Electronic Supplementary Information

Enantioselective dicarbofunctionalization of (*E*)-alkenyloxindoles with pyridinium salts by chiral Lewis acid/photo relay catalysis

Dong Zhang, Shunxi Dong, Qianwen He, Yao Luo, Yun Liu, Xiaohua Liu*, Xiaoming Feng*

Abstract: A highly efficient enantioselective dicarbofunctionalization reaction of (*E*)-alkenyloxindoles with pyridinium salts was realized. The process includes the chiral *N*,*N'*-dioxide-Sc(III) complex-catalyzed regio-, diastereo-, and enantioselective [3+2] cycloaddition reaction and the following photo-promoted aza-Norrish II type rearrangement. A series of 2-pyridyl substituted oxindole derivatives were obtained in good yields with moderate to good diastereo- and enantioselectivities.

Table of Contents

(A) General information	3
(B) Typical procedure for chiral <i>N,N'</i> -dioxides preparation.	3
(C) Typical procedure for substrates preparation	3
(D) Optimization of the reaction conditions.	5
(E) General procedure of the catalytic reactions.	7
(F) Unsuccessful substrates	8
(G) Derivation of the product 4a	9
(H) X-ray diffraction analysis of the products	9
(I) Spectral characterization data for the products	14
(J) Copies of NMR spectra for the reaction products	39
(K) References	69
(L) Author contributions	69

(A) General information.

¹H NMR spectra were recorded on Bruker AMX-400 (400 MHz). Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, δ = 7.26). Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, ddd = doublet of doublet of doublets), coupling constants (Hz), integration and assignment. ¹³C{¹H} NMR spectra were collected on Bruker AMX-400 (100 MHz) with complete proton decoupling. Chemical shifts were reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, δ = 77.0). ¹⁹F{¹H} NMR spectra were collected on Bruker AMX-400 (376 MHz) with complete proton decoupling. HRMS was recorded on a commercial apparatus (ESI Source). Diastereomeric ratios (d.r.) were determined by ¹H NMR of the isolated products if not otherwise stated. Enantiomeric ratios (e.r.) were determined by HPLC analysis using the corresponding commercial chiralpak column as stated in the experimental procedures at 25 °C. Optical rotations were reported as follows: $\left[\alpha\right]^{T}_{D}$ (c g/100 mL, in solvent). IR spectra were recorded on BRUKER TENSOR II IR spectrophotometer. Fe(TPP)CI [Iron(III) meso-tetraphenylporphine chloride, 95%, CAS: 16456-81-8] was purchased from Innochem. Unless otherwise noted, substituted pyridines obtained from commercial sources were used without further purification. Solvent were obtained from commercial suppliers and used without further purification except as indicated below: HCO₂Et and EtOAc were dried over anhydrous CaCl₂ and distilled under nitrogen just before use. A household 23 W LED lamp from Philips was used as the visible light source and a combination of 4×20 W blue LED lamps was used as the light source in the standard catalytic system. All catalytic reactions were weighed in glovebox.

(B) Typical procedure for chiral N,N'-dioxides preparation.

The N,N'-dioxide ligands were prepared by the similar procedure in the literatures.[1]

L₃-PrEt₂: R = 2,6-Et₂C₆H₃, n = 1 L₃-PrPr₂: R = 2,6-*i*Pr₂C₆H₃, n = 1 L₃-PiPr₂: R = 2,6-*i*Pr₂C₆H₃, n = 2 L₃-PiPr₃: R = 2,4,6-*i*Pr₃C₆H₂, n = 2

L₃-RaAd: R = 1-adamantyl L₃-RaEt₂: R = 2,6-Et₂C₆H₃ L₃-RaPr₂: R = 2,6-*i*Pr₂C₆H₃ L₃-RaPr₃: R = 2,4,6-*i*Pr₃C₆H₂

L₃-RaAd: R = 1-adamantyl

 $[\alpha]^{19.1}_{D} = -30.5 (c \ 0.40, \ CH_2Cl_2)$

 $^{1}\textbf{H NMR} (400 \text{ MHz, Chloroform-}\textit{d}) \ \bar{o} \ 10.53 \ (s, 2H), \ 3.95 - 3.77 \ (m, 2H), \ 3.70 - 3.48 \ (m, 2H), \ 3.40 - 3.30 \ (m, 2H), \ 3.29 - 3.14 \ (m, 2H), \ 2.75 - 2.53 \ (m, 4H), \ 2.51 - 2.32 \ (m, 4H), \ 2.19 - 1.92 \ (m, 22H), \ 1.76 - 1.45 \ (m, 20H);$

¹³C NMR{1H} (100 MHz, Chloroform-*d*) δ 165.7, 83.4, 81.4, 77.2, 66.2, 51.4, 42.3, 41.7, 36.4, 34.6, 32.3, 29.4, 28.1, 26.5, 19.4.

(C) Typical procedure for substrates preparation.

1. General procedure for the preparation of (E)-alkenyloxindoles 1a-1k.[2]

Steps: Wittig reagent (2.0 mmol, 1.0 equiv) was added to a solution of the isatin (4.0 mmol, 2.0 equiv) in $CHCI_3$ (10.0 mL) in a 20 mL round bottom flask. The solution was stirred at room temperature for 30 minutes. Afterward, the crude mixture was subjected to column chromatography on silica gel (Eluent: petroleum ether/ethyl acetate 5:1 to 2:1) to afford the desired product **1a** in about 80% yield. Other (*E*)-alkenyloxindoles were prepared in a similar manner by using the above-mentioned method.

2. General procedure for the pyridinium salts preparation.^[3]

Steps: To a round-bottomed flask containing substituted 2-bromoacetophenone (6.0 mmol) and anhydrous ethyl acetate (10 mL) was added the corresponding substituted pyridine (5.0 mmol). The reaction solution was stirred at room temperature for 24 hours. Upon completion, the resulting precipitate was filtered off, the precipitate was washed with ethyl acetate three times (3×10 mL). The crude products were obtained in about 20-90% yields and the corresponding white solid was recrystallized by MeOH/EtOAc. Subsequently, the product was dried in vacuum for 2 hours.

3. General procedure for the α-diazoacetophenone preparation.^[4]

Steps: α -Bromoacetophenone (1.99 g, 10.0 mmol) and *N,N'*-ditosylhydrazine (6.80 g, 20.0 mmol) were dissolved in THF (50 mL) and cooled to 0 °C. DBU (7.5 mL, 50.0 mmol) was added dropwise and the reaction was stirred at the same temperature for 10 minutes. Upon completion of the reaction (monitored by TLC), it was quenched by the addition of saturated NaHCO₃ solution, the solution was extracted with ethyl acetate three times (3×50 mL). The organic phase was washed with brine, dried over MgSO₄ and evaporated to give the crude α -diazoacetophenone. Finally, the crude mixture was purified by column chromatography using petroleum ether/ethyl acetate (10:1) to furnish α -diazoacetophenone in about 70% yield as a yellow solid.

¹H NMR (400 MHz, Chloroform-d) δ 7.82 – 7.71 (m, 2H), 7.59 – 7.49 (m, 1H), 7.44 (dd, J = 8.4, 6.8 Hz, 2H), 5.92 (s, 1H);

¹³C NMR{1H} (100 MHz, Chloroform-d) δ 186.34, 136.64, 132.72, 128.66, 126.69, 54.19.

(D) Optimization of the reaction conditions.

Table S1: Optimization of metal salts.

Entry ^[a]	Metal salt	Yield [%] ^[b]	d.r. ^[c]	e.r. ^[c]
1	Mg(OTf) ₂	28	>19:1	64:36
2	Sc(OTf) ₃	34	>19:1	72:28
3	Ni(OTf) ₂	26	>19:1	53:47
4	Cu(OTf) ₂	21	>19:1	50:50
5	Zn(OTf) ₂	35	>19:1	55:45
6	Co(ClO ₄) ₂ ·6H ₂ O	17	>19:1	55:45
7	La(OTf)₃	24	>19:1	55:45

[a] Unless otherwise noted, the reactions were performed with (*E*)-alkenyloxindole **1a** (0.10 mmol), pyridinium salt **2a** (0.12 mmol), Et_3N (0.12 mmol), L_3 -RaAd/metal salt (1:1, 10 mol%) in DCM (1.0 mL) under visible light (1×23 W LED) at room temperature for 24 h. OTf = trifluoromethanesulfonate. [b] Isolated yield. [c] Determined by HPLC analysis on a chiral stationary phase.

Table S2: Optimization of the chiral ligands.

[a] Unless otherwise noted, the reactions were performed with (*E*)-alkenyloxindole **1a** (0.10 mmol), pyridinium salt **2a** (0.12 mmol), Et_3N (0.12 mmol), **Ligand**/Sc(OTf)₃ (1:1, 10 mol%) in DCM (1.0 mL) under visible light (1×23 W LED) at room temperature (about 25 °C) for 24 h. [b] Isolated yield. [c] Determined by HPLC analysis on a chiral stationary phase.

Table S3: Optimization of solvents and bases.

^t BuO ₂ C	=0 +	Br Br	L ₃ -RaAd/Sc(OTf) ₃ (1:1, 10 mol%) Base, solvent, visible li	ght Br	H H =0 ^{r,m} / _r CO ₂ ^t Bu
1a		2a		4a	
Entry ^[a]	Base	Solvent	Yield [%] ^[b]	d.r. ^[c]	e.r. ^[c]
1	Et₃N	EtOAc	44	>19:1	69:31
2	Et₃N	THF	32	>19:1	64:36
3	Et₃N	toluene	52	>19:1	66:34
4	Et₃N	HCO ₂ Et	52	>19:1	73:27
5	DBU	EtOAc	34	>19:1	53:47
6	DIPEA	EtOAc	35	>19:1	81:19
7	K ₂ CO ₃	EtOAc	28	>19:1	87:13
8	DBACO	EtOAc	19	>19:1	87:13
9	TMEDA	EtOAc	38	>19:1	77:23
10	Na ₂ CO ₃	EtOAc	30	>19:1	85:15
11	KHCO₃	EtOAc	44	>19:1	77:23

12	K ₃ PO ₄	EtOAc	65	>19:1	67:33
13	K ₂ CO ₃	MeOAc	31	>19:1	88:12
14	K ₂ CO ₃	HCO ₂ Et	38	>19:1	91:9

[[]a] Unless otherwise noted, the reactions were performed with (*E*)-alkenyloxindole **1a** (0.10 mmol), pyridinium salt **2a** (0.12 mmol), base (0.12 mmol), L_3 -RaAd/Sc(OTf)₃ (1:1, 10 mol%) in DCM (1.0 mL) under visible light (1×23 W LED) at room temperature (about 25 °C) for 24 h. [b] Isolated yield. [c] Determined by HPLC analysis on a chiral stationary phase.

Table S4: Optimization of the substrate ratio and temperature.

[a] Unless otherwise noted, the reactions were performed with (*E*)-alkenyloxindole **1a** (0.10 mmol), pyridinium salt **2a**, K₂CO₃, **L₃-RaAd**/Sc(OTf)₃ (1:1, 10 mol%) in HCO₂Et (1.0 mL) at indicated temperature for 24 h. Subsequently, the reaction mixture continues stirring at room temperature (ca. 30 °C) under blue LED lamps (4×20 W) for 10 h. [b] Isolated yield. [c] Determined by HPLC analysis on a chiral stationary phase.

(E) General procedure of the catalytic reactions.

1. General procedure for the preparation of the racemic products.

Steps: A dry reaction tube was charged with (*E*)-alkenyloxindole **1** (0.10 mmol), pyridinium salt **2** (0.20 mmol), K_2CO_3 (0.20 mmol) under N₂ atmosphere. Then, anhydrous HCO₂Et (1.0 mL) was added. The mixture was stirred at 30 °C for 12 h. Next, the reaction was stirred under blue LED lamps (4×20 W) at room temperature for 10 h. Finally, the crude mixture was subjected to column chromatography on silica gel (1/2, ethyl acetate/petroleum ether) to afford the desired racemic products.

2. General procedure for the catalytic asymmetric synthesis of 4a-4t.

Steps: A dry reaction tube was charged with (*E*)-alkenyloxindole **1** (0.10 mmol), pyridinium salt **2** (0.10 mmol), K_2CO_3 (0.10 mmol), $Sc(OTf)_3$ (4.9 mg, 10 mol%) and the chiral ligand **L**₃-**RaAd** (6.5 mg, 10 mol%) under N₂ atmosphere. Then, HCO₂Et (1.0 mL) was added. The mixture was stirred at -30 °C for indicated hours. Next, the reaction was stirred under blue LED lamps (4×20 W) at room temperature for 10 h. Finally, the crude mixture was subjected to column chromatography on silica gel (1/2, ethyl acetate/petroleum ether) to afford the desired chiral products.

3. General procedure for the tandem reaction for the synthesis of 4n.

Steps: A dry reaction tube was charged with (*E*)-alkenyloxindole **1a** (24.5 mg, 0.10 mmol), Fe(TPP)Cl (3.5 mg, 5.0 mol%), Sc(OTf)₃ (4.9 mg, 10 mol%) and the chiral ligand **L**₃-**RaAd** (6.5 mg, 10 mol%) under N₂ atmosphere. Then, anhydrous HCO₂Et (1.0 mL) was added. The mixture was stirred at 30 °C for 0.5 h. Next, 4-cyanopyridine (31.3 mg, 0.30 mmol) and α -diazoacetophenone (22.1 mg, 0.15 mmol) were added successively. The mixture was stirred at 30 °C for 24 h and the reaction mixture was stirred under blue LED lamps (4×20 W) at room temperature for 10 h. Finally, the crude mixture was subjected to column chromatography on silica gel (1/1, ethyl acetate/petroleum ether) to afford the desired product **4n** in 43% yield, with > 19:1 dr and 82:18 e.r.

4. General procedure for the gram-scale reaction for the synthesis of 4a.

Steps: A dry reaction tube was charged with (*E*)-alkenyloxindole **1a** (735.0 mg, 3.0 mmol), Sc(OTf)₃ (147 mg, 10 mol%) and the chiral ligand **L**₃-**RaAd** (195 mg, 10 mol%) under N₂ atmosphere. Then, anhydrous HCO₂Et (30.0 mL) was added. The mixture was stirred at 30 °C for 1.0 h. Next, pyridinium salt **2a** (1.074 g, 3.0 mmol) and K₂CO₃ (414.0 mg, 3.0 mmol) were added successively. The mixture was stirred at -30 °C for 60 h. Subsquently, the reaction was stirred under blue LED lamps (4×20 W) at room temperature for 10 h. After that, the solvent HCO₂Et was concentrated in vacuo, the crude mixture was subjected to column chromatography on silica gel (1/2, ethyl acetate/petroleum ether) to afford the desired chiral product **4a** (1.25 g, 80% yield, 94:6 e.r.).

(F) Unsuccessful substrates.

(G) Derivation of the product 4a.

Procedure (1): To a solution of **4a** (0.05 mmol, 26.0 mg) in MeOH (1.0 mL) was added NaBH₄ (4.2 mg, 0.11 mmol) at 0 °C, the solution was stirred at 0 °C for 1.0 h. When the reaction completed, water (2.0 mL) was added. Then, the mixture was extract by EtOAc, and the aqueous layer was washed with EtOAc (3×2.0 mL). The combined organic phase was washed with brine (5.0 mL), and dried over anhydrous Na₂SO₄. After evaporation of the solvent, the residue was subjected to column chromatography on silica gel (1/1, ethyl acetate/petroleum ether). The product **5a** was obtained in 97% yield with 91:9 d.r. and 99:1 e.r.;

Procedure (2): To a solution of above mentioned product **5a** (0.05 mmol, 26.2 mg) in toluene (0.5 mL) was added *p*-TSA (*p*-toluenesulfonic acid) (17.2 mg, 0.10 mmol) at 30 °C, the solution was stirred at 60 °C for 3 h. When the reaction completed, the reaction mixture was directly purified by flash chromatography (1/2, ethyl acetate/petroleum ether) to afford the desired product **6a** in 80% yield with 87:13 d.r. and 99:1 e.r..

(H) X-ray diffraction analysis of the products.

(a) Tetrahydroindolizine 3a

The structure of tetrahydroindolizine intermediate **3a** was determined by X-ray chromatography analysis (thermal ellipsoids are shown with a 50% probability level). Single crystal of **3a** [$C_{27}H_{25}BrN_2O_4$] was obtained by slow evaporation in hexane/ethyl acetate at -20 °C. CCDC 2009353 contains the supplementary crystallographic data which can be obtained free of charge from The Cambridge Crystallographic Data Centere via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Tetrahydroindolizine 3a

rel-(2'R, 3S, 3'R, 8a'R)-**3a** CCDC: 2009353

Crystallographic Data for C ₂₇ H ₂₅ BrN ₂ O ₄	
Formula	C ₂₇ H ₂₅ BrN ₂ O ₄
Formula mass (amu)	520.39
Space group	P 21/c
<i>a</i> (Å)	13.2371 (4)
b (Å)	16.5924 (5)
<i>c</i> (Å)	11.5023 (3)
α (deg)	90
β (deg)	106.316 (1)
γ (deg)	90
V (Å ³)	2424.57 (12)
Z	4
λ (Å)	1.54178
<i>Т</i> (К)	170 K
$ ho_{calcd}$ (g cm ⁻³)	1.428
μ (mm ⁻¹)	2.608
Transmission factors	0.738,0.889
$2\theta_{\max}(\deg)$	72.401
No. of unique data, including $F_o^2 < 0$	4773
No. of unique data, with $F_o^2 > 2\sigma(F_o^2)$	4508
No. of variables	314
$R(F)$ for $F_0^2 > 2\sigma(F_0^2)^a$	0.0417
$R_{\rm w}(F_{\rm o}^2)^{b}$	0.1031
Goodness of fit	1.063

^a $R(F) = \sum ||F_0| - |F_c|| / \sum |F_0|.$

 ${}^{b} R_{w}(F_{o}{}^{2}) = \left[\sum [w(F_{o}{}^{2} - F_{c}{}^{2})^{2}\right] / \sum wF_{o}{}^{4}\right]^{1/2}; w^{-1} = \left[\sigma^{2}(F_{o}{}^{2}) + (Ap)^{2} + Bp\right], \text{ where } p = \left[\max(F_{o}{}^{2}, 0) + 2F_{c}{}^{2}\right] / 3.$

(b) Racemic 4a

The structure of the product **4a** was determined by X-ray chromatography analysis (thermal ellipsoids are shown with a 50% probability level). Single crystal of **4a** [$C_{27}H_{25}BrN_2O_4$] was obtained by slow evaporation in hexane/DCM at 30 °C. CCDC 1992675 contains the supplementary crystallographic data which can be obtained free of charge from The Cambridge Crystallographic Data Centere via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

a (Å)	9.4091 (4)
b (Å)	11.5174 (4)
c (Å)	22.8668 (9)
α (deg)	90
β (deg)	91.996 (1)
γ (deg)	90
V (Å ³)	2476.53 (17)
Z	4
λ (Å)	0.71073
Т (К)	169 K
ρ_{calcd} (g cm ⁻³)	1.396
μ (mm ⁻¹)	1.695
Transmission factors	0.901,1.000
$2\theta_{\text{max}}$ (deg)	26.412
No. of unique data, including $F_0^2 < 0$	5071
No. of unique data, with $F_o^2 > 2\sigma(F_o^2)$	4302
No. of variables	310
$R(F)$ for $F_0^2 > 2\sigma(F_0^2)^a$	0.0331
$R_{\rm w}(F_{\rm o}^2)^{b}$	0.0916
Goodness of fit	1.086

 $^{a} R(F) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|.$

 $^{b}R_{w}(F_{o}^{2}) = \left[\sum[w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum wF_{o}^{4}\right]^{1/2}; w^{-1} = \left[\sigma^{2}(F_{o}^{2}) + (Ap)^{2} + Bp\right], \text{ where } p = \left[\max(F_{o}^{2}, 0) + 2F_{c}^{2}\right] / 3.$

(c) Racemic 4e

The structure of the product **4e** was determined by X-ray chromatography analysis (thermal ellipsoids are shown with a 50% probability level). Single crystal of **4e** [$C_{28}H_{27}BrN_2O_4$] was obtained by slow evaporation in hexane/DCM at 30 °C. CCDC 1984207 contains the supplementary crystallographic data which can be obtained free of charge from The Cambridge Crystallographic Data Centere via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

 \equiv

rel-(2S, 3S)-**4e** CCDC: 1984207

Crystallographic Data for C ₂₈ H ₂₇ BrN ₂ O ₄			
Formula	C ₂₈ H ₂₇ BrN ₂ O ₄		
Formula mass (amu)	535.42		
Space group	P 21/c		
a (Å)	10.9570 (13)		
b (Å)	22.742 (2)		
c (Å)	11.1670 (11)		
α (deg)	90		
β (deg)	110.062 (4)		
γ (deg)	90		
V (Å ³)	2613.7 (5)		
Ζ	4		
λ (Å)	0.71073		
<i>Т</i> (K)	170 K		
$ ho_{calcd}$ (g cm ⁻³)	1.361		
μ (mm ⁻¹)	1.608		
Transmission factors	0.599, 0.746		
$2\theta_{\max}(\deg)$	28.412		
No. of unique data, including $F_{o^2} < 0$	6514		
No. of unique data, with $F_0^2 > 2\sigma(F_0^2)$	3349		

No. of variables	324	
$R(F)$ for $F_0^2 > 2\sigma(F_0^2)^a$	0.0585	
R _w (F _o ²) ^b	0.1423	
Goodness of fit	1.015	
$a D(E) = \sum E E / \sum E $		

 ${}^{a} R(F) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|.$

 ${}^{b} R_{w}(F_{o}^{2}) = \left[\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum wF_{o}^{4}\right]^{1/2}; w^{-1} = [\sigma^{2}(F_{o}^{2}) + (Ap)^{2} + Bp], \text{ where } p = \left[\max(F_{o}^{2}, 0) + 2F_{c}^{2}\right] / 3.$

(d) Racemic 5a

The structure of the product **5a** was determined by X-ray chromatography analysis (thermal ellipsoids are shown with a 50% probability level). Single crystal of **5a** $[C_{28}H_{27}BrN_2O_4]$ was obtained by slow evaporation in hexane/ethyl acetate at 30 °C. CCDC 2010306 contains the supplementary crystallographic data which can be obtained free of charge from The Cambridge Crystallographic Data Centere via www.ccdc.cam.ac.uk/data_request/cif.

CCDC: 2010306

Crystallographic Data for C ₂₈ H ₂₇ BrN ₂ O ₄	
Formula	$C_{28}H_{27}BrN_2O_4$
Formula mass (amu)	523.41
Space group	C 2/c
<i>a</i> (Å)	21.8518 (7)
b (Å)	10.5122 (3)
<i>c</i> (Å)	22.7425 (8)
α (deg)	90
β (deg)	108.208 (2)
γ (deg)	90
V (Å ³)	4962.6 (3)
Z	8
λ (Å)	0.71073
Т (К)	170 K
$ ho_{calcd}$ (g cm ⁻³)	1.401
μ (mm ⁻¹)	1.692
Transmission factors	0.701,0.905
$2\theta_{\max}(\deg)$	27.546
No. of unique data, including $F_0^2 < 0$	5714
No. of unique data, with $F_0^2 > 2\sigma(F_0^2)$	4274
No. of variables	360
$R(F)$ for $F_0^2 > 2\sigma(F_0^2)^a$	0.0466
$R_{\rm w}(F_{\rm o}^2)^{b}$	0.1061
Goodness of fit	1.133
^a $R(F) = \sum F_{\circ} - F_{c} / \sum F_{\circ} .$	

 $^{b}R_{w}(F_{o}^{2}) = \left[\sum[w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum wF_{o}^{4}\right]^{1/2}; w^{-1} = \left[\sigma^{2}(F_{o}^{2}) + (Ap)^{2} + Bp\right], \text{ where } p = \left[\max(F_{o}^{2}, 0) + 2F_{c}^{2}\right] / 3.$

(e) Enantiomerically enriched 6a

The absolute configuration of the product **6a** was determined to be (3S, 5S, 3'S) by X-ray chromatography analysis (thermal ellipsoids are shown with a 50% probability level). Single crystal of **6a** $[C_{23}H_{17}BrN_2O_3]$ was obtained by slow evaporation in hexane/DCM at 30 °C. CCDC 1921882 contains the supplementary crystallographic data which can be obtained free of charge from The Cambridge Crystallographic Data Centere via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

^a $R(F) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|.$

a (Å)

b (Å)

c (Å)

Ζ

λ (Å)

T (K)

 ${}^{b} R_{w}(F_{o}{}^{2}) = \left[\sum[w(F_{o}{}^{2} - F_{c}{}^{2})^{2}\right] / \sum wF_{o}{}^{4}]^{1/2}; w^{-1} = \left[\sigma^{2}(F_{o}{}^{2}) + (Ap)^{2} + Bp\right], \text{ where } p = \left[\max(F_{o}{}^{2}, 0) + 2F_{c}{}^{2}\right] / 3.$

(I) Spectral characterization data for the products.

Tert-Butyl (S)-2-[(S)-3-(3-bromopyridin-2-yl)-2-oxoindolin-3-yl]-4-oxo-4-phenylbutanoate

0.1 mmol (**1a**) scale reaction:

Results: yellow solid, M.p. 84-87 °C, 93% yield, >19:1 d.r., 96:4 e.r.; $[\alpha]^{20}_{D}$ = 27.2 (*c* 0.26, CH₂Cl₂); HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 12.15 min, $t_{R(minor)}$ = 10.11 min);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.06 (s, 1H), 8.55 –8.53 (m, 1H), 7.90 – 7.88 (m, 2H), 7.81 – 7.78 (m, 1H), 7.53 – 7.49 (m, 1H), 7.42 – 7.38 (m, 2H), 7.24 – 7.20 (m, 2H), 7.10 – 7.07 (m, 1H), 7.00 – 6.96 (m, 1H), 6.89 – 6.87 (m, 1H), 4.90 (d, J = 9.6 Hz, 1H), 3.63 (dd, J = 17.2, 10.0 Hz, 1H), 3.21 (d, J = 17.6 Hz, 1H), 1.25 (s, 9H);

¹³**C NMR**^{{1}H} (100 MHz, Chloroform-*d*) δ 198.2, 170.4, 154.9, 146.5, 142.4, 137.0, 132.8, 129.91, 129.0, 128.4, 128.0, 125.2, 123.5, 122.2, 120.7, 110.1, 80.8, 62.0, 46.5, 37.2, 27.6, 14.2;

ESI-HRMS calcd for $[C_{27}H_{25}^{79}BrN_2O_4+Na^+]$: 543.0889, found 543.0882;

ESI-HRMS calcd for $[C_{27}H_{25}^{81}BrN_2O_5+Na^+]$: 545.0869, found 545.0863;

IR (neat): \tilde{v} (cm-1) 2976, 1716, 1683, 1471, 1330, 1150, 1011, 751, 731, 689, 603.

1

2

10.106

12.152

2640920

56856730

4.44

95.56

Tert-Butyl (S)-2-[(S)-3-(3-bromopyridin-2-yl)-5-methyl-2-oxoindolin-3-yl]-4-oxo-4-phenylbutanoate

0.1 mmol (**1b**) scale reaction:

Results: yellow solid, M.p. 95-98 °C, 83% yield, >19:1 d.r., 95:5 e.r.; $[\alpha]^{20}_{D}$ = 5.20 (*c* 0.58, CH₂Cl₂); HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 10.65 min, $t_{R(minor)}$ = 8.92 min);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.48 (s, 1H), 8.55 – 8.54 (m, 1H), 7.89 – 7.87 (m, 2H), 7.80 –7.78 (m, 1H), 7.52 – 7.48 (m, 1H), 7.40 – 7.36 (m, 2H), 7.09 – 7.06 (m, 1H), 7.02 – 6.98 (m, 2H), 6.77 – 6.75 (m, 1H), 4.96 (d, *J* = 9.6 Hz, 1H), 3.60 (dd, *J* = 16.8, 10.0 Hz, 1H), 3.23 – 2.94 (m, 1H), 2.24 (s, 3H), 1.26 (s, 9H);

¹³**C NMR**{¹H} (100 MHz, Chloroform-*d*) δ 198.4, 178.0, 170.5, 146.5, 142.4, 139.6, 137.0, 132.8, 131.8, 130.0, 129.4, 128.4, 128.1, 125.9, 123.4, 120.6, 109.8, 80.7, 62.1, 46.6, 37.0, 27.7, 21.3;

ESI-HRMS calcd for [C₂₈H₂₇⁷⁹BrN₂O₄+H⁺]: 535.1227, found 535.1224;

ESI-HRMS calcd for $[C_{28}H_{27}^{81}BrN_2O_4+H^+]$: 537.1207, found 537.1208;

IR (neat): \tilde{v} (cm-1) 2976, 2359, 1730, 1683, 1622, 1489, 1231, 1003, 809, 753, 687, 592.

Tert-Butyl (S)-2-[(S)-3-(3-bromopyridin-2-yl)-5-methoxy-2-oxoindolin-3-yl]-4-oxo-4-phenylbutanoate

0.1 mmol (**1c**) scale reaction:

Results: yellow solid, M.p. 74-77 °C, 86% yield, >19:1 d.r., 95:5 e.r.; $[\alpha]^{20}_{D}$ = 9.8 (*c* 0.37, CH₂Cl₂); HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 12.26 min, $t_{R(minor)}$ = 10.42 min);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.44 (s, 1H), 8.53 – 8.54 (m, 1H), 7.89 – 7.87 (m, 2H), 7.79 –7.77 (m, 1H), 7.54 – 7.47 (m, 1H), 7.40 – 7.39 (m, 2H), 7.10 –7.07 (m, 1H), 6.85 (s, 1H), 6.80 –6.71 (m, 2H), 4.95 (d, *J* = 10.0 Hz, 1H), 3.71 (d, *J* = 1.6 Hz, 3H), 3.62 (ddd, *J* = 17.2, 10.0, 1.6 Hz, 1H), 3.11 (d, *J* = 17.2 Hz, 1H), 1.26 (s, 9H);

¹³**C** NMR{¹H} (100 MHz, Chloroform-*d*) δ 198.25, 177.78, 170.41, 155.56, 146.52, 142.40, 137.01, 135.61, 132.81, 131.25, 128.41, 128.09, 123.53, 120.69, 113.31, 112.66, 110.37, 80.78, 62.46, 55.74, 46.5, 36.99, 27.65;

ESI-HRMS calcd for [C₂₈H₂₇⁷⁹BrN₂O₅+H⁺]: 551.1176, found 551.1179;

ESI-HRMS calcd for [C₂₈H₂₇⁸¹BrN₂O₅+H⁺]: 553.1156, found 553.1162;

IR (neat): \tilde{v} (cm-1) 2916, 2359, 1715, 1683, 1487, 1393, 1202, 1149, 1032, 730, 688, 618.

	Retention Time	Area	% Area
1	10.420	3755608	5.04
2	12.261	70720032	94.96

Tert-Butyl (S)-2-[(S)-3-(3-bromopyridin-2-yl)-6-methoxy-2-oxoindolin-3-yl]-4-oxo-4-phenylbutanoate

0.1 mmol (1d) scale reaction:

Results: yellow solid, M.p. 209-211 °C, 83% yield, >19:1 d.r., 96:4 e.r.; $[\alpha]^{20}_{D}$ = 10.7 (*c* 0.36, CH₂Cl₂); HPLC (Daicel chiralcel ID, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 14.66 min, $t_{R(minor)}$ = 12.03 min);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.27 (s, 1H), 8.53 – 8.52 (m, 1H), 7.90 – 7.88 (m, 2H), 7.80 –7.78 (m, 1H), 7.53 – 7.48 (m, 1H), 7.42 – 7.38 (m, 2H), 7.13 – 7.05 (m, 2H), 6.50 – 6.46 (m, 2H), 4.91 (d, *J* = 9.6 Hz, 1H), 3.74 (s, 3H), 3.62 (dd, *J* = 17.2, 9.6 Hz, 1H), 3.18 (d, *J* = 17.2 Hz, 1H), 1.26 (s, 9H);

¹³**C NMR**{¹H} (100 MHz, Chloroform-d) δ 198.3, 178.4, 170.6, 160.6, 155.3, 146.5, 143.3, 142.4, 137.1, 132.8, 128.4, 128.1, 126.1, 123.4, 121.9, 120.6, 107.2, 97.1, 80.8, 61.7, 55.4, 46.6, 37.2, 27.7;

ESI-HRMS calcd for [C₂₈H₂₇⁷⁹BrN₂O₅+H⁺]: 551.1176, found 551.1166;

ESI-HRMS calcd for $[C_{28}H_{27}^{81}BrN_2O_5+H^+]$: 553.1155, found 553.1145;

IR (neat): \tilde{v} (cm-1) 2964, 2359, 1707, 1668, 1626, 1463, 1273, 1157, 1007, 794, 689, 542.

Tert-Butyl (S)-2-[(S)-3-(3-bromopyridin-2-yl)-7-methyl-2-oxoindolin-3-yl]-4-oxo-4-phenylbutanoate

0.1 mmol (1e) scale reaction:

Results: yellow solid, M.p. 218-223 °C, 91% yield, >19:1 d.r., 96:4 e.r.; $[\alpha]^{20}_{D}$ = 23.2 (*c* 1.09, CH₂Cl₂); HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 10.13 min, $t_{R(minor)}$ = 8.91 min);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.78 (s, 1H), 8.51 –8.50 (m, 1H), 7.88 – 7.86 (m, 2H), 7.80 – 7.78 (m, 1H), 7.51 – 7.47 (m, 1H), 7.39 – 7.35 (m, 2H), 7.12 – 7.00 (m, 3H), 6.91 – 6.87 (m, 1H), 5.01 (d, *J* = 9.6 Hz, 1H), 3.63 (dd, *J* = 17.2, 10.0 Hz, 1H), 3.06 (d, *J* = 17.2 Hz, 1H), 2.23 (s, 3H), 1.22 (s, 9H);

¹³**C NMR**{¹H} (100 MHz, Chloroform-*d*) δ 198.3, 178.4, 170.3, 146.5, 142.3, 140.8, 137.0, 132.7, 130.3, 129.6, 128.3, 128.0, 123.4, 122.5, 122.3, 120.5, 119.5, 80.7, 62.6, 37.0, 27.6, 16.7;

ESI-HRMS calcd for [C₂₈H₂₇⁷⁹BrN₂O₄+Na⁺]: 557.1046, found 557.1042;

2

10.133

ESI-HRMS calcd for [C₂₈H₂₇⁸¹BrN₂O₄+Na⁺]: 559.1026 found 559.1020;

IR (neat): v (cm-1) 2976, 2925, 2360, 1702, 1682, 1365, 956, 848, 759, 732, 696, 560.

70669878

96.22

Tert-Butyl (S)-2-[(S)-3-(3-bromopyridin-2-yl)-5,6-dimethyl-2-oxoindolin-3-yl]-4-oxo-4-phenylbutanoate

0.1 mmol (1f) scale reaction:

Results: yellow solid, M.p. 111-113 °C, 98% yield, >19:1 d.r., 97:3 e.r.; $[\alpha]^{25}_{D}$ = 23.78 (c 0.72, CH₂Cl₂); HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 12.11 min, $t_{R(minor)}$ = 9.91 min);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.47 (s, 1H), 8.54 – 8.43 (m, 1H), 7.88 – 7.86 (m, 2H), 7.80 – 7.77 (m, 1H), 7.51 – 7.47 (m, 1H), 7.40 – 7.36 (m, 2H), 7.07 – 7.04 (m, 1H), 6.96 (s, 1H), 6.67 (s, 1H), 4.98 (d, *J* = 7.6 Hz, 1H), 3.59 (dd, *J* = 16.8, 10.0 Hz, 1H), 3.16 – 2.94 (m, 1H), 2.15 (s, 3H), 2.13 (s, 3H), 1.26 (s, 9H);

¹³**C NMR**{¹H} (100 MHz, Chloroform-*d*) δ 198.4, 178.1, 170.6, 155.5, 146.4, 142.3, 139.9, 137.4, 137.0, 132.7, 130.2, 128.3, 128.0, 127.2, 126.2, 123.2, 120.5, 111.4, 80.6, 62.1, 36.8, 27.6, 20.1, 19.6;

ESI-HRMS calcd for $[C_{29}H_{29}^{78.9183}BrN_2O_4+H^+]$: 549.1384, found 549.1378;

ESI-HRMS calcd for [C₂₉H₂₉^{80.9163}BrN₂O₄+H⁺]: 551.1363, found 551.1357;

IR (neat): v (cm-1) 2975, 1714, 1629, 1366, 1151, 1002, 848, 730, 689, 644, 628.

Tert-Butyl (S)-2-[(S)-3-(3-bromopyridin-2-yl)-5,6-dimethoxy-2-oxoindolin-3-yl]-4-oxo-4-phenylbutanoate

0.1 mmol (**1g**) scale reaction:

Results: yellow solid, M.p. 84-87 °C, 97% yield, >19:1 d.r., 97:3 e.r.; $[\alpha]^{25}_{D}$ = 12.2 (*c* 1.03, CH₂Cl₂); HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 11.74 min, $t_{R(minor)}$ = 10.50 min);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.96 (s, 1H), 8.55 – 8.54 (m, 1H), 7.86 – 7.80 (m, 3H), 7.52 – 7.48 (m, 1H), 7.40 – 7.36 (m, 2H), 7.10 – 7.07 (m, 1H), 6.83 (s, 1H), 6.52 (s, 1H), 5.01 (d, J = 4.8 Hz, 1H), 3.77 (s, 3H), 3.76 (s, 3H), 3.60 (dd, J = 16.8, 9.2 Hz, 1H), 3.03 (d, J = 16.8 Hz, 1H), 1.26 (s, 9H);

¹³**C NMR**{¹H} (100 MHz, Chloroform-*d*) δ 198.2, 178.8, 170.6, 155.5, 150.1, 146.5, 144.9, 142.4, 136.9, 136.0, 132.8, 128.4, 128.0, 123.4, 120.4, 110.0, 95.7, 80.7, 62.6, 56.8, 56.8, 56.1, 56.1, 36.7, 27.7;

ESI-HRMS calcd for [C₂₉H₂₉⁷⁹BrN₂O₆+Na⁺]: 603.1101, found 603.1101;

ESI-HRMS calcd for [C₂₉H₂₉⁸¹BrN₂O₆+Na⁺]: 605.1080, found 605.1074;

2

11.737

IR (neat): v (cm-1) 2975, 2360, 1716, 1683, 1623, 1499, 1327, 1191, 1150, 1003, 845, 688, 575.

34758796

97.34

Tert-Butyl (S)-2-[(S)-3-(3-bromopyridin-2-yl)-5,7-dimethyl-2-oxoindolin-3-yl]-4-oxo-4-phenylbutanoate

0.1 mmol (**1h**) scale reaction:

Results: yellow solid, M.p. 194-197 °C, 96% yield, >19:1 d.r., 97:3 e.r.; $[\alpha]^{20}_{D}$ = 15.1 (*c* 4.64, CH₂Cl₂); HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 30.20 min, $t_{R(minor)}$ = 25.91 min);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.68 (s, 1H), 8.53 – 8.52 (m, 1H), 7.89 – 7.87 (m, 2H), 7.79 – 7.76 (m, 1H), 7.52 – 7.48 (m, 1H), 7.41 – 7.37 (m, 2H), 7.07 – 7.04 (m, 1H), 6.89 – 6.80 (m, 2H), 5.05 (d, *J* = 9.6 Hz, 1H), 3.64 – 3.57 (m, 1H), 2.97 (d, *J* = 17.2 Hz, 1H), 2.21 (s, 3H), 2.19 (s, 3H), 1.23 (s, 9H);

¹³**C NMR**{¹H} (100 MHz, Chloroform-*d*) δ 198.5, 178.4, 170.5, 146.5, 142.2, 138.2, 137.1, 132.8, 131.8, 130.9, 129.6, 128.3, 128.1, 123.3, 123.1, 120.4, 119.1, 80.6, 36.7, 29.7, 27.6, 21.2, 16.6;

ESI-HRMS calcd for $[C_{29}H_{29}^{79}BrN_2O_4+H^+]$: 549.1384, found 549.1383;

ESI-HRMS calcd for $[C_{29}H_{29}^{81}BrN_2O_4+H^+]$: 551.1363, found 551.1360;

IR (neat): \tilde{v} (cm-1) 2917, 2359, 1735, 1698, 1686, 1475, 1337, 1225, 1152, 1013, 846, 750, 685, 576.

	Retention Time	Area	% Area
1	25.909	1813775	2.58
2	30.200	68485912	97.42

Tert-Butyl (S) - 2 - [(S) - 3 - (3 - bromopyridin - 2 - yl) - 6 - fluoro - 2 - oxoindolin - 3 - yl] - 4 - oxo - 4 - phenyl butanoate

0.1 mmol (1i) scale reaction:

Results: yellow solid, M.p. 87-90 °C, 90% yield, >19:1 d.r., 92:8 e.r.; $[\alpha]^{20}_{D}$ = 20.7 (*c* 1.34, CH₂Cl₂); HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 13.22 min, $t_{R(minor)}$ = 11.34 min);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.30 (s, 1H), 8.54 – 8.53 (m, 1H), 7.92 – 7.89 (m, 2H), 7.81 – 7.79 (m, 1H), 7.54 – 7.51 (m, 1H), 7.43 – 7.40 (m, 2H), 7.21 – 7.17 (m, 1H), 7.12 – 7.09 (m, 1H), 6.69 –6.60 (m, 2H), 4.90 – 4.71 (m, 1H), 3.73 – 3.57 (m, 1H), 3.30 (d, *J* = 17.2 Hz, 1H), 1.26 (s, 9H);

¹³**C NMR**{¹H} (100 MHz, Chloroform-d) δ 198.1, 178.0, 170.4, 164.5, 162.0, 154.5, 146.5, 143.6 (J = 12.0 Hz), 142.5, 136.9, 132.9, 128.4, 128.0, 126.7, 125.5, 123.8, 120.8, 108.8 (J = 22.4 Hz), 98.9 (J = 27.3 Hz), 81.0, 61.5, 46.5, 37.3, 29.7, 27.6;

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -110.88;

ESI-HRMS calcd for [C₂₇H₂₄⁷⁹BrFN₂O₄+Na⁺]: 561.0796, found 561.0791;

ESI-HRMS calcd for $[C_{27}H_{24}{}^{81}BrFN_2O_4+Na^+]$: 563.0775, found 563.0765;

IR (neat): \tilde{v} (cm-1) 2976, 2360,1716, 1683, 1624, 1498, 1141, 1098, 967, 843, 793, 689, 617.

	Retention Time	Area	% Area
1	11.338	6741844	7.99
2	13.216	77639945	92.01

Tert-Butyl (S)-2-[(S)-3-(3-bromopyridin-2-yl)-6-chloro-2-oxoindolin-3-yl]-4-oxo-4-phenylbutanoate

0.1 mmol (1j) scale reaction:

Results: yellow solid, M.p. 195-198 °C, 88% yield, >19:1 d.r., 91:9 e.r.; [α]²⁰_D = 11.3 (c 3.18, CH₂Cl₂); HPLC (Daicel chiralcel IA, *n*hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 13.43 min, $t_{R(minor)}$ = 11.39 min);

¹H NMR (400 MHz, Chloroform-d) δ 9.52 (s, 1H), 8.54 – 8.53 (m, 1H), 7.92 – 7.86 (m, 2H), 7.79 – 7.81(m, 1H), 7.54 – 7.50 (m, 1H), 7.43 - 7.39 (m, 2H), 7.18 - 7.16 (m, 1H), 7.13 - 7.09 (m, 1H), 6.96 - 6.94 (m, 1H), 6.87 - 6.86 (m, 1H), 4.80 (s, 1H), 3.65 (ddd, J = 17.2, 9.2, 3.6 Hz, 1H), 3.30 (d, J = 17.2 Hz, 1H), 1.27 (s, 9 H);

¹³C NMR^{{1}H} (100 MHz, Chloroform-d) δ 198.1, 178.0, 170.4, 146.6, 143.3, 142.5, 136.9, 134.7, 133.0, 128.5, 128.1, 126.5, 123.9, 122.3, 120.8, 110.8, 81.1, 61.8, 46.5, 37.4, 27.7;

ESI-HRMS calcd for [C₂₇H₂₄⁷⁹Br³⁵CIN₂O₄+H⁺]: 555.0681, found 555.0684;

ESI-HRMS calcd for [C₂₇H₂₄⁷⁹Br³⁷CIN₂O₄+H⁺]: 556.0714, found 556.0716;

ESI-HRMS calcd for $[C_{27}H_{24}^{81}Br^{35}CIN_2O_4+H^+]$: 557.0660, found 557.0662;

ESI-HRMS calcd for [C₂₇H₂₄⁸¹Br³⁷CIN₂O₄+H⁺]: 558.0694, found 558.0692;

IR (neat): \tilde{v} (cm-1) 2924, 2358, 1711, 1682, 1448, 1139, 1070, 1011, 916, 843, 802, 737, 689, 620, 531.

11.854

14.317

2

6755370

64520930

9.48

90.52

C	2	2
0	4	2

Tert-Butyl (S)-2-[(S)-6-bromo-3-(3-bromopyridin-2-yl)-2-oxoindolin-3-yl]-4-oxo-4-phenylbutanoate

0.1 mmol (1k) scale reaction:

Results: yellow solid, M.p. 192-195 °C, 80% yield, >19:1 d.r., 88:12 e.r.; $[\alpha]^{20}_{D}$ = 4.90 (c 1.94, CH₂Cl₂); HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 13.42 min, $t_{R(minor)}$ = 11.59 min);

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 11.05 – 10.97 (m, 1H), 8.62 – 8.61(m, 1H), 8.07 – 8.02 (m, 3H), 7.70 – 7.66 (m, 1H), 7.57 – 7.53 (m, 2H), 7.38 – 7.34 (m, 2H), 7.27 – 7.26 (m, 1H), 7.20 – 7.16 (m, 1H), 4.46 – 4.33 (m, 1H), 3.75 – 3.68 (m, 1H), 3.37 – 3.53 (m, 1H), 1.20 (s, 9H);

¹³**C NMR**{¹H} (100 MHz, DMSO-*d*₆) δ 198.2, 175.6, 175.3, 169.8, 153.3, 146.9, 145.6, 142.9, 136.2, 133.3, 128.8, 128.7, 128.5, 127.9 127.7, 127.2, 124.6, 123.7, 121.5, 120.7, 112.2, 79.9, 79.6, 60.6, 59.4, 46.1, 27.1;

ESI-HRMS calcd for $[C_{27}H_{24}^{79}Br_2N_2O_4+H^+]$: 599.0176, found 599.0176;

ESI-HRMS calcd for $[C_{27}H_{24}^{79}Br^{81}BrN_2O_4+H^+]$: 601.0155, found 601.0155;

2

13.424

ESI-HRMS calcd for $[C_{27}H_{24}{}^{81}Br_2N_2O_4+H^+]$: 603.0135, found 601.0137;

IR (neat): v (cm-1) 2975, 2360, 1714, 1682, 1614, 1214, 1146, 1012, 908, 841, 804, 768, 688, 597.

21839762

88.00

Tert-Butyl (S)-2-[(S)-3-(3-fluoropyridin-2-yl)-2-oxoindolin-3-yl]-4-oxo-4-phenylbutanoate

0.1 mmol (1a) scale reaction:

Results: yellow solid, M.p. 238-241 °C, 86% yield, >19:1 d.r., 89:11 e.r.; $[\alpha]^{20}_{D}$ = 23.0 (c 0.52, CH₂Cl₂); HPLC (Daicel chiralcel IC, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 30.35 min, $t_{R(minor)}$ = 25.81 min);

¹**H NMR** (400 MHz, Chloroform-d) δ 9.10 – 8.97 (m, 1H), 8.36 – 8.32 (m, 1H), 7.87 – 7.84 (m, 2H), 7.50 – 7.45 (m, 1H), 7.39 – 7.32 (m, 4H), 7.23 – 7.13 (m, 2H), 6.97 – 6.89 (m, 2H), 4.95 (dd, *J* = 10.4, 2.8 Hz, 1H), 3.76 – 3.67 (m, 1H), 2.62 (dd, *J* = 17.2, 2.8 Hz, 1H), 1.16 (s, 9H);

¹³**C NMR**{¹H} (100 MHz, Chloroform-d) δ 198.0, 177.2, 170.0, 156.6, 144.2 (*J* = 5.0 Hz), 141.2, 136.9, 132.9, 130.4, 129.0, 128.4, 128.4, 128.1, 124.7 (*J* = 4.1 Hz), 123.9, 123.7, 122.8, 110.2, 81.0, 77.2, 59.6, 59.6, 36.1, 27.6;

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -118.15;

ESI-HRMS calcd for [C₂₇H₂₅FN₂O₄+Na⁺]: 483.1691, found 483.1690;

IR (neat): v (cm-1) 2977, 2359, 1736, 1681, 1456, 1152, 1007, 842, 758, 675, 611.

	Retention Time	Area	% Area
1	26.089	1291595	10.49
2	30.681	11020638	89.51

Tert-Butyl (S)-2-[(S)-3-(3-chloropyridin-2-yl)-2-oxoindolin-3-yl]-4-oxo-4-phenylbutanoate

0.1 mmol (1a) scale reaction:

Results: yellow solid, M.p. 78-81 °C, 94% yield, >19:1 d.r., 91:9 e.r.; $[\alpha]^{20}_{D}$ = 12.16 (*c* 1.16, CH₂Cl₂); HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 11.65 min, $t_{R(minor)}$ = 8.41 min);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.15 (s, 1H), 8.50 – 8.49 (m, 1H), 7.90 – 7.88 (m, 2H), 7.60 – 7.58 (m, 1H), 7.52 – 7.48 (m, 1H), 7.41 – 7.37 (m, 2H), 7.24 – 7.15 (m, 3H), 6.98 – 6.94 (m, 1H), 6.89 – 6.87 (m, 1H), 4.96 (dd, *J* = 10.4, 2.8 Hz, 1H), 3.63 (dd, *J* = 17.2, 10.0 Hz, 1H), 3.14 – 3.10 (m, 1H), 1.24 (s, 9H);

¹³**C NMR**{¹H} (100 MHz, Chloroform-*d*) δ 198.2, 177.7, 170.3, 154.3, 146.1, 141.8, 138.7, 137.0, 132.8, 131.2, 129.9, 129.0, 128.4, 128.0, 125.1, 123.3, 122.3, 110.0, 80.8, 61.1, 46.0, 37.0, 27.6;

ESI-HRMS calcd for [C₂₇H₂₅³⁵CIN₂O₄+H⁺]: 477.1576, found 477.1566;

ESI-HRMS calcd for [C₂₇H₂₅³⁷CIN₂O₄+H⁺]: 479.1546, found 479.1538;

2

11.646

IR (neat): \tilde{v} (cm-1) 2976, 2360, 1716, 1683, 1616, 1471, 1330, 1150, 845, 751, 688, 644, 604.

82949024

91.20

Tert-Butyl (S)-2-[(S)-3-(4-cyanopyridin-2-yl)-2-oxoindolin-3-yl]-4-oxo-4-phenylbutanoate

0.1 mmol (1a) scale reaction:

Results: yellow solid, M.p. 155-158 °C, 83% yield, 90:10 d.r., 93:7 e.r.; $[\alpha]^{20}_{D}$ = 74.3 (c 1.43, CH₂Cl₂); HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 80/20, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 17.73 min, $t_{R(minor)}$ = 22.42 min);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.26 – 9.07 (m, 1H), 8.87 – 8.83 (m, 1H), 7.93 – 7.85 (m, 2H), 7.64 – 7.50 (m, 2H), 7.53 – 7.50 (m, 1H), 7.42 – 7.38 (m, 3H), 7.29 – 7.23 (m, 1H), 7.10 – 7.07 (m, 1H), 7.00 – 6.95 (m, 1H), 4.75 (dt, *J* = 10.4, 3.2 Hz, 1H), 3.75 (dd, *J* = 17.2, 10.4 Hz, 1H), 2.52 (ddd, *J* = 17.2, 9.2, 3.2 Hz, 1H), 1.14 (s, 9H);

¹³**C NMR**{¹H} (100 MHz, Chloroform-*d*) δ 197.5, 177.1, 169.6, 161.2, 159.4, 150.5, 141.0, 136.7, 133.1, 129.4, 129.0, 128.5, 128.1, 128.0, 126.4, 123.7, 123.5, 123.1, 121.0, 116.4, 110.4, 81.5, 60.2, 47.8, 35.8, 27.5, 14.2;

ESI-HRMS calcd for $[C_{28}H_{25}N_3O_4+Na^+]$: 490.1737, found 490.1735;

IR (neat): v (cm-1) 2976, 2360, 1716, 1697, 1472, 1151, 839, 749, 687, 617, 546.

	Retention Time	Area	% Area
1	17.734	24359730	92.98
2	22.417	1839891	7.02

Tert-Butyl (S) - 2 - [(S) - 3 - (3 - bromopyridin - 2 - yl) - 2 - oxoindolin - 3 - yl] - 4 - oxo - 4 - (p - tolyl) butanoate

0.1 mmol (**1a**) scale reaction:

Results: yellow solid, M.p. 202-205 °C, 92% yield, >19:1 d.r., 92:8 e.r.; $[\alpha]^{20}_{D}$ = 21.4 (*c* 2.1 CH₂Cl₂); HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 80/20, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 22.41 min, $t_{R(minor)}$ = 15.73 min);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.41 (s, 1H), 8.53 – 8.47 (m, 1H), 7.89 –7.77 (m, 3H), 7.23 – 7.18 (m, 4H), 7.10 – 7.06 (m, 1H), 6.99 – 6.95 (m, 1H), 6.91 – 6.89 (m, 1H), 4.88 (d, *J* = 9.6 Hz, 1H), 3.63 – 3.56 (m, 1H), 3.21 (d, *J* = 17.2 Hz, 1H), 2.37 (s, 3H), 1.24 (s, 9H);

¹³**C NMR**{¹H} (100 MHz, Chloroform-*d*) δ 197.9, 177.9, 170.5, 146.5, 143.5, 142.4, 142.3, 134.6, 130.0, 129.1, 129.0, 128.4, 128.2, 125.3, 123.6, 122.3, 120.8, 110.2, 80.8, 62.1, 46.56, 37.2, 27.6, 21.6;

ESI-HRMS calcd for [C₂₈H₂₇⁷⁹BrN₂O₄+H⁺]: 535.1227, found 535.1227;

ESI-HRMS calcd for [C₂₈H₂₇⁸¹BrN₂O₅+H⁺]: 537.1206, found 537.1207;

IR (neat): \tilde{v} (cm-1) 2972, 2355, 1728, 1701, 1682, 1156, 1007, 812, 672, 604, 548.

	Retention Time	Area	% Area
1	15.734	2573957	7.60
2	22.408	31312742	92.40

Tert-Butyl (S)-2-[(S)-3-(3-bromopyridin-2-yl)-2-oxoindolin-3-yl]-4-(4-methoxyphenyl)-4-oxobutanoate 0.1 mmol (1a) scale reaction:

Results: yellow solid, M.p. 80-85 °C, 75% yield, >19:1 d.r., 91:9 e.r.; $[\alpha]^{20}_{D}$ = 18.4 (*c* 0.36, CH₂Cl₂); HPLC (Daicel chiralcel IA2, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 23.93 min, $t_{R(minor)}$ = 13.81 min);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.08 (s, 1H), 8.54 – 8.53 (m, 1H), 7.89 – 7.80 (m, 2H), 7.79 – 7.80 (m, 1H), 7.24 – 7.20 (m, 2H), 7.10 – 7.07 (m, 1H), 6.99 – 6.95 (m, 1H), 6.89 – 6.84 (m, 3H), 4.90 (d, *J* = 9.6 Hz, 1H), 3.84 (s, 3H), 3.64 – 3.51 (m, 1H), 3.15 (d, *J* = 16.8 Hz, 1H), 1.23 (s, 9H);

¹³**C NMR**{¹H} (100 MHz, Chloroform-*d*) δ 196.7, 177.6, 170.5, 163.2, 146.5, 142.4, 142.1, 130.3, 130.1, 130.0, 129.0, 125.3, 123.5, 122.2, 120.8, 113.5, 110.0, 80.7, 62.1, 55.4, 36.8, 27.6;

ESI-HRMS calcd for $[C_{28}H_{27}^{79}BrN_2O_5+H^+]$: 551.1176, found 551.1172;

ESI-HRMS calcd for $[C_{28}H_{27}^{81}BrN_2O_5+H^+]$: 553.1156, found 553.1154;

IR (neat): v (cm-1) 2976, 2360, 1716, 1598, 1471, 1253, 1150, 1015, 957, 832, 751, 677, 603, 562.

	Retention Time	Area	% Area
1	13.813	3629331	9.39
2	23.928	35026690	90.61

Tert-Butyl (S)-2-[(S)-3-(3-bromopyridin-2-yl)-2-oxoindolin-3-yl]-4-(4-ethoxyphenyl)-4-oxobutanoate

0.1 mmol (**1a**) scale reaction:

Results: yellow solid, M.p. 87-92 °C, 71% yield, >19:1 d.r., 91:9 e.r.; $[\alpha]^{20}_{D}$ = 14.9 (*c* 1.88, CH₂Cl₂); HPLC (Daicel chiralcel IE, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 30.28 min, $t_{R(minor)}$ = 13.08 min);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.04 (s, 1H), 8.53 – 8.53 (m, 1H), 7.88 – 7.78 (m, 3H), 7.24 – 7.20 (m, 2H), 7.10 – 7.06 (m, 1H), 6.99 – 6.95 (m, 1H), 6.90 – 6.85 (m, 3H), 4.89 (d, *J* = 9.6 Hz, 1H), 4.06 (q, *J* = 7.2 Hz, 2H), 3.60 – 3.53 (m, 1H), 3.15 (d, *J* = 16.8 Hz, 1H), 1.42 (t, *J* = 7.2 Hz, 3H), 1.23 (s, 9H);

¹³**C NMR**{¹H} (100 MHz, Chloroform-d) δ 196.7, 177.6, 170.5, 162.7, 146.5, 142.4, 142.1, 130.3, 130.0, 129.9, 125.3, 123.6, 122.3, 120.8, 114.0, 110.0, 80.7, 63.7, 62.1, 36.8, 27.6, 14.7;

ESI-HRMS calcd for $[C_{29}H_{29}^{79}BrN_2O_5+H^+]$: 565.1333, found 565.1335;

ESI-HRMS calcd for $[C_{29}H_{29}^{81}BrN_2O_5+H^+]$: 567.1312, found 567.1317.

IR (neat): *ν* (cm-1) 2928, 2360, 1716, 1598, 1472, 1242, 1150, 1040, 751, 729, 637.

	Retention Time	Area	% Area
1	13.469	4839134	50.50
2	32.403	4742989	49.50

	Retention Time	Area	% Area
1	13.080	8714450	8.97
2	30.284	88399932	91.03

Tert-Butyl (*S*)-4-(4-(benzyloxy)phenyl)-2-[(*S*)-3-(3-bromopyridin-2-yl)-2-oxoindolin-3-yl]-4-oxobutanoate 0.1 mmol (**1a**) scale reaction:

Results: yellow solid, M.p. 85-88 °C, 81% yield, 10:1 d.r., 92:8 e.r.; $[\alpha]^{20}_{D}$ = 21.3 (*c* 2.1 CH₂Cl₂); HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 46.77 min, $t_{R(minor)}$ = 19.21 min);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.04 (s, 1H), 8.53 – 8.52 (m, 1H), 7.88 – 7.80 (m, 1H), 7.80 – 7.77 (m, 1H), 7.42 – 7.33(m, 6H), 7.23 – 7.19 (m, 2H), 7.09 – 7.06 (m, 1H), 6.98 – 6.93 (m, 3H), 6.89 – 6.87 (m, 1H), 5.10 (s, 2H), 4.89 (d, *J* = 9.6 Hz, 1H), 3.60 – 3.53 (m, 1H), 3.15 (d, *J* = 16.8 Hz, 1H), 1.23 (s, 9H);

¹³**C NMR**{¹H} (100 MHz, Chloroform-*d*) δ 196.7, 177.6, 170.5, 162.4, 146.5, 142.4, 142.1, 136.2, 130.3, 130.3, 130.0, 129.0 128.6, 128.2, 127.4, 125.3, 123.5, 122.3, 120.8, 114.4, 110.0, 80.7, 70.0, 62.0, 46.5, 36.9, 27.6;

ESI-HRMS calcd for $[C_{34}H_{31}^{79}BrN_2O_5+H^+]$: 627.1489, found 627.1488;

ESI-HRMS calcd for [C₃₄H₃₁⁸¹BrN₂O₃+H⁺]: 629.1469, found 629.1459;

IR (neat): \tilde{v} (cm-1) 2976, 2360, 1716, 1597, 1471, 1336, 1224, 1150, 731, 696, 604.

	Retention Time	Area	% Area
1	19.209	3957414	7.56
2	46.766	48391598	92.44

Tert-butyl (S)-2-[(S)-3-(3-bromopyridin-2-yl)-2-oxoindolin-3-yl]-4-(4-fluorophenyl)-4-oxobutanoate

0.1 mmol (1a) scale reaction:

Results: yellow solid, M.p. 93-97 °C, 73% yield, 10:1 d.r., 90:10 e.r.; $[\alpha]^{20}_{D}$ = 19.9 (*c* 1.36, CH₂Cl₂); HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 80/20, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 34.13 min, $t_{R(minor)}$ = 16.04 min);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.25 (s, 1H), 8.55 – 8.53 (m, 1H), 7.95 – 7.90 (m, 2H), 7.82 –7.79 (m, 1H), 7.20 – 7.12 (m, 2H), 7.11 – 7.02 (m, 3H), 7.00 – 6.96 (m, 1H), 6.90 – 6.88 (m, 1H), 4.89 (d, *J* = 9.6 Hz, 1H), 3.60 (dd, *J* = 17.2, 9.6 Hz, 1H), 3.18 (d, *J* = 17.2 Hz, 1H), 1.24 (s, 9H);

¹³**C NMR**{¹H} (100 MHz, Chloroform-*d*) δ 196.7, 177.8, 170.4, 166.9, 164.3, 146.5, 142.5, 142.1, 133.4, 130.7 (J = 9.1 Hz), 130.7, 129.9, 129.1, 125.4, 123.6, 122.4, 120.8, 115.6 (J = 21.5 Hz), 115.4, 110.2, 81.0, 77.2, 62.0, 46.6, 37.1, 27.6;

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -105.77;

 $\textbf{ESI-HRMS} \text{ calcd for } [C_{27}H_{24}{}^{79}BrFN_2O_4 + H^+]\text{: } 539.0976\text{, found } 539.0977\text{;} \\$

ESI-HRMS calcd for $[C_{27}H_{24}^{81}BrFN_2O_4+H^+]$: 541.0956, found 541.0958;

IR (neat): \tilde{v} (cm-1) 2975, 2360, 1730, 1685, 1597, 1225, 1154, 1005, 834, 752, 671, 604, 547.

	Retention Time	Area	% Area
1	16.038	3293661	9.85
2	34.129	30146559	90.15

Tert-Butyl (S)-2-[(S)-3-(3-bromopyridin-2-yl)-2-oxoindolin-3-yl]-4-(3-chlorophenyl)-4-oxobutanoate

0.1 mmol (1a) scale reaction:

Results: yellow solid, M.p. 85-87 °C, 84% yield, >19:1 d.r., 91:9 e.r.; $[\alpha]^{20}_{D}$ = 25.0 (*c* 0.26, CH₂Cl₂); HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 13.80 min, $t_{R(minor)}$ = 9.96 min);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.02 (s, 1H), 8.56 – 8.55 (m, 1H), 7.89 – 7.88 (m, 1H), 7.80 – 7.76 (m, 2H), 7.50 – 7.47 (m, 1H), 7.37 – 7.33 (m, 1H), 7.24 – 7.24 (m, 2H), 7.12 – 7.09 (m, 1H), 7.01 – 6.97 (m, 1H), 6.91 – 6.89 (m, 1H), 4.83 (d, *J* = 10.0 Hz, 1H), 3.61 – 3.54 (m, 1H), 3.28 (t, *J* = 16.8 Hz, 1H), 1.25 (s, 9H);

ESI-HRMS calcd for $[C_{27}H_{24}^{79}Br^{35}CIN_2O_4+H^+]$: 555.0681, found 555.0677;

ESI-HRMS calcd for $[C_{27}H_{24}^{79}Br^{37}CIN_2O_4+H^+]$: 556.0714, found 556.0702;

ESI-HRMS calcd for [C₂₇H₂₄⁸¹Br³⁵CIN₂O₄+H⁺]: 557.0660, found 557.0658;

ESI-HRMS calcd for [C₂₇H₂₄⁸¹Br³⁷CIN₂O₄+H⁺]: 558.0694, found 558.0685;

IR (neat): v (cm-1) 2977, 2359, 1715, 1617, 1471, 1150, 1016, 792, 751, 678, 603.

		Retention Time	Area	% Area
	1	9.502	5062844	9.05
[2	13.126	50896246	90.95

2'-(*Tert*-Butyl) 3'-ethyl (2'S, 3R, 3'S, 8a'S)-8'-bromo-2-oxo-2',3'-dihydro-8a'H-spiro[indoline-3,1'-indolizine]-2',3'-dicarboxylate 0.1 mmol (1a) scale reaction:

Results: yellow solid, M.p. 114-117 °C, 91% yield, >19:1 d.r., 54:46 e.r.; HPLC (Daicel chiralcel ID, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 254 nm, t_R (major) = 11.69 min, t_R (minor) = 14.18 min);

¹**H NMR** (400 MHz, Chloroform-d) δ 9.00 (s, 1H), 7.32 – 7.26 (m, 2H), 7.02 – 6.96 (m, 2H), 6.31 (d, *J* = 7.2 Hz, 1H), 6.02 (dt, *J* = 6.4, 1.2 Hz, 1H), 5.36 (d, *J* = 1.2 Hz, 1H), 4.83 (d, *J* = 7.2 Hz, 1H), 4.51 (t, *J* = 6.8 Hz, 1H), 4.29 (q, *J* = 7.2 Hz, 2H), 3.79 (d, *J* = 7.6 Hz, 1H), 1.33 (t, *J* = 7.2 Hz, 3H), 1.01 (s, 9H);

¹³**C NMR**{¹H} (100 MHz, Chloroform-*d*) δ 177.5, 170.9, 167.2, 142.4, 133.2, 129.2, 128.1, 126.7, 124.6, 122.3, 109.9, 108.1, 94.1, 82.5, 72.9, 64.8, 63.8, 62.1, 52.7, 27.4, 27.2, 14.2;

ESI-HRMS calcd for $[C_{23}H_{25}^{79}BrN_2O_5+Na^+]$: 511.0839, found 511.0846; **ESI-HRMS** calcd for $[C_{23}H_{25}^{81}BrN_2O_5+Na^+]$: 513.0819, found 513.0825.

	Retention Time	Area	% Area
1	11.690	18128545	53.55
2	14.177	15727557	46.45

Tert-Butyl (2'*R*,3*S*,3'*R*,8a'*R*)-3'-benzoyl-8'-bromo-2-oxo-2',3'-dihydro-8a'H-spiro[indoline-3,1'-indolizine]-2'-carboxylate 0.1 mmol (1a) scale reaction:

yellow solid, M.p. 95-98 °C, 96% yield, >19:1 d.r., 95:5 e.r.; HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 254 nm, $t_{\text{R(minor)}}$ = 11.42 min, $t_{\text{R(minor)}}$ = 28.92 min);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.66 (s, 1H), 8.07 – 8.01 (m, 2H), 7.64 – 7.57 (m, 1H), 7.52 – 7.45 (m, 2H), 7.42 (d, *J* = 7.6 Hz, 1H), 7.28 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.04 – 6.98 (m, 1H), 6.96 – 6.91 (m, 1H), 6.24 (d, *J* = 7.2 Hz, 1H), 6.04 (dt, *J* = 6.4, 1.2 Hz, 1H), 5.74 (dd, *J* = 6.0, 0.8 Hz, 1H), 5.37 (d, *J* = 1.2 Hz, 1H), 4.50 (td, *J* = 6.8, 6.4, 0.8 Hz, 1H), 3.66 (dd, *J* = 6.0, 0.8 Hz, 1H), 0.95 (s, 9H); 1³**C NMR**{¹H} (100 MHz, Chloroform-*d*) δ 196.3, 177.5, 167.9, 142.4, 135.0, 133.8, 132.9, 132.2, 129.1, 128.9, 128.9, 128.2, 127.2, 125.1, 122.2, 109.7, 107.8, 93.9, 82.6, 73.5, 66.6, 64.4, 53.3, 28.1, 27.1;

ESI-HRMS calcd for [C₂₇H₂₅⁷⁹BrN₂O₄+Na⁺]: 543.0889, found 543.0893;

ESI-HRMS calcd for [C₂₇H₂₅⁸¹BrN₂O₅+Na⁺]: 545.0869, found 545.0872;

IR (neat): v (cm-1) 2360, 1732, 1707, 1441, 1218, 1149, 843, 695, 680.

	Retention Time	Area	% Area
1	11.421	20396048	94.55
2	28.918	1176209	5.45

Tert-Butyl (2'*R*,3*S*,3'*R*,8*a*'*R*)-3'-benzoyl-8'-bromo-2-oxo-2',3'-dihydro-8a'H-spiro[indoline-3,1'-indolizine]-2'-carboxylate ¹H NMR (400 MHz, Chloroform-*d*) δ 8.96 (s, 1H), 8.48 (dd, J = 4.4, 1.6 Hz, 1H), 7.98 (dt, J = 7.2, 1.6 Hz, 2H), 7.80 (dd, J = 8.0, 1.6 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.40 (dd, J = 7.2, 1.6 Hz, 2H), 7.26 – 7.19 (m, 1H), 7.08 (dd, J = 8.0, 4.4 Hz, 1H), 7.02 – 6.96 (m, 2H), 6.91 (d, J = 7.6 Hz, 1H), 4.75 (dd, J = 10.8, 2.4 Hz, 1H), 3.89 (dd, J = 18.0, 10.8 Hz, 1H), 3.58 (dd, J = 18.0, 2.8 Hz, 1H), 1.08 (s, 9H); ¹³C NMR{¹H} (100 MHz, Chloroform-*d*) δ 199.0, 177.3, 171.9, 154.3, 146.6, 142.6, 142.0, 136.9, 132.8, 129.7, 128.9, 128.4, 128.3, 128.2, 128.1, 125.4, 123.9, 122.3, 121.7, 109.9, 80.4, 60.2, 48.1, 37.5, 27.3; ESI-HRMS calcd for [C₂₇H₂₅⁷⁹BrN₂O₄+H⁺]: 521.1070, found 521.1077;

ESI-HRMS calcd for $[C_{27}H_{25}^{81}BrN_2O_5+H^+]$: 523.1050, found 523.1059;

IR (neat): \tilde{v} (cm-1) 2974, 1708, 1617, 1471, 1332, 1148, 829, 731, 689, 601.

Tert-Butyl (2S,4S)-2-[(S)-3-(3-bromopyridin-2-yl)-2-oxoindolin-3-yl]-4-hydroxy-4-phenylbutanoate

0.05 mmol (4a) scale reaction:

Results: white solid, M.p. 97-100 °C, 92% yield, 91:9 d.r., 99:1 e.r.; [α]^{19.8}_D = 40.0 (c 0.25, CH₂Cl₂); HPLC (Daicel chiralcel IA, *n*-

hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 26.55 min, $t_{R(minor)}$ = 10.24 min); **'H NMR** (400 MHz, Chloroform-*d*) δ 8.93 (s, 1H), 8.67–8.65 (m, 1H), 7.85 – 7.82 (m, 1H), 7.31 – 7.27 (m, 4H), 7.25 – 7.18 (m, 3H), 6.96 - 6.85 (m, 3H), 4.83 - 4.73 (m, 2H), 4.37 - 4.34 (m, 1H), 2.32 - 2.26 (m, 1H), 2.13 - 2.05 (m, 1H), 1.34 (s, 9H);

¹³C NMR^{{1}H} (100 MHz, Chloroform-*d*) δ 176.8, 171.2, 154.5, 146.4, 144.9, 143.3, 142.8, 129.1, 129.0, 128.3, 127.1, 125.5, 124.7, 124.2, 122.4, 121.9, 109.9, 81.4, 72.6, 61.5, 48.3, 39.6, 27.8;

ESI-HRMS calcd for [C₂₇H₂₇⁷⁹BrN₂O₄+Na⁺]: 545.1046, found 545.1039;

ESI-HRMS calcd for [C₂₇H₂₇⁸¹BrN₂O₄+Na⁺]: 547.1026, found 547.1024;

IR (neat): v (cm-1) 2975, 2359, 1716, 1617, 1471, 1322 1148, 1023, 749, 699, 604.

	Retention Time	Area	% Area
1	9.186	18574	0.11
2	10.240	104199	0.63
3	23.890	1440670	8.67
4	26.548	15052579	90.59

0.05 mmol (5a) scale reaction:

Results: white solid, M.p. 115-120 °C, 80% yield, 87:13 d.r., 99:1 e.r.; $[\alpha]^{20}_{D}$ = 2.75 (c 1.42, CH₂Cl₂); HPLC (Daicel chiralcel ID, *n*-hexane/*i*-PrOH 70/30, 1.0 mL/min, λ = 254 nm, $t_{R(major)}$ = 26.07 min, $t_{R(minor)}$ = 31.38 min);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.62 – 8.61(m, 1H), 8.38 (s, 1H), 7.84 – 7.82 (m, 1H), 7.55 – 7.50 (m, 1H), 7.36 – 7.32 (m, 2H), 7.29 – 7.24 (m, 4H), 7.19 – 7.17 (m, 1H), 7.04 – 7.00 (m, 1H), 6.90 – 6.88 (m, 1H), 5.72 (s, 1H), 5.39 – 5.33 (m, 1H), 3.38 (s, 1H), 2.36 (d, *J* = 14.4 Hz, 1H);

¹³**C NMR**{¹H} (100 MHz, Chloroform-*d*) δ 177.6, 153.2, 146.2, 142.4, 129.1, 128.7, 128.5, 127.9, 125.0, 124.3, 122.5, 121.8, 109.7, 78.1, 60.7, 33.4;

ESI-HRMS calcd for $[C_{23}H_{17}^{79}BrN_2O_3+Na^+]$: 471.0315, found 471.0317;

ESI-HRMS calcd for [C₂₃H₁₇⁸¹BrN₂O₃+Na⁺]: 473.0294, found 473.0296;

IR (neat): v (cm-1) 2361, 1719, 1616, 1483, 1170, 978, 755, 727, 704, 601.

	Retention Time	Area	% Area
1	26.068	14613516	84.60
2	31.383	56267	0.33
3	32.381	2071556	11.99
4	39.482	533257	3.09

(J) Copies of NMR spectra for the reaction products.

-65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -16 f1 (ppm)

-50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 f1 (ppm)

(K) References.

[1] For the synthesis of chiral *N*,*N*'-dioxide Liagnds, see: (a) X. H. Liu, L. L. Lin, X. M. Feng, *Acc. Chem. Res.* 2011, **44**, 574; (b) X. H. Liu, L. L. Lin, X. M. Feng, *Org. Chem. Front.* 2011, **1**, 298.

[2] For the synthesis of (*E*)-alkenyloxindoles **1a-1k**, see: Y. M. Cao, X. X. Jiang, L. P. Liu, F. F. Shen, F. T. Zhang, R. Wang, *Angew. Chem. Int. Ed.* 2011, **50**, 9124.

[3] For the synthesis of pyridnium salts, see: Hu R. B.; Sun S.; Su Y. Angew. Chem. Int. Ed. 2017, 56, 10877.

[4] For the synthesis of α-diazoacetophenone: T. B. Mete, D. Laha, R. G. Bhat, *ChemistrySelect.* 2018, **3**, 7656.

(L) Author contributions.

Dong Zhang: data curation (lead), formal analysis (lead), investigation (lead), writing of original draft (lead)

Shunxi Dong, Qianwen He, Yao Luo: data curation (supporting), formal analysis (supporting)

Yun Liu: repeating some experiments (supporting)

Xiaohua Liu*: project administration (equal)

Xiaoming Feng*: funding acquisition (equal), project administration (equal)