$)$_3$), 0.22 – 0.85 (m, 3 H, BH$_3$). 31P NMR (162 MHz, CDCl$_3$): δ 25.4 (q, $J = 63.2$ Hz). HPLC (Daicel Chiralcel AS-H, n-hexane/i-PrOH = 99/1, UV = 234 nm, flow rate = 1.0 mL/min) $t_{R1} = 9.679$ min (major) and $t_{R2} = 12.252$ min (minor), ee = 95%. $[^{[a]}D_{25}]^{25} = -12.3$ (c = 2.0, CHCl$_3$).

(S)-tert-butyl(methyl)(4-(trifluoromethyl)phenyl)phosphine Borane. Performed according to the microwave reactions procedure to afford 31.4 mg (40%) of (S)-2k as white solid. 1H NMR (400 MHz, CDCl$_3$): δ 7.83 – 7.88 (m, 2 H, Ar), 7.72 (d, $J = 8.0$ Hz, 2 H, Ar), 1.61 (d, $J = 12.0$ Hz, 3 H, CH$_3$), 1.13 (d, $J = 12.0$ Hz, 9 H, C(CH$_3$)$_3$), 0.25 – 0.85 (m, 3 H, BH$_3$). 31P NMR (162 MHz, CDCl$_3$): δ 26.9 (q, $J = 59.9$ Hz). HPLC (Daicel Chiralcel AS-H, n-hexane/i-PrOH = 99/1, UV = 254 nm, flow rate = 1.0 mL/min) $t_{R1} = 6.399$ min (major) and $t_{R2} = 6.745$ min (minor), ee = 94%. $[^{[a]}D_{25}]^{25} = -33.0$ (c = 2.0, CHCl$_3$).

(S)-ethyl 4-(borane tert-butyl(methyl)phosphino)benzoate. Performed according to the microwave reactions procedure to afford 50.3 mg (63%) of (S)-2n as white solid. 1H NMR (400 MHz, CDCl$_3$): δ 8.10 – 8.12 (m, 2 H, Ar), 7.77 – 7.81 (m, 2 H, Ar), 4.41 (q, $J = 7.1$ Hz, 2 H, CH$_2$CH$_3$), 1.61 (d, $J = 12.0$ Hz, 3 H, CH$_3$), 1.39 – 1.43 (m, 3 H, CH$_3$), 1.11 (d, $J = 16.0$ Hz, 9 H, C(C$_2$H$_5$)$_3$), 0.21 – 0.87 (m, 3 H, BH$_3$). 31P NMR (162 MHz, CDCl$_3$): δ 26.4 (q, $J = 74.5$ Hz). HPLC (Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV = 230 nm, flow rate = 0.8 mL/min) $t_{R1} = 14.957$ min (minor) and $t_{R2} = 16.501$ min (major), ee = 97%. $[^{[a]}D_{25}]^{25} = -28.0$ (c = 2.0, CHCl$_3$).

(S)-4-(4-(borane tert-butyl(methyl)phosphino)phenyl)morpholine. Performed according to the microwave reactions procedure to afford 65.8 mg (79%) of (S)-2b as white solid. 1H NMR (400 MHz, CDCl$_3$): δ 7.56 – 7.60 (m, 2 H, Ar), 6.91 – 6.94 (m, 2 H, Ar), 3.83 – 3.90 (m, 4 H, CH$_2$), 3.21 – 3.29 (m, 4 H, CH$_2$), 1.52 (d, $J = 12.0$ Hz, 3 H, CH$_3$), 1.09 (d, $J = 16.0$ Hz, 9 H, C(CH$_3$)$_3$), 0.19 – 0.88 (m, 3 H, BH$_3$). 31P NMR (162 MHz, CDCl$_3$): δ 22.4 (q, $J = 77.8$ Hz). HPLC (Daicel Chiralcel OD-H, n-hexane/i-PrOH = 90/10, UV = 250 nm, flow rate = 1.0 mL/min) $t_{R1} = 11.772$ min (major) and $t_{R2} = 16.287$ min (minor), ee = 91%. $[^{[a]}D_{25}]^{25} = -12.0$ (c = 2.0, CHCl$_3$).

(S)-9-(4-(borane tert-butyl(methyl)phosphino)phenyl)-9H-carbazole. Performed according to the microwave reactions procedure to afford 52.1 mg (43%) of (S)-2d as white solid. 1H NMR (400 MHz, CDCl$_3$): δ 8.15 (d, $J = 8.0$ Hz, 1 H, Ar), 7.61 – 7.66 (m, 2 H, Ar), 7.47 – 7.51 (m, 2 H, Ar), 7.31 – 7.35 (m, 2 H, Ar), 7.13 – 7.16 (m, 1 H, Ar), 6.61 – 6.63 (m, 2 H, Ar), 3.22 – 3.26 (m, 4 H, CH$_2$), 1.52 (d, $J = 12.0$ Hz, 3 H, CH$_3$), 1.09 (d, $J = 16.0$ Hz, 9 H, C(CH$_3$)$_3$), 0.19 – 0.88 (m, 3 H, BH$_3$). 31P NMR (162 MHz, CDCl$_3$): δ 22.4 (q, $J = 77.8$ Hz). HPLC (Daicel Chiralcel OD-H, n-hexane/i-PrOH = 90/10, UV = 250 nm, flow rate = 1.0 mL/min) $t_{R1} = 11.772$ min (major) and $t_{R2} = 16.287$ min (minor), ee = 91%. $[^{[a]}D_{25}]^{25} = -12.0$ (c = 2.0, CHCl$_3$).
Hz, 2 H, Ar), 7.91 – 7.99 (m, 2 H, Ar), 7.67 – 7.74 (m, 2 H, Ar), 7.41 – 7.49 (m, 4 H, Ar), 7.29 – 7.35 (m, 2 H, Ar),
1.67 (d, J = 8.0 Hz, 3 H, CH), 1.21 (d, J = 16.0 Hz, 9 H, C(CH)3), 0.26 – 0.93 (m, 3 H, BH3). 31P NMR (162 MHz, CDCl3): δ 25.5 (q, J = 66.4 Hz). HPLC (Daicel Chiralcel AS-H, n-hexane/i-PrOH = 98/2, UV = 254 nm, flow rate = 0.5 mL/min) tR1 = 18.379 min (minor) and tR2 = 20.599 min (major), ee = 90%. [α]D25 = -6.0 (c = 2.0, CHCl3).

(5)-4-(borane tert-butyl(methyl)phosphino)-N,N-bis(4-iodophenyl)aniline. Performed according to the microwave reactions procedure to afford 81.5 mg (45%) of (S)-3f as white solid. 1H NMR (400 MHz, CDCl3): δ 7.46 – 7.51 (m, 2 H, Ar), 7.28 – 7.32 (m, 4 H, Ar), 7.13 (d, J = 8.0 Hz, 4 H, Ar), 7.02 – 7.04 (m, 2 H, Ar), 1.52 (d, J = 8.0 Hz, 3 H, C(CH)3), 1.12 (d, J = 12.0 Hz, 9 H, C(CH)3), 0.26 – 0.86 (m, 3 H, BH3). 31P NMR (162 MHz, CDCl3): δ 23.7 (q, J = 45.4 Hz). HPLC (Daicel Chiralcel OD-H, n-hexane/i-PrOH = 90/10, UV = 254 nm, flow rate = 1.0 mL/min) tR1 = 9.797 min (minor) and tR2 = 11.418 min (major), ee = 95%. [α]D25 = -6.5 (c = 2.0, CHCl3).

(5)-2-(borane tert-butyl(methyl)phosphino)-6-fluoropyridine. Performed according to the microwave reactions procedure to afford 43.2 mg (56%) of (S)-3g as white solid. 1H NMR (400 MHz, CDCl3): δ 7.88 – 7.92 (m, 1 H, Ar), 7.69 – 7.73 (m, 1 H, Ar), 7.37 (d, J = 8.0 Hz, 1 H, Ar), 1.60 (d, J = 8.0 Hz, 3 H, CH), 1.11 (d, J = 16.0 Hz, 9 H, C(CH)3), 0.26 – 0.98 (m, 3 H, BH3). 31P NMR (162 MHz, CDCl3): δ 30.5 (q, J = 61.6 Hz). HPLC (Daicel Chiralcel AS-H, n-hexane/i-PrOH = 98/2, UV = 250 nm, flow rate = 1.0 mL/min) tR1 = 11.471 min (major) and tR2 = 12.718 min (minor), ee = 93%. [α]D25 = -34.0 (c = 2.0, CHCl3).

(5)-8-(borane tert-butyl(methyl)phosphino)quinoline. Performed according to the microwave reactions procedure to afford 22.6 mg (26%) of (S)-3j as white solid. 1H NMR (400 MHz, CDCl3): δ 8.91 – 8.93 (m, 1 H, Ar), 8.50 – 8.55 (m, 1 H, Ar), 8.19 (d, J = 8.0 Hz, 1 H, Ar), 7.96 (d, J = 8.0 Hz, 1 H, Ar), 7.57 – 7.64 (m, 1 H, Ar), 7.42 – 7.45 (m, 1 H, Ar), 2.10 (d, J = 8.0 Hz, 3 H, CH), 1.18 (d, J = 12.0 Hz, 9 H, C(CH)3), 0.26 – 0.90 (m, 3 H, BH3). 31P NMR (162 MHz, CDCl3): δ 31.0 (q, J = 63.2 Hz). HPLC (Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV = 250 nm, flow rate = 1.0 mL/min) tR1 = 6.791 min (major) and tR2 = 7.931 min (minor), ee = 71%. [α]D25 = -27.0 (c = 2.0, CHCl3).

4. X-ray structural determination

The X-ray date was collected on a Rigaku Saturn CCDC diffractometer using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). The structure was solved by direct methods (SHELXS-97) and refined by full-matrix least squares on F. All non-hydrogen atoms were refined anisotropically and hydrogen atoms by a riding model (SHELXL-97). The crystal data and structural refinements details are listed in Table S1. CCDC 2017943 ((S)-2q), and CCDC 2017887 ((R)-2h) contain the supplementary crystallographic data for this paper. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Table S1. Crystal Data and Summary of X-ray Data Collection for compound \((S)-2q\) and \((R)-2h\)

<table>
<thead>
<tr>
<th></th>
<th>((S)-2q)</th>
<th>((R)-2h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>(C_{20}H_{28}BP)</td>
<td>(C_{17}H_{24}BP)</td>
</tr>
<tr>
<td>fw</td>
<td>310.20</td>
<td>270.14</td>
</tr>
<tr>
<td>(T) (K)</td>
<td>296</td>
<td>296</td>
</tr>
<tr>
<td>space group</td>
<td>(P 2\bar{1} 2\bar{1} 2\bar{1})</td>
<td>(P 2\bar{1} 2\bar{1} 2\bar{1})</td>
</tr>
<tr>
<td>crystal system</td>
<td>Orthorhombic</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>(a) (Å)</td>
<td>11.2902(16)</td>
<td>6.6359(9)</td>
</tr>
<tr>
<td>(b) (Å)</td>
<td>12.3392(18)</td>
<td>7.5137(10)</td>
</tr>
<tr>
<td>(c) (Å)</td>
<td>13.6341(19)</td>
<td>34.018(5)</td>
</tr>
<tr>
<td>(\alpha) (deg.)</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>(\beta) (deg.)</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>(\gamma) (deg.)</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>(V) (Å³)</td>
<td>1899.4(5)</td>
<td>90(19)</td>
</tr>
<tr>
<td>(Z)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(\rho) (mg/cm³)</td>
<td>1.085</td>
<td>1.058</td>
</tr>
<tr>
<td>(F(000))</td>
<td>672.0</td>
<td>584</td>
</tr>
<tr>
<td>(GOF)</td>
<td>1.078</td>
<td>1.248</td>
</tr>
<tr>
<td>(R1 (I > 2\sigma(I)))</td>
<td>0.0358</td>
<td>0.0840</td>
</tr>
<tr>
<td>(wR2) (all data)</td>
<td>0.1017</td>
<td>0.1430</td>
</tr>
</tbody>
</table>

5. References

6. 1H, 13C, 19F and 31P NMR spectra for all products.

Figure S1. 1H NMR spectrum of (R)-2a in CDCl$_3$

Figure S2. 13C NMR spectrum of (R)-2a in CDCl$_3$
Figure S3. 31P NMR spectrum of (R)-2a in CDCl$_3$

Figure S4. 1H NMR spectrum of (R)-2b in CDCl$_3$
Figure S5. 13C NMR spectrum of (R)-2b in CDCl$_3$.

Figure S6. 31P NMR spectrum of (R)-2b in CDCl$_3$.
Figure S7. 1H NMR spectrum of (R)-2c in CDCl$_3$

Figure S8. 13C NMR spectrum of (R)-2c in CDCl$_3$
Figure S9. 31P NMR spectrum of (R)-2c in CDCl$_3$

Figure S10. 1H NMR spectrum of (R)-2d in CDCl$_3$
Figure S11. 13C NMR spectrum of (R)-2d in CDCl$_3$

Figure S12. 31P NMR spectrum of (R)-2d in CDCl$_3$
Figure S13. 1H NMR spectrum of (R)-2e in CDCl$_3$

Figure S14. 13C NMR spectrum of (R)-2e in CDCl$_3$
Figure S15. 31P NMR spectrum of (R)-2e in CDCl$_3$

Figure S16. 1H NMR spectrum of (R)-2f in CDCl$_3$
Figure S17. 13C NMR spectrum of (R)-2f in CDCl$_3$

Figure S18. 31P NMR spectrum of (R)-2f in CDCl$_3$
Figure S19. 1H NMR spectrum of (R)-2g in CDCl$_3$

Figure S20. 13C NMR spectrum of (R)-2g in CDCl$_3$
Figure S21. 31P NMR spectrum of (R)-2g in CDCl$_3$

Figure S22. 1H NMR spectrum of (R)-2h in CDCl$_3$
Figure S23. 13C NMR spectrum of (R)-2h in CDCl$_3$

Figure S24. 31P NMR spectrum of (R)-2h in CDCl$_3$
Figure S25. 1H NMR spectrum of (R)-2i in CDCl$_3$

Figure S26. 13C NMR spectrum of (R)-2i in CDCl$_3$
Figure S27. 31P NMR spectrum of (R)-2i in CDCl$_3$

Figure S28. 1H NMR spectrum of (R)-2j in CDCl$_3$
Figure S29. 13C NMR spectrum of (R)-2j in CDCl$_3$

Figure S30. 31P NMR spectrum of (R)-2j in CDCl$_3$
Figure S31. 1H NMR spectrum of (R)-2k in CDCl$_3$

Figure S32. 13C NMR spectrum of (R)-2k in CDCl$_3$
Figure S33. \(^{31}\)P NMR spectrum of (R)-2k in CDCl$_3$

Figure S34. \(^{19}\)F NMR spectrum of (R)-2k in CDCl$_3$
Figure S35. 1H NMR spectrum of (R)-2I in CDCl$_3$

Figure S36. 13C NMR spectrum of (R)-2I in CDCl$_3$
Figure S37. 31P NMR spectrum of (R)-2l in CDCl$_3$

Figure S38. 1H NMR spectrum of (R)-2m in CDCl$_3$
Figure S39. 13C NMR spectrum of (R)-2m in CDCl$_3$.

Figure S40. 31P NMR spectrum of (R)-2m in CDCl$_3$.
Figure S41. 1H NMR spectrum of (R)-2n in CDCl$_3$

Figure S42. 13C NMR spectrum of (R)-2n in CDCl$_3$
Figure S43. 31P NMR spectrum of (R)-2n in CDCl$_3$

Figure S44. 1H NMR spectrum of (R)-2o in CDCl$_3$
Figure S45. 13C NMR spectrum of (R)-2o in CDCl$_3$

Figure S46. 31P NMR spectrum of (R)-2o in CDCl$_3$
Figure S47. 1H NMR spectrum of (R)-2p in CDCl$_3$

Figure S48. 13C NMR spectrum of (R)-2p in CDCl$_3$
Figure S49. ^{31}P NMR spectrum of (R)-2p in CDCl$_3$

Figure S50. ^1H NMR spectrum of (R)-2q in CDCl$_3$

S41
Figure S51. 13C NMR spectrum of (R)-2q in CDCl$_3$.

Figure S52. 31P NMR spectrum of (R)-2q in CDCl$_3$.

(S42)
Figure S53. 1H NMR spectrum of (R)-2r in CDCl$_3$

Figure S54. 13C NMR spectrum of (R)-2r in CDCl$_3$
Figure S55. 31P NMR spectrum of (R)-2r in CDCl$_3$

Figure S56. 1H NMR spectrum of (R)-3a in CDCl$_3$
Figure S57. 13C NMR spectrum of (R)-3a in CDCl$_3$.

Figure S58. 31P NMR spectrum of (R)-3a in CDCl$_3$.

S45
Figure S59. 1H NMR spectrum of (R)-3b in CDCl$_3$

Figure S60. 13C NMR spectrum of (R)-3b in CDCl$_3$
Figure S61. 31P NMR spectrum of (R)-3b in CDCl$_3$

Figure S62. 1H NMR spectrum of (R)-3c in CDCl$_3$
Figure S63. 13C NMR spectrum of (R)-3c in CDCl$_3$

Figure S64. 31P NMR spectrum of (R)-3c in CDCl$_3$
Figure S65. 1H NMR spectrum of (R)-3d in CDCl$_3$

Figure S66. 13C NMR spectrum of (R)-3d in CDCl$_3$
Figure S67. 31P NMR spectrum of (R)-3d in CDCl$_3$

Figure S68. 1H NMR spectrum of (R)-3e in CDCl$_3$
Figure S69. 13C NMR spectrum of (R)-3e in CDCl$_3$

Figure S70. 31P NMR spectrum of (R)-3e in CDCl$_3$
Figure S71. 1H NMR spectrum of (R)-3f in CDCl$_3$.

Figure S72. 13C NMR spectrum of (R)-3f in CDCl$_3$.
Figure S73. \(^{31}\text{P} \) NMR spectrum of (R)-3f in CDCl\(_3\)

Figure S74. \(^1\text{H} \) NMR spectrum of (R)-3g in CDCl\(_3\)
Figure S75. 13C NMR spectrum of (R)-3g in CDCl$_3$.

Figure S76. 31P NMR spectrum of (R)-3g in CDCl$_3$.
Figure S77. 19F NMR spectrum of (R)-3g in CDCl$_3$

Figure S78. 1H NMR spectrum of (R)-3h in CDCl$_3$
Figure S79. 13C NMR spectrum of (R)-3h in CDCl$_3$

Figure S80. 31P NMR spectrum of (R)-3h in CDCl$_3$
Figure S81. 1H NMR spectrum of (R)-3i in CDCl$_3$

Figure S82. 13C NMR spectrum of (R)-3i in CDCl$_3$
Figure S83. 31P NMR spectrum of (R)-3i in CDCl$_3$

Figure S84. 1H NMR spectrum of (R)-3j in CDCl$_3$
Figure S85. 13C NMR spectrum of (R)-3j in CDCl$_3$

Figure S86. 31P NMR spectrum of (R)-3j in CDCl$_3$
Figure S87. 1H NMR spectrum of (R)-3k in CDCl$_3$.

Figure S88. 13C NMR spectrum of (R)-3k in CDCl$_3$.
Figure S89. 31P NMR spectrum of (R)-3k in CDCl₃

Figure S90. 1H NMR spectrum of (R)-3l in CDCl₃
Figure S91. 13C NMR spectrum of (R)-3I in CDCl$_3$

Figure S92. 31P NMR spectrum of (R)-3I in CDCl$_3$
Figure S93. 1H NMR spectrum of (S)-2a in CDCl$_3$

Figure S94. 31P NMR spectrum of (S)-2a in CDCl$_3$
Figure S95. 1H NMR spectrum of (S)-2b in CDCl$_3$.

Figure S96. 31P NMR spectrum of (S)-2b in CDCl$_3$.
Figure S97. 1H NMR spectrum of (S)-2d in CDCl$_3$

Figure S98. 31P NMR spectrum of (S)-2d in CDCl$_3$
Figure S99. 1H NMR spectrum of (S)-2e in CDCl$_3$

Figure S100. 31P NMR spectrum of (S)-2e in CDCl$_3$
Figure S101. 1H NMR spectrum of (S)-2f in CDCl$_3$

Figure S102. 31P NMR spectrum of (S)-2f in CDCl$_3$
Figure S103. 1H NMR spectrum of (S)-2h in CDCl$_3$

Figure S104. 31P NMR spectrum of (S)-2h in CDCl$_3$
Figure S105. 1H NMR spectrum of (S)-3j in CDCl$_3$

Figure S106. 31P NMR spectrum of (S)-3j in CDCl$_3$
Figure S107. 1H NMR spectrum of (S)-2k in CDCl$_3$

Figure S108. 31P NMR spectrum of (S)-2k in CDCl$_3$
Figure S109. 1H NMR spectrum of (S)-2n in CDCl$_3$

Figure S110. 31P NMR spectrum of (S)-2n in CDCl$_3$
Figure S111. 1H NMR spectrum of (S)-3b in CDCl$_3$

Figure S112. 31P NMR spectrum of (S)-3b in CDCl$_3$
Figure S113. 1H NMR spectrum of (S)-3d in CDCl₃

Figure S114. 31P NMR spectrum of (S)-3d in CDCl₃
Figure S115. 1H NMR spectrum of (S)-3f in CDCl$_3$

Figure S116. 31P NMR spectrum of (S)-3f in CDCl$_3$
Figure S117. 1H NMR spectrum of (S)-3g in CDCl$_3$

Figure S118. 31P NMR spectrum of (S)-3g in CDCl$_3$
Figure S119. 1H NMR spectrum of (S)-3j in CDCl$_3$

Figure S120. 31P NMR spectrum of (S)-3j in CDCl$_3$
7. HPLC spectra for all products.

Chiral HPLC chromatographic analysis of (R)-2a
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 95/5, UV = 250 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 5.452 min, t (major) = 6.546 min, ee = 91%.

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.462</td>
<td>0.1747</td>
<td>1.2678e6</td>
<td>1167.53125</td>
<td>49.5061</td>
</tr>
<tr>
<td>2</td>
<td>6.558</td>
<td>0.1805</td>
<td>1.2931e6</td>
<td>1121.50928</td>
<td>50.4939</td>
</tr>
</tbody>
</table>

Chiral HPLC chromatographic analysis of (S)-2a
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 95/5, UV = 250 nm, flow rate: 1.0 mL/min, retention time: t (major) = 5.430 min, ee = 99%.

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.452</td>
<td>0.2548</td>
<td>158.49107</td>
<td>7.97053</td>
<td>4.4623</td>
</tr>
<tr>
<td>2</td>
<td>6.546</td>
<td>0.3550</td>
<td>339.25806</td>
<td>381.34228</td>
<td>95.5377</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.430</td>
<td>0.1771</td>
<td>1.2839e4</td>
<td>1142.25513</td>
<td>100.0000</td>
</tr>
</tbody>
</table>
Chiral HPLC chromatographic analysis of (R)-2b

Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 95/5, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 7.131 min, t (major) = 8.103 min, ee = 65%.

Chiral HPLC chromatographic analysis of (S)-2b

Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 95/5, UV = 230 nm, flow rate: 1.0 mL/min, retention time: t (major) = 7.908 min, t (minor) = 8.829 min, ee = 99%.
Chiral HPLC chromatographic analysis of (R)-2c

Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 95/5, UV = 220 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 4.240 min, t (major) = 5.678 min, ee = 94%.
Chiral HPLC chromatographic analysis of (R)-2d
Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV = 230 nm, flow rate: 0.5 mL/min, retention time: t (minor) = 12.580 min, t (major) = 14.134 min, ee = 90%.

Chiral HPLC chromatographic analysis of (S)-2d
Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV = 230 nm, flow rate: 0.5 mL/min, retention time: t (major) = 13.211 min, t (minor) = 14.302 min, ee = 92%.
Chiral HPLC chromatographic analysis of (R)-2e
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 99/1, UV = 234 nm, flow rate: 1 mL/min, retention time: t (major) = 5.365 min, t (minor) = 6.045 min, ee = 90%.

Chiral HPLC chromatographic analysis of (S)-2e
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 99/1, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 4.992 min, t (major) = 5.519 min, ee = 88%.
Chiral HPLC chromatographic analysis of (R)-2f
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 98/2, UV = 250 nm, flow rate: 0.8 mL/min, retention time: t (minor) = 21.843 min, t (major) = 23.093 min, ee = 98%.

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>[min]</td>
<td>[min]</td>
<td>[mAU*^s]</td>
<td>[mAU]</td>
<td>%</td>
</tr>
<tr>
<td>1</td>
<td>22.162</td>
<td>BV</td>
<td>0.5593</td>
<td>3923.07373</td>
<td>119.42327</td>
</tr>
<tr>
<td>2</td>
<td>23.910</td>
<td>VB</td>
<td>0.6622</td>
<td>3894.06250</td>
<td>92.67391</td>
</tr>
</tbody>
</table>

Chiral HPLC chromatographic analysis of (S)-2f
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 98/2, UV = 250 nm, flow rate: 0.8 mL/min, retention time: t (major) = 21.932 min, t (minor) = 24.014 min, ee = 95%.

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>[min]</td>
<td>[min]</td>
<td>[mAU*^s]</td>
<td>[mAU]</td>
<td>%</td>
</tr>
<tr>
<td>1</td>
<td>21.843</td>
<td>BV</td>
<td>0.4456</td>
<td>130.97234</td>
<td>4.47357</td>
</tr>
<tr>
<td>2</td>
<td>23.093</td>
<td>VB</td>
<td>0.6927</td>
<td>1.37556e4</td>
<td>311.77374</td>
</tr>
</tbody>
</table>

Chiral HPLC chromatographic analysis of (S)-2f
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 98/2, UV = 250 nm, flow rate: 0.8 mL/min, retention time: t (major) = 21.932 min, t (minor) = 24.014 min, ee = 95%.

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>[min]</td>
<td>[min]</td>
<td>[mAU*^s]</td>
<td>[mAU]</td>
<td>%</td>
</tr>
<tr>
<td>1</td>
<td>21.932</td>
<td>BB</td>
<td>0.6487</td>
<td>3.9912e4</td>
<td>327.13692</td>
</tr>
<tr>
<td>2</td>
<td>24.014</td>
<td>BB</td>
<td>0.6021</td>
<td>348.76962</td>
<td>9.49036</td>
</tr>
</tbody>
</table>
Chiral HPLC chromatographic analysis of (R)-2g
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 98/2, UV = 250 nm, flow rate: 1.0 mL/min, retention time: t (major) = 26.610 min, t (minor) = 34.227 min, ee = 89%.
Chiral HPLC chromatographic analysis of (R)-2h
Condition: Daicel Chiralcel OD-H, n-hexane/i-ProH = 95/5, UV = 250 nm, flow rate: 0.8 mL/min, retention time: t (major) = 7.891 min, t (minor) = 8.692 min, ee = 79%.

Chiral HPLC chromatographic analysis of (S)-2h
Condition: Daicel Chiralcel OD-H, n-hexane/i-ProH = 95/5, UV = 250 nm, flow rate: 0.8 mL/min, retention time: t (minor) = 7.872 min, t (major) = 8.778 min, ee = 93%.
Chiral HPLC chromatographic analysis of (R)-2i
Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH = 90/10, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) = 9.399 min, t (minor) = 12.921 min, ee = 84%.

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
------ | ------ | ------------- | ------ |
1 9.119 M M 0.2525 686.62518 45.32128 49.9003
2 12.419 M M 0.3361 689.36816 34.18208 50.0997

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
------ | ------ | ------------- | ------ |
1 9.399 MM 0.2610 868.13562 55.44395 91.8864
2 12.921 MM 0.2772 76.65712 4.60930 8.1136
Chiral HPLC chromatographic analysis of (R)-2j
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 99/1, UV = 234 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 9.339 min, t (major) = 11.765 min, ee = 94%.

Chiral HPLC chromatographic analysis of (S)-2j
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 99/1, UV = 234 nm, flow rate: 1.0 mL/min, retention time: t (major) = 9.679 min, t (minor) = 12.252 min, ee = 95%.
Chiral HPLC chromatographic analysis of (R)-2k
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 99/1, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 6.392 min, t (major) = 6.672 min, ee = 89%.

Chiral HPLC chromatographic analysis of (S)-2k
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 99/1, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) = 6.399 min, t (minor) = 6.745 min, ee = 94%.
Chiral HPLC chromatographic analysis of (R)-2I
Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH = 90/10, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) = 7.292 min, t (minor) = 8.536 min, ee = 63%.
Chiral HPLC chromatographic analysis of (R)-2m

Condition: Daicel Chiralcel OD-H, n-hexane/i-ProOH = 98/2, UV = 250 nm, flow rate = 1.0 mL/min, retention time: t (minor) = 54.504 min, t (major) = 57.362 min, ee = 65%.
Chiral HPLC chromatographic analysis of \((R)-2n\)
Condition: Daicel Chiralcel OD-H, \(n\)-hexane/i-PrOH = 98/2, UV = 230 nm, flow rate: 0.8 mL/min, retention time: \(t_{\text{major}} = 15.308\) min, \(t_{\text{minor}} = 16.976\) min, ee = 92%.

Chiral HPLC chromatographic analysis of \((S)-2n\)
Condition: Daicel Chiralcel OD-H, \(n\)-hexane/i-PrOH = 98/2, UV = 230 nm, flow rate: 0.8 mL/min, retention time: \(t_{\text{minor}} = 14.957\) min, \(t_{\text{major}} = 16.501\) min, ee = 97%.
Chiral HPLC chromatographic analysis of (R)-2o

Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH = 90/10, UV = 250 nm, flow rate: 1.0 mL/min, retention time: t (major) = 7.383 min, t (minor) = 8.712 min, ee = 74%.
Chiral HPLC chromatographic analysis of (R)-2p

Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV = 250 nm, flow rate: 1 mL/min, retention time: t (minor) = 7.585 min, t (major) = 12.549 min, ee = 46%.
Chiral HPLC chromatographic analysis of (R)-2q
Condition: Daicel Chiralcel IBN-H, n-hexane/i-PrOH = 99/1, UV = 254 nm, flow rate: 0.5 mL/min, retention time: t (minor) = 11.612 min, t (major) = 12.325 min, ee = 74%.
Chiral HPLC chromatographic analysis of (R)-2r

Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 90/10, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 13.414 min, t (major) = 28.472 min, ee = 91%.
Chiral HPLC chromatographic analysis of (R)-3a

Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV = 250 nm, flow rate: 0.8 mL/min, retention time: t (minor) = 8.667 min, t (major) = 10.155 min, ee = 80%.
Chiral HPLC chromatographic analysis of (R)-3b
Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH = 90/10, UV = 250 nm, flow rate: 1.0 mL/min, retention time: t (major) = 11.953 min, t (minor) = 16.618 min, ee = 46%.

Chiral HPLC chromatographic analysis of (S)-3b
Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH = 90/10, UV = 250 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 11.772 min, t (major) = 16.287 min, ee = 91%.
Chiral HPLC chromatographic analysis of (R)-3c
Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV = 254 nm, flow rate: 0.8 mL/min, retention time: t (major) =13.659 min, t (minor) = 15.300 min, ee = 94%.
Chiral HPLC chromatographic analysis of (R)-3d
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 98/2, UV = 254 nm, flow rate: 0.5 mL/min, retention time: t (major) = 18.239 min, t (minor) = 20.275 min, ee = 69%.

Chiral HPLC chromatographic analysis of (S)-3d
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 98/2, UV = 254 nm, flow rate: 0.5 mL/min, retention time: t (minor) = 18.379 min, t (major) = 20.599 min, ee = 90%.
Chiral HPLC chromatographic analysis of (R)-3e
Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV = 250 nm, flow rate: 1.0 mL/min, retention time: $t_{\text{minor}} = 5.476$ min, $t_{\text{major}} = 5.912$ min, ee = 84%.
Chiral HPLC chromatographic analysis of (R)-3f
Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH = 90/10, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (major) = 9.428 min, t (minor) = 11.065 min, ee = 94%.

Chiral HPLC chromatographic analysis of (S)-3f
Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH = 90/10, UV = 254 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 9.797 min, t (major) = 11.418 min, ee = 95%.
Chiral HPLC chromatographic analysis of (R)-3g
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 98/2, UV = 250 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 11.503 min, t (major) = 12.124 min, ee = 97%.

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.503</td>
<td>0.4101</td>
<td>522.30199</td>
<td>49.6995</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12.124</td>
<td>0.4101</td>
<td>516.47939</td>
<td>59.3195</td>
<td></td>
</tr>
</tbody>
</table>

Chiral HPLC chromatographic analysis of (S)-3g
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 98/2, UV = 250 nm, flow rate: 1.0 mL/min, retention time: t (major) = 11.471 min, t (minor) = 12.718 min, ee = 93%.

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.471</td>
<td>0.4666</td>
<td>740.90192</td>
<td>96.7001</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12.718</td>
<td>0.4179</td>
<td>24.73396</td>
<td>3.2999</td>
<td></td>
</tr>
</tbody>
</table>
Chiral HPLC chromatographic analysis of (R)-3h
Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 95/5, UV = 230 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 8.140 min, t (major) = 9.308 min, ee = 73%.
Chiral HPLC chromatographic analysis of (R)-3i

Condition: Daicel Chiralcel AS-H, n-hexane/i-PrOH = 98/2, UV = 250 nm, flow rate: 0.8 mL/min, retention time: $t_{(\text{minor})} = 6.452$ min, $t_{(\text{major})} = 6.937$ min, ee = 81%.
Chiral HPLC chromatographic analysis of (R)-3j
Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV = 250 nm, flow rate: 1.0 mL/min, retention time: t (minor) = 6.324 min, t (major) = 7.473 min, ee = 71%.

Chiral HPLC chromatographic analysis of (S)-3j
Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV = 250 nm, flow rate: 1.0 mL/min, retention time: t (major) = 6.791 min, t (minor) = 7.931 min, ee = 71%.
Chiral HPLC chromatographic analysis of (R)-3k
Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV = 254 nm, flow rate: 0.8 mL/min, retention time: t
(major) = 5.752 min, t (minor) = 6.206 min, ee = 77%.
Chiral HPLC chromatographic analysis of (R)-3I
Condition: Daicel Chiralcel OD-H, n-hexane/i-PrOH = 98/2, UV = 254 nm, flow rate: 0.8 mL/min, retention time: t (minor) = 11.874 min, t (major) = 13.672 min, ee = 94%.