Supporting Information

Copper-Catalyzed Chemoselective C-H Functionalization of

Quinoxalin-2(1*H*)-ones with Hexafluoroisopropanol

Hai-Yan Su,^a Xiao-Lei Zhu,^a Yangen Huang,^{*a} Xiu-Hua Xu,^{*b} and Feng-Ling Qing^{ab}

^aCollege of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China ^bKey Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis,

Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China **E-mail**: <u>hyg@dhu.edu.cn</u>; <u>xuxiuhua@sioc.ac.cn</u>

Contents

1. General Information	S2
2. Preparation of Substrates	S3
3. General Procedures for Hydroxyhexafluoroisobutylation of Quinoxa	alin-2(1 <i>H</i>)-
ones	
4. General Procedures for Hexafluoroisopropoxylation of Quinoxa	alin-2(1 <i>H</i>)-
ones	
5. Scale-Up Experiments	S19
6. Control Experiments	S20
7. ORTEP Drawing of the X-Ray Crystallographic Structure of Produc	ct 3jS24
8. References	S26
9. Copies of ¹ H, ¹⁹ F, and ¹³ C NMR Spectra for the Products	S27

1. General Information

¹H NMR (TMS as the internal standard) were recorded on a Bruker AM 400 or 600 spectrometer, ¹³C NMR and ¹⁹F NMR (CFCl₃ as outside standard and low field is positive) spectra were recorded on a Bruker AM 400 or 600 spectrometer. For the determination of ¹⁹F NMR yield, PhCF₃ was used as an internal standard and the relaxation delay (d1) was set to 5 s. Chemical shifts (δ) were reported in per million (ppm), and coupling constants (*J*) were in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet. High resolution mass spectra (HRMS) were obtained on a GC-TOF mass spectrometer.

Materials: Unless otherwise noted, all reagents were obtained commercially and used without further purification. Substrates were purchased from commercial sources or prepared according to literature procedures. Reactions were performed using glassware that was flame-dried under vacuum.

2. Preparation of Substrates

Substrates **1t** (*CAS: 1196-57-2*) and **1u** (*CAS: 55687-34-8*) were obtained commercially and used without further purification.

Substrates **1a**, **1c-1n** were prepared according to the reported literature.¹ Substrates **1b**, **1o**, **1q**, **1r** were prepared according to the reported literature.² Substrates **1p** were prepared according to the reported literature.³

1-Hexylquinoxalin-2(1*H*)-one (1s)

To a suspension of 2-quinoxalinone (0.73 g, 5.0 mmol) in DMF (15.0 mL) was added potassium carbonate (0.83 g, 6.0 mmol) and 1-bromohexane (1.12 mL, 8.0 mmol). The reaction mixture was stirred at rt overnight. EtOAc and water were added. The aqueous layer was extracted twice with EtOAc. The combined organic layers were washed with a saturated solution of NH₄Cl and then with brine, dried over Na₂SO₄, filtered and evaporated under reduced pressure. The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **1s** (0.70 g, 61%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.20 (s, 1H), 7.79 (dd, *J* = 8.3, 1.5 Hz, 1H), 7.52-7.48 (m, 1H), 7.30-7.22 (m, 2H), 4.14 (t, *J* = 8.0 Hz, 2H), 1.73-1.56 (m, 2H), 1.40-1.34 (m, 2H), 1.40-1.21 (m, 4H), 0.81 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ ppm 153.8, 149.2, 132.6, 131.4, 129.9, 129.7, 122.5, 112.8, 41.0, 30.4, 26.2, 25.6, 21.5, 13.0; IR (thin film) v 2928, 1654, 1601, 1587, 1556, 1463, 1311, 1067, 750 cm⁻¹; MS (ESI): *m/z* 231.1 [M+H]⁺; HRMS (ESI-TOF): *m/z* Calculated for C₁₄H₁₉N₂O [M+H]⁺: 231.1492; Found: 231.1492.

3. General Procedures for Hydroxyhexafluoroisobutylation of Quinoxalin-2(1*H*)-ones

To a sealed tube equipped with a stir bar were added 1 (0.2 mmol, 1.0 equiv), CuBr (2.8 mg, 0.02 mmol, 10 mol%), and K_2CO_3 (41.5 mg, 0.3 mmol, 1.5 equiv). The tube was evacuated and backfilled with pure N₂ for three times. Then, *tert*-butyl peroxybenzoate (116.4 mg, 0.6 mmol, 3.0 equiv) and hexafluoroisopropanol (3.0 mL) was added. The tube was sealed and the mixture was heated at 100 °C for 12 h. After the reaction was complete, the volatile components were removed under reduced pressure. Water was added, and the resulting mixture was extracted with EtOAc for three times. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The resulting residue was purified by silica gel flash column chromatography to give the product **3**.

1-Methyl-3-(3,3,3-trifluoro-2-hydroxy-2-(trifluoromethyl)propyl)quinoxalin-2(1*H*)-one (3a)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **3a** (49.0 mg, 72%) as a yellow solid. Mp 82-84 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.27 (s, 1H), 7.93 (d, *J* = 7.9 Hz, 1H), 7.70 (t, *J* = 7.7 Hz, 1H), 7.55-7.41 (m, 2H), 3.82 (s, 3H), 3.64 (s, 2H); ¹⁹F NMR (377MHz, CDCl₃) δ ppm -77.17 (s, 6F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 156.5, 153.4, 132.6, 132.5, 131.7, 130.3, 125.0, 122.9 (q, *J* = 289.9 Hz), 114.2, 77.5 (quint, *J* = 29.3 Hz), 35.7, 29.8; **IR** (thin film) *v* 2920, 1654, 1623, 1598, 1274, 1238, 1195, 1144, 1002, 969, 770 cm⁻¹; **MS** (ESI): *m/z* 341.0 [M+H]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₃H₁₁F₆N₂O₂ [M+H]⁺: 341.0719; Found: 341.0716.

1-Butyl-3-(3,3,3-trifluoro-2-hydroxy-2-(trifluoromethyl)propyl)quinoxalin-2(1*H*)-one (3b)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **3b** (50.4 mg, 66%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.21 (s, 1H), 7.83 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.60-7.56 (m, 1H), 7.43-7.28 (m, 2H), 4.25 (t, *J* = 7.7 Hz, 2H), 3.53 (s, 2H), 1.82-1.62 (m, 2H), 1.44-1.35 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -77.20 (s, 6F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 155.3, 152.4, 132.0, 130.7, 130.5, 129.6, 123.7, 121.9 (q, *J* = 289.9 Hz), 113.2, 76.5 (quint, *J* = 29.3 Hz), 41.9, 35.0, 28.3, 19.1, 12.7; IR (thin film) *v* 2934, 1627, 1585, 1270, 1202, 1184, 1145, 1035, 976, 755 cm⁻¹; MS (ESI): *m/z* 383.0 [M+H]⁺; HRMS (ESI-TOF): *m/z* Calculated for C₁₆H₁₇F₆N₂O₂ [M+H]⁺: 383.1189; Found: 383.1185.

Ethyl

2-(2-oxo-3-(3,3,3-trifluoro-2-hydroxy-2-

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 6:1) to afford **3c** (55.2 mg, 67%) as a yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.83-7.84 (m, 2H), 7.54-7.57 (m, 1H), 7.36-7.39 (m, 1H), 7.10-7.12 (m, 1H), 5.00 (s, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.55 (s, 2H), 1.19 (t, *J* = 7.2 Hz, 3H); ¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -77.22 (s, 6F); ¹³**C NMR** (101 MHz, CDCl₃) δ ppm 166.2, 156.0, 153.5, 132.5, 131.8, 131.7, 130.6, 125.1, 122.9 (q, *J* = 289.9 Hz), 113.6, 76.54 (quint, *J* = 29.3 Hz), 62.5, 44.1, 35.0, 14.0; **IR** (thin film) *v* 2922, 1747, 1632, 1264, 1200, 1183, 1146, 1001, 755, 454 cm⁻¹; **MS** (ESI): *m/z* 413.0 [M+H]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₆H₁₅F₆N₂O₄ [M+H]⁺: 413.0931; Found: 413.0929.

1-Benzyl-3-(3,3,3-trifluoro-2-hydroxy-2-(trifluoromethyl)propyl)quinoxalin-2(1*H*)one (3d)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **3d** (49.9 mg, 60%) as yellow solid. Mp 64-66 °C. ¹H **NMR** (400 MHz, CDCl₃) δ ppm 8.08 (s, 1H), 7.83-7.81 (m, 1H), 7.50-7.40 (m, 1H), 7.29-7.33 (m, 1H), 7.29-7.16 (m, 4H), 7.10-7.12 (m, 2H), 5.47 (s, 2H), 3.59 (s, 2H); ¹⁹F **NMR** (376 MHz, CDCl₃) δ ppm -77.09 (s, 6F); ¹³C **NMR** (101 MHz, CDCl₃) δ ppm 156.7, 153.6, 134.2, 132.9, 131.9, 131.6, 130.5, 129.2, 128.1, 126.7, 125.0, 122.9 (q, *J* = 289.9 Hz), 115.0, 76.6 (quint, *J* = 29.3 Hz), 46.6, 35.9; **IR** (thin film) *v* 2926, 1628, 1599, 1244, 1144, 1038, 1055, 922, 754, 697 cm⁻¹; **MS** (ESI): *m/z* 417.0 [M+H]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₉H₁₅F₆N₂O₂ [M+H]⁺: 417.1032; Found: 417.1029.

1-(4-Methylbenzyl)-3-(3,3,3-trifluoro-2-hydroxy-2-(trifluoromethyl)propyl)quinoxalin-2(1*H*)-one (3e)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **3e** (51.6 mg, 60%) as a yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ ppm 8.11 (s, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.56-7.40 (m, 1H), 7.28-7.33 (m, 2H), 7.00-7.08 (m, 4H), 5.43 (s, 2H), 3.59 (s, 2H), 2.21 (s, 3H); ¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -77.10 (s, 6F); ¹³**C NMR** (101 MHz, CDCl₃) δ ppm 156.7, 153.6, 138.0, 133.0, 131.9, 131.6, 131.2, 130.4, 129.8, 126.7, 124.9, 122.9 (q, *J* = 289.9 Hz), 115.0, 76.6 (quint, *J* = 29.3 Hz), 46.4, 36.0, 21.1; **IR** (thin film) *v* 2924, 1628, 1586, 1272, 1200, 1178, 1145, 1038, 996, 756 cm⁻¹; **MS** (ESI): *m/z* 431.0 [M+H]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₂₀H₁₇F₆N₂O₂ [M+H]⁺: 431.1189; Found: 431.1186.

1-(4-Methoxybenzyl)-3-(3,3,3-trifluoro-2-hydroxy-2-(trifluoromethyl)propyl)quinoxalin-2(1*H*)-one (3f)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **3f** (50.0 mg, 56%) as a yellow solid. Mp 74-77 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.13 (s, 1H), 7.80 (d, *J* = 8.1 Hz, 1H), 7.44-7.48 (m, 1H), 7.29-7.33 (m, 2H), 7.07 (d, *J* = 8.7 Hz, 2H), 6.76 (d, *J* = 8.7 Hz, 2H), 5.40 (s, 2H), 3.67 (s, 3H), 3.58 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -77.10 (s, 6F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 159.4, 156.7, 153.6, 133.0, 131.8, 131.5, 130.5, 128.3, 126.2, 124.9, 122.9 (q, *J* = 289.9 Hz), 115.0, 114.5, 76.6 (quint, *J* = 29.3 Hz), 55.3, 46.1, 36.0; **IR** (thin film) *v* 2920, 1654, 1512, 1269, 1210, 1175, 1140, 1029, 754, 719 cm⁻¹; **MS** (ESI): *m/z* 447.0 [M+H]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₂₀H₁₇F₆N₂O₃ [M+H]⁺: 447.1138; Found: 447.1136.

1-([1,1'-Biphenyl]-4-ylmethyl)-3-(3,3,3-trifluoro-2-hydroxy-2-(trifluoromethyl)propyl)quinoxalin-2(1*H*)-one (3g)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **3g** (49.3 mg, 50%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.08 (s, 1H), 7.81 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.46-7.38 (m, 4H), 7.35-7.27 (m, 6H), 7.27-7.21 (m, 1H), 7.06 (d, *J* = 7.9 Hz, 1H), 5.51 (s, 2H), 3.60 (s, 2H); ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -77.04 (s, 6F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 156.7, 153.6, 142.3, 140.3, 134.7, 133.0, 131.9, 131.7, 130.5, 129.7, 128.9, 127.7, 127.1, 127.0, 125.4 (d, *J* = 6.1 Hz), 125.1, 122.9 (q, *J* = 289.9 Hz), 115.0, 76.7 (quint, *J* =29.3 Hz), 46.7, 36.0; **IR** (thin film) *v* 2922, 1599, 1265, 1202, 1144, 1038,

993, 752, 698, 469 cm⁻¹; **MS** (ESI): m/z 493.0 [M+H]⁺; **HRMS** (ESI-TOF): m/zCalculated for C₂₅H₁₉F₆N₂O₂ [M+H]⁺: 493.1345; Found: 493.1342.

Ethyl 4-((2-oxo-3-(3,3,3-trifluoro-2-hydroxy-2-

(trifluoromethyl)propyl)quinoxalin-1(2*H*)-yl)methyl)benzoate (3h)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 6:1) to afford **3h** (62.5 mg, 64%) as a yellow solid. Mp 110-112 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.96 (s, 1H), 7.94 (s, 1H), 7.92 (s, 1H), 7.84 (dd, J = 8.0, 1.5 Hz, 1H), 7.47-7.43 (m, 1H), 7.36-7.32 (m, 1H), 7.20-7.16 (m, 3H), 5.53 (s, 2H), 4.27 (q, J = 7.1 Hz, 2H), 3.60 (s, 2H), 1.28 (t, J = 7.1 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -77.12 (s, 6F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 165.9, 156.5, 153.7, 139.1, 132.9, 131.7, 131.6, 130.6, 130.44, 130.42, 126.6, 125.2, 122.9 (q, J = 289.9 Hz), 114.7, 76.6 (quint, J = 29.3 Hz), 61.2, 46.4, 35.7, 14.3; **IR** (thin film) v 2921, 1707, 1629, 1587, 1278, 1228, 1169, 1020, 998, 753, 430 cm⁻¹; MS (ESI): m/z 489.0 [M+H]⁺; **HRMS** (ESI-TOF): m/z Calculated for C₂₂H₁₉F₆N₂O₄ [M+H]⁺: 489.1244; Found: 489.1240.

4-((2-Oxo-3-(3,3,3-trifluoro-2-hydroxy-2-(trifluoromethyl)propyl)quinoxalin-1(2*H*)-yl)methyl)benzonitrile (3i)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 6:1) to afford **3i** (59.1 mg, 67%) as a yellow solid. Mp 108-110 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.87 (s, 1H), 7.85 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.57-7.52 (m, 2H), 7.51-7.46 (m, 1H), 7.38-7.34 (m, 1H), 7.22 (d, *J* = 8.2 Hz, 2H), 7.16 (dd, *J* = 8.5, 1.1 Hz, 1H), 5.53 (s, 2H), 3.59 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm - 77.11 (s, 6F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 155.4, 152.7, 138.5, 132.0, 131.8, 130.8, 130.5, 129.7, 126.4, 124.3, 121.9 (q, J = 289.9 Hz), 117.1, 113.3, 111.2, 75.5 (quint, J = 29.3 Hz), 45.1, 34.4; **IR** (thin film) v 2918, 2230, 1627, 1585, 1272, 1201, 1150, 993, 760, 602 cm⁻¹; **MS** (ESI): m/z 442.0 [M+H]⁺; **HRMS** (ESI-TOF): m/z Calculated for C₂₀H₁₄F₆N₃O₂ [M+H]⁺: 442.0985; Found: 442.0982.

1-(4-Nitrobenzyl)-3-(3,3,3-trifluoro-2-hydroxy-2-(trifluoromethyl)propyl)quinoxalin-2(1*H*)-one (3j)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 6:1) to afford **3j** (55.3 mg, 60%) as a yellow solid. Mp 118-120 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.24 (s, 1H), 8.21 (s, 1H), 7.98-7.95 (m, 2H), 7.62-7.58 (m, 1H), 7.50-7.46 (m, 1H), 7.39 (d, *J* = 8.3 Hz, 2H), 7.29-7.25 (m, 1H), 5.68 (s, 2H), 3.71 (s, 2H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -77.11 (s, 6F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 156.4, 153.7, 147.7, 141.5, 132.8, 131.9, 131.4, 130.8, 127.6, 125.4, 124.4, 122.9 (q, *J* = 289.9 Hz), 114.4, 76.6 (quint, *J* = 29.3 Hz), 45.9, 35.4; **IR** (thin film) *v* 3152, 1632, 1525, 1348, 1201, 1151, 1037, 755, 711, 595 cm⁻¹; **MS** (ESI): *m/z* 462.0 [M+H]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₉H₁₄F₆N₃O₄ [M+H]⁺: 462.0883; Found: 462.0878.

1-(4-Fluorobenzyl)-3-(3,3,3-trifluoro-2-hydroxy-2-(trifluoromethyl)propyl)quinoxalin-2(1*H*)-one (3k)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 6:1) to afford **3k** (46.0 mg, 53%) as a yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ ppm 8.02 (s, 1H), 7.92-7.80 (m, 1H), 7.50-7.46 (m, 1H), 7.36-7.32 (m,

1H), 7.28-7.26 (m, 1H), 7.14-7.11 (m, 2H), 6.96-6.92 (m, 2H), 5.44 (s, 2H), 3.59 (s, 2H); ¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -77.13 (s, 6F), -113.49 to -113.56 (m, 1F); ¹³**C NMR** (101 MHz, CDCl₃) δ 162.3 (d, J = 252.5 Hz), 156.5, 153.6, 132.9, 131.7, 130.6, 130.0 (d, J = 4.0 Hz), 128.7 (d, J = 8.1 Hz), 125.1, 122.9 (q, J = 289.9 Hz), 116.3, 116.1, 114.7, 76.6 (quint, J = 29.3 Hz), 45.9, 35.8; **IR** (thin film) v 2926, 1585, 1273, 1200, 1145, 1038, 1055, 993, 752, 722 cm⁻¹; **MS** (ESI): m/z 435.0 [M+H]⁺; **HRMS** (ESI-TOF): m/z Calculated for C₁₉H₁₄F₇N₂O₂ [M+H]⁺: 435.0938; Found: 435.0935.

1-(2-Chlorobenzyl)-3-(3,3,3-trifluoro-2-hydroxy-2-(trifluoromethyl)propyl)quinoxalin-2(1*H*)-one (3l)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 6:1) to afford **31** (45.0 mg, 50%) as a yellow solid. Mp 68-70 °C. ¹H **NMR** (400 MHz, CDCl₃) δ ppm 7.94 (s, 1H), 7.91-7.78 (m, 1H), 7.52-7.42 (m, 1H), 7.41-7.32 (m, 2H), 7.18-7.14 (m, 1H), 7.09-7.02 (m, 2H), 6.57-6.55 (m, 1H), 5.56 (s, 2H), 3.61 (s, 2H); ¹⁹F **NMR** (376 MHz, CDCl₃) δ ppm -77.10 (s, 6F); ¹³C **NMR** (101 MHz, CDCl₃) δ ppm 156.7, 153.6, 132.8, 132.6, 131.8, 131.6, 131.3, 130.5, 130.0, 129.3, 127.6, 126.5, 125.2, 122.9 (q, *J* = 289.9 Hz), 114.8, 76.6 (quint, *J* = 29.3 Hz), 44.2, 35.8; **IR** (thin film) *v* 3168, 2918, 1632, 1233, 1202, 1144, 1035, 992, 756, 506 cm⁻¹; **MS** (ESI): *m/z* 451.0 [M+H]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₉H₁₄ClF₆N₂O₂ [M+H]⁺: 451.0643; Found: 451.0639.

1-(3-Bromobenzyl)-3-(3,3,3-trifluoro-2-hydroxy-2-(trifluoromethyl)propyl)quinoxalin-2(1*H*)-one (3m)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 6:1) to afford **3m** (62.3 mg, 63%) as a yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.96 (s, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.51-7.47 (m, 1H), 7.37-7.34 (m, 2H), 7.29 (s, 1H), 7.23-7.21 (m, 1H), 7.14-7.10 (m, 1H), 7.03-7.01 (m, 1H), 5.44 (s, 2H), 3.60 (s, 2H); ¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -77.12 (s, 6F); ¹³**C NMR** (101 MHz, CDCl₃) δ ppm 156.5, 153.7, 136.4, 132.8, 131.8, 131.6, 131.4, 130.8, 130.6, 129.8, 125.3, 125.2, 123.2, 122.9 (q, *J* = 289.9 Hz), 114.7, 76.6 (quint, *J* = 29.3 Hz), 45.9, 35.6; **IR** (thin film) *v* 2926, 1629, 1586, 1265, 1200, 1179, 1144, 933, 754, 724 cm⁻¹; **MS** (ESI): *m/z* 494.9 [M+H]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₉H₁₄BrF₆N₂O₂ [M+H]⁺: 495.0137; Found: 495.0135.

3-(3,3,3-Trifluoro-2-hydroxy-2-(trifluoromethyl)propyl)-1-(4-(trifluoromethyl)benzyl)quinoxalin-2(1*H*)-one (3n)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 6:1) to afford **3n** (53.3 mg, 55%) as a yellow solid. Mp 84-87 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.05 (s, 1H), 7.97 (d, *J* = 7.9 Hz, 1H), 7.64-7.62 (m, 2H), 7.59-7.57 (m, 1H), 7.49-7.45 (m, 1H), 7.38-7.29 (m, 3H), 5.65 (s, 2H), 3.71 (s, 2H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -62.73 (s, 3F), -77.12 (s, 6F); ¹³C NMR (101 MHz, CDCl₃) δ 156.5, 153.7, 138.2, 132.9, 131.8, 131.6, 130.7, 130.3, 127.0, 126.2 (q, *J* = 4.0 Hz), 125.3, 123.8 (q, *J* = 273.7 Hz), 122.9 (q, *J* = 289.9 Hz), 114.6, 76.6 (quint, *J* = 29.3 Hz), 46.1, 35.7; **IR** (thin film) *v* 2919, 1630, 1321, 1205, 1165, 1111, 1066, 988, 756, 592 cm⁻¹; **MS** (ESI): *m/z* 485.0 [M+H]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₂₀H₁₄F₉N₂O₂ [M+H]⁺: 485.0906; Found: 485.0904.

1-Allyl-3-(3,3,3-trifluoro-2-hydroxy-2-(trifluoromethyl)propyl)quinoxalin-2(1*H*)one(3o)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **30** (29.3 mg, 40%) as a yellow solid. Mp 48-51 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.06 (s, 1H), 7.84 (d, *J* = 8.1 Hz, 1H), 7.62-7.49 (m, 1H), 7.39-7.35 (m, 1H), 7.31 (d, *J* = 8.5 Hz, 1H), 5.91-5.83 (m, 1H), 5.24 (dd, *J* = 10.4, 1.3Hz, 1H), 5.05 (dd, *J* = 17.2, 1.6 Hz, 1H), 4.96-4.83 (m, 2H), 3.56 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -77.18 (s, 6F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 156.1, 153.6, 132.8, 131.7, 131.5, 130.4, 129.5, 124.9, 122.9 (q, *J* = 289.9 Hz), 118.7, 114.7, 76.6 (quint, *J* = 29.3 Hz), 45.2, 35.7; **IR** (thin film) *v* 2919, 1631, 1588, 1210, 1186, 1142, 1034, 962, 757, 707 cm⁻¹; MS (ESI): *m/z* 367.0 [M+H]⁺; HRMS (ESI-TOF): *m/z* Calculated for C₁₅H₁₃F₆N₂O₂ [M+H]⁺: 367.0876; Found: 367.0874.

1-(2-Oxo-2-phenylethyl)-3-(3,3,3-trifluoro-2-hydroxy-2-(trifluoromethyl)propyl)quinoxalin-2(1*H*)-one (3p)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 6:1) to afford **3p** (49.7 mg, 56%) as a yellow solid. Mp 112-114 °C. ¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.97 (s, 1H), 7.95 (d, *J* = 1.3 Hz, 1H), 7.93 (s, 1H), 7.82 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.62-7.58 (m, 1H), 7.48-7.42 (m, 3H), 7.34-7.30 (m, 1H), 6.96 (d, *J* = 8.0 Hz, 1H), 5.70 (s, 2H), 3.54 (s, 2H); ¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -77.15 (s, 6F); ¹³**C NMR** (101 MHz, CDCl₃) δ ppm 189.0, 155.1, 152.3, 133.7, 133.1, 131.6, 131.0, 130.6, 129.5, 128.2, 127.1, 124.0, 121.9 (q, *J* = 289.9 Hz), 112.9, 75.5 (quint, *J* = 29.3 Hz), 48.0, 34.1; **IR** (thin film) *v* 2951, 1657, 1226, 1198, 1179, 1164, 1024, 976, 755, 687 cm⁻¹; **MS** (ESI): *m/z* 445.0 [M+H]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₂₀H₁₅F₆N₂O₃ [M+H]⁺: 445.0981; Found: 445.0981.

1,6,7-Trimethyl-3-(3,3,3-trifluoro-2-hydroxy-2-(trifluoromethyl)propyl)quinoxalin-2(1*H*)-one (3q)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **3q** (30.9 mg, 42%) as a yellow solid. Mp 96-98 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.28 (s, 1H), 7.56 (s, 1H), 7.09 (s, 1H), 3.67 (s, 3H), 3.49 (s, 2H), 2.37 (s, 3H), 2.29 (s, 3H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm - 77.19 (s, 6F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 155.5, 150.9, 140.9, 133.2, 130.2, 129.6, 129.2, 122.0 (q, *J* = 289.9 Hz), 113.6, 75.6 (quint, *J* = 29.3 Hz), 34.7, 28.7, 19.6, 18.2; **IR** (thin film) *v* 2922, 1603, 1261, 1228, 1203, 1141, 1039, 1019, 965, 803, 579 cm⁻¹; **MS** (ESI): *m/z* 369.0 [M+H]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₅H₁₅F₆N₂O₂ [M+H]⁺: 369.1032; Found: 369.1031.

6-Chloro-1-methyl-3-(3,3,3-trifluoro-2-hydroxy-2-(trifluoromethyl)propyl)quinoxalin-2(1*H*)-one (3r)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 6:1) to afford **3r** (36.7 mg, 49%) as a yellow solid. Mp 84-86 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.87 (s, 1H), 7.83 (d, *J* = 2.4 Hz, 1H), 7.55 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.29 (d, *J* = 8.9 Hz, 1H), 3.71 (s, 3H), 3.53 (s, 2H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -77.15 (s, 6F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 155.2, 154.0, 132.1, 130.6, 130.2, 129.5, 128.6, 128.9 (q, *J* = 289.9 Hz), 114.3, 75.5 (quint, *J* = 29.3 Hz), 35.0, 29.0; **IR** (thin film) *v* 2918, 1627, 1581, 1421, 1265, 1213, 1191, 1141, 1043, 969, 817, 716 cm⁻¹; **MS** (ESI): *m/z* 375.0 [M+H]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₃H₁₀ClF₆N₂O₂ [M+H]⁺: 375.0330; Found: 375.0326.

4. General Procedures for Hexafluoroisopropoxylation of Quinoxalin-2(1*H*)-ones

To a sealed tube equipped with a stir bar were added 1 (0.2 mmol, 1.0 equiv), Cu_2O (2.9 mg, 0.02 mmol, 10 mol%), $PhI(OAc)_2$ (193.2 mg, 0.6 mmol, 3.0 equiv), and K_2CO_3 (41.4 mg, 0.3 mmol, 1.5 equiv). The tube was evacuated and backfilled with pure N_2 for three times. Then HFIP (3.0 mL) was added. The tube was sealed and the mixture was heated at 100 °C for 12 h. After the reaction was complete, the volatile components were removed under reduced pressure. Water was added, the resulting mixture was extracted with EtOAc for three times. The combined organic layer was washed with brine, dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure. The resulting residue was purified by silica gel flash column chromatography to give the product 4.

3-((1,1,1,3,3,3-Hexafluoropropan-2-yl)oxy)-1-methylquinoxalin-2(1H)-one (4a)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **4a** (47.0 mg, 72%) as a white solid. Mp 152-154 °C. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.70 (d, *J* = 7.9 Hz, 1H), 7.57-7.54 (m, 1H), 7.40-7.34 (m, 2H), 6.57-6.53 (m, 1H), 3.78 (s, 3H); ¹⁹F NMR (565 MHz, CDCl₃) δ ppm -72.75 (d, *J* = 6.1 Hz, 6F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 150.4, 149.5, 132.6, 129.1, 128.9, 128.1, 124.4, 120.7 (q, *J* = 281.8 Hz), 113.9, 68.2 (quint, *J* = 34.9 Hz), 29.7; **IR** (thin film) *v* 2970, 1673, 1621, 1232, 1190, 1104, 1086, 1013, 765, 687 cm⁻¹; **MS** (ESI): *m/z* 327.0 [M+H]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₂H₉F₆N₂O₂ [M+H]⁺: 327.0563; Found: 327.0564.

1-Butyl-3-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)quinoxalin-2(1H)-one (4b)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **4b** (42.7 mg, 58%) as a yellow solid. Mp 62-64 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.59 (dd, J = 8.1, 1.6 Hz, 1H), 7.51-7.39 (m, 1H), 7.30-7.22 (m, 2H), 6.49-6.40 (m, 1H), 4.21 (t, J = 8.0 Hz, 2H), 1.80-1.62 (m, 2H), 1.47-1.37 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm - 72.75 (d, J = 6.0 Hz, 6F); ¹³C NMR (101 MHz, CDCl₃) δ 149.4, 148.2, 130.8, 128.2, 128.0, 127.3, 123.2, 119.7 (q, J = 283.9 Hz), 113.0, 67.2 (quint, J = 283.9 Hz), 41.9, 28.2, 19.2, 12.7; **IR** (thin film) *v* 2954, 1681, 1374, 1230, 1185, 1099, 1053, 871, 754, 690 cm⁻¹; **MS** (ESI): *m/z* 369.0 [M+H]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₅H₁₅F₆N₂O₂ [M+H]⁺: 369.1032; Found: 369.1035.

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **4d** (49.0 mg, 61%) as a yellow solid. Mp 99-101 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.59 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.34-7.30 (m, 1H), 7.27-7.19 (m, 7H), 6.51-6.44 (m, 1H), 5.45 (s, 2H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -72.63 (d, *J* = 6.1 Hz, 6F); ¹³C NMR (101 MHz, CDCl₃) δ 149.4, 148.8, 133.6, 130.9, 128.1, 128.03, 127.99, 127.2, 126.9, 126.0, 123.4, 119.7 (q, *J* = 284.8 Hz), 113.8, 67.3 (quint, *J* = 34.3 Hz), 45.6; **IR** (thin film) *v* 2967, 1657, 11621, 1238, 1189, 1105, 1088, 761, 701, 689 cm⁻¹; **MS** (ESI): *m/z* 403.0 [M+H]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₈H₁₃F₆N₂O₂ [M+H]⁺: 403.0876; Found: 403.0878.

1-((1,1,1,3,3,3-Hexafluoropropan-2-yl)oxy)-1-(4-methylbenzyl)quinoxalin-2(1*H*)one (4e)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **4e** (34.1 mg, 41%) as a white solid. Mp 106-108 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.58 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.37-7.28 (m, 1H), 7.27-7.17 (m, 2H), 7.11 (d, *J* = 7.9 Hz, 2H), 7.04 (d, *J* = 7.9 Hz, 2H), 6.50-6.44 (m, 1H), 5.40 (s, 2H), 2.22 (s, 3H); ¹⁹F NMR (377 MHz, CDCl₃) δ -72.63 (d, *J* = 6.1 Hz, 6F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 149.4, 148.7, 136.8, 130.9, 130.6, 128.6, 128.1, 128.0, 127.1, 126.1, 123.4, 119.7 (q, *J* = 281.8 Hz), 113.8, 67.3 (quint, *J* = 34.3 Hz), 45.4, 20.0; **IR** (thin film) *v* 2963, 1683, 1622, 1260, 1235, 1184, 1095, 1074, 867, 745, 687 cm⁻¹; **MS** (ESI): *m/z* 416.9 [M+H]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₉H₁₅F₆N₂O₂ [M+H]⁺: 417.1032; Found: 417.1035.

3-((1,1,1,3,3,3-Hexafluoropropan-2-yl)oxy)-1-(4-(trifluoromethyl)benzyl)quinoxalin-2(1*H*)-one (4n)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **4n** (39.5 mg, 42%) as a yellow solid. Mp 96-98 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.62 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.51 (d, *J* = 8.1 Hz, 2H), 7.38-7.29 (m, 3H), 7.28-7.24 (m, 1H), 7.17-7.02 (m, 1H), 6.50-6.44 (m, 1H), 5.50 (s, 2H); ¹⁹F NMR (377 MHz, CDCl₃) δ -62.75 (s, 3F), -72.67 (d, *J* = 6.1 Hz, 6F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 149.4, 148.7, 137.7, 130.7, 129.4 (q, *J* = 3.3 Hz), 128.2, 128.1, 127.4, 126.4, 125.0 (q, *J* = 3.7 Hz), 123.7, 128.8 (q, *J* = 272.7 Hz), 119.7 (q, *J* = 283.8 Hz), 113.4, 67.4 (quint, *J* = 33.3Hz), 45.2; **IR** (thin film) *v* 2963, 1678, 1619, 1241, 1192, 1166, 1103, 1066, 1003, 748, 690 cm⁻¹; **MS** (ESI): *m/z* 471.0 [M+H]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₉H₁₂F₉N₂O₂ [M+H]⁺: 471.0750; Found: 471.0752.

2-((1,1,1,3,3,3-Hexafluoropropan-2-yl)oxy)-1,6,7-trimethylquinoxalin-2(1*H*)-one (4q)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **4q** (46.0 mg, 65%) as a yellow solid. Mp 140-142 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.35 (s, 1H), 6.99 (s, 1H), 6.46-6.40 (m, 1H), 3.63 (s, 3H), 2.32 (s, 3H), 2.25 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -72.79 (d, J = 6.2 Hz, 6F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 148.8, 148.5, 137.7, 132.4, 129.5, 127.2, 125.9, 119.8 (q, J = 284.8 Hz), 113.5, 67.1 (quint, J = 35.4 Hz), 28.6, 19.3, 18.1; **IR** (thin film) ν 2970, 1672, 1626, 1259, 1232, 1188, 1103, 1083, 880, 688 cm⁻¹; **MS** (ESI): m/z 355.0 [M+H]⁺; **HRMS** (ESI-TOF): m/z Calculated for C₁₄H₁₃F₆N₂O₂ [M+H]⁺: 355.0876; Found: 355.0877.

6-Chloro-3-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)-1-methylquinoxalin-2(1*H*)one (4r)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **4r** (41.8 mg, 58%) as a yellow solid. Mp 106-108 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.61 (d, J = 2.4 Hz, 1H), 7.42 (dd, J = 8.9, 2.4 Hz, 1H), 7.22-7.16 (m, 1H), 6.42-6.36 (m, 1H), 3.67 (s, 3H); ¹⁹F NMR (377 MHz, CDCl₃) δ ppm -72.72 (d, J = 6.0 Hz, 6F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 150.2, 148.1, 130.2, 128.8, 128.6, 128.1, 126.5, 119.5 (q, J = 285.8 Hz), 114.0, 67.4 (quint, J = 35.3 Hz), 28.9; **IR** (thin film) ν 2919, 1676, 1614, 1220, 1196, 1104, 1080, 1011, 803, 685 cm⁻¹; **MS** (ESI): m/z 361.0 [M+H]⁺; **HRMS** (ESI-TOF): m/z Calculated for C₁₂H₈ClF₆N₂O₂ [M+H]⁺: 361.0173; Found: 361.0173.

3-((1,1,1,3,3,3-Hexafluoropropan-2-yl)oxy)-1-hexylquinoxalin-2(1*H*)-one (4s)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to afford **4s** (49.9 mg, 63%) as a white solid. Mp 86-88 °C. ¹H **NMR** (400 MHz, CDCl₃) δ ppm 7.65-7.57 (m, 1H), 7.46-7.42 (m, 1H), 7.28-7.23 (m, 2H), 6.47-6.41 (m, 1H), 4.20 (t, *J* = 10.6 Hz, 2H), 1.74-1.67 (m, 2H), 1.40-1.36 (m, 2H), 1.31-1.24 (m, 4H), 0.82 (t, *J* = 7.0 Hz, 3H); ¹⁹F **NMR** (377 MHz, CDCl₃) δ ppm -72.74 (d, *J* = 6.1 Hz, 6F); ¹³C **NMR** (101 MHz, CDCl₃) δ ppm 149.4, 148.2, 130.8, 128.2, 128.0, 127.3, 123.2, 119.7 (q, *J* = 283.8 Hz), 112.9, 67.2 (quint, *J* = 34.3 Hz), 42.1, 30.4, 26.1, 25.6, 21.5, 12.9; **IR** (thin film) *v* 2966, 1683, 1621, 1262, 1217, 1186, 1100, 1079, 754, 690 cm⁻¹; **MS** (ESI): *m/z* 397.1 [M+H]⁺; **HRMS** (ESI-TOF): *m/z* Calculated for C₁₇H₁₉F₆N₂O₂ [M+H]⁺: 397.1345; Found: 397.1347.

3-((1,1,1,3,3,3-Hexafluoropropan-2-yl)oxy)quinoxalin-2(1*H*)-one (4t)

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 6:1) to afford **4t** (31.2 mg, 50%) as a white solid. Mp 142-144 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 12.26 (s, 1H), 7.60 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.56-7.47 (m, 1H), 7.47-7.38 (m, 1H), 7.32-7.27(m, 1H), 6.54-6.48 (m, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -72.76 (d, *J* = 6.0 Hz, 6F); ¹³C NMR (101 MHz, CDCl₃) δ ppm 150.9, 150.7, 130.4, 129.3, 129.2, 127.1, 125.0, 120.7 (q, *J* = 282.8 Hz), 116.2, 68.3 (quint, *J* = 34.3 Hz); **IR** (thin film) *v* 2971, 2902, 1691, 1587, 1374, 1290, 1238, 1183, 1107, 1081, 872, 754, 466 cm⁻¹; MS (ESI): *m/z* 313.0 [M+H]⁺; HRMS (ESI-TOF): *m/z* Calculated for C₁₁H₇F₆N₂O₂ [M+H]⁺: 313.0406; Found: 313.0406.

6-Bromo-3-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)quinoxalin-2(1*H*)-one (4u) Br \land N \downarrow O \downarrow CF₂

The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 6:1) to afford **4u** (32.8 mg, 42%) as a yellow solid. Mp 122-124 °C. ¹H NMR (400 MHz, DMSO- d_6) δ ppm 12.96 (s, 1H), 7.81-7.79 (m, 1H), 7.70-7.66 (m, 1H), 7.38-7.29 (m, 1H), 7.27-7.23 (m, 1H); ¹⁹F NMR (376 MHz, DMSO- d_6) δ ppm -72.04 (d, J = 5.9 Hz, 6F); ¹³C NMR (101 MHz, DMSO- d_6) δ ppm 152.2, 149.5, 131.8, 131.3, 129.9, 129.0, 121.2 (q, J = 283.8 Hz), 117.7, 115.4, 68.1 (quint, J = 33.3

Hz); **IR** (thin film) *v* 2922, 1680, 1612, 1259, 1198, 1104, 1079, 1002, 873, 688, 518 cm⁻¹; **MS** (ESI): m/z 390.9 [M+H]⁺; **HRMS** (ESI-TOF): m/z Calculated for C₁₁H₆BrF₆N₂O₂ [M+H]⁺: 390.9511; Found: 390.9515.

5. Scale-Up Experiments

To a sealed tube equipped with a stir bar were added **1a** (160.2 mg, 1.0 mmol), CuBr (14.3 mg, 0.1 mmol), and K₂CO₃ (207.3 mg, 1.5 mmol). The tube was evacuated and backfilled with pure N₂ for three times. Then, *tert*-butyl peroxybenzoate (582.7 mg, 3.0 mmol) and hexafluoroisopropanol (15.0 mL) was added. The tube was sealed and the mixture was heated at 100 °C for 12 h. After the reaction was complete, the volatile components were removed under reduced pressure. Water was added, and the resulting mixture was extracted with EtOAc for three times. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The resulting residue was purified by silica gel flash column chromatography (hexane/EtOAc = 10:1) to give **3a** (198.0 mg, 58%) as a yellow solid.

To a sealed tube equipped with a stir bar were added **1a** (160.2 mg, 1.0 mmol), Cu_2O (14.3 mg, 0.1 mmol), PhI(OAc)₂ (966.3 mg, 3.0 mmol), and K₂CO₃ (207.3 mg, 1.5 mmol). The tube was evacuated and backfilled with pure N₂ for three times. Then hexafluoroisopropanol (15.0 mL) was added. The tube was sealed and the mixture was heated at 100 °C for 12 h. After the reaction was complete, the volatile components were removed under reduced pressure. Water was added, and the resulting mixture was extracted with EtOAc for three times. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The resulting residue was purified by silica gel flash column chromatography (hexane/EtOAc = 10:1) to give **4a** (198.3 mg, 61%) as a white solid.

6. Control Experiments

Radical Inhibition Experiments

To a sealed tube equipped with a stir bar were added **1a** (16.0 mg, 0.1 mmol), CuBr (1.4 mg, 0.01 mmol), K₂CO₃ (20.7 mg, 0.15 mmol) and 2,2,6,6tetramethylpiperidine-1-oxyl (TEMPO, 46.9 mg, 0.3 mmol). The tube was evacuated and backfilled with pure N₂ for three times. Then *tert*-butyl peroxybenzoate (58.3 mg, 0.3 mmol) and hexafluoroisopropanol (1.5 mL) was added. The tube was sealed and the mixture was heated at 100 °C for 12 h. The internal standard PhCF₃ (12.3 μ L, 0.1 mmol) was added, and the solution was analyzed by ¹⁹F NMR spectroscopy. The ¹⁹F NMR spectroscopy indicated that the desired product **3a** was completely inhibited in the presence of TEMPO. Furthermore, the GC-MS of the reaction mixture indicated the formation of TEMPO-Me adduct.

To a sealed tube equipped with a stir bar were added **1a** (16.0 mg, 0.1 mmol), Cu_2O (1.4 mg, 0.01 mmol), $PhI(OAc)_2$ (96.6 mg, 0.3 mmol), TEMPO (46.9 mg, 0.3 mmol) and K_2CO_3 (20.7 mg, 0.15 mmol). The tube was evacuated and backfilled with pure N₂ for three times. Then hexafluoroisopropanol (1.5 mL) was added. The tube was sealed and the mixture was heated at 100 °C for 12 h. The internal standard PhCF₃ (12.3 µL, 0.1 mmol, 1.0 equiv) was added, and the solution was analyzed by ¹⁹F NMR spectroscopy. The ¹⁹F NMR spectroscopy indicated that the desired product **4a** was completely inhibited in the presence of TEMPO.

Formation of 5a

To a sealed tube equipped with a stir bar were added **1a** (48.1 mg, 0.3 mmol), CuBr (4.3 mg, 0.03 mmol), and K₂CO₃ (62.2 mg, 0.45 mmol). The tube was evacuated and backfilled with pure N₂ for three times. Then *tert*-butyl peroxybenzoate (174.6 mg, 0.9 mmol) and DMSO (2.0 mL) was added. The tube was sealed and the mixture was heated at 100 °C for 12 h. After the reaction was complete, water was added, and the resulting mixture was extracted with EtOAc for three times. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The product mixture was purified by silica gel column chromatography (hexane/EtOAc = 5:1) to afford **5a** (42.8 mg, 82%) as a yellow solid. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.75 (d, *J* = 6.7 Hz, 1H), 7.48 (s, 1H), 7.37-7.21 (m, 2H), 3.65 (s, 3H), 2.56 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ ppm 158.3, 155.1, 133.2, 132.6, 129.5, 129.3, 123.6, 113.6, 29.0, 21.6. These assignments matched with those previously reported in the literature⁴. **Reaction of 5a with HFIP and TBPB**

To a sealed tube equipped with a stir bar were added **5a** (34.8 mg, 0.2 mmol), CuBr (2.8 mg, 0.02 mmol), and K₂CO₃ (41.4 mg, 0.3 mmol). The tube was evacuated and backfilled with pure N₂ for three times. Then *tert*-butyl peroxybenzoate (116.5 mg, 0.6 mmol) and hexafluoroisopropanol (3.0 mL) was added. The tube was sealed and the mixture was heated at 100 °C for 12 h. After the reaction was complete, water was added, and the resulting mixture was extracted with EtOAc for three times. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The resulting residue was purified by silica gel flash column chromatography (hexane/EtOAc = 10:1) to give **3a** (54.6 mg, 80%) as a yellow solid.

Reaction of 5a with HFIP

To a sealed tube equipped with a stir bar were added **5a** (34.8 mg, 0.2 mmol), CuBr (2.8 mg, 0.02 mmol), and K₂CO₃ (41.4 mg, 0.3 mmol). The tube was evacuated and backfilled with pure N₂ for three times. Then hexafluoroisopropanol (3.0 mL) was added. The tube was sealed and the mixture was heated at 100 °C for 12 h. Thin-layer chromatography (TLC) of the reaction mixture indicated that most of **5a** was not converted, and none of **3a** could be detected by ¹⁹F NMR spectroscopy.

Reaction of 5a with hexafluoroacetone

To a sealed tube equipped with a stir bar were added **5a** (34.8 mg, 0.2 mmol), CuBr (2.8 mg, 0.02 mmol), and K₂CO₃ (41.4 mg, 0.3 mmol). The tube was evacuated and 2-methylpropan-2-ol (2.0 mL) was added followed by the addition of hexafluoroacetone gas (prepared from hexafluoroacetone trihydrate through dehydration with conc. H₂SO₄). The tube was sealed and the mixture was heated at 100 °C for 12 h. After the reaction was complete, water was added, and the resulting mixture was extracted with EtOAc for three times. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The resulting residue was purified by silica gel flash column chromatography (hexane/EtOAc = 10:1) to give **3a** (51.7 mg, 76%) as a yellow solid.

7. ORTEP Drawing of the X-Ray Crystallographic Structure of Product 3j

The crystals were obtained from a solution of EtOAc and hexane upon slow volatilization. The X-ray intensity data were measured at 293(2) K, on a Rigaku AFC7R diffractometer.

The crystal structure has been deposited at the Cambridge Crystallographic Date Center and allocated the deposition number CCDC 2019594. The thermal ellipsoids are shown at the 30% probability level. This data can be obtained free of charge from the Cambridge Crystallographic Date Center via www.ccdc.cam.ac.uk/data_request/cif

Crystal data and structure refinement for 3j

Identification code	3ј	
Empirical formula	C19 H13 F6 N3 O4	
Formula weight	461.32	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/n	
Unit cell dimensions	a = 10.5749(4) Å	α= 90°.
	b = 11.9556(4) Å	β= 94.2020(10)°.
	c = 15.5244(6) Å	$\gamma = 90^{\circ}$.
Volume	1957.46(12) Å ³	
Ζ	4	
Density (calculated)	1.565 Mg/m ³	
Absorption coefficient	0.148 mm ⁻¹	
F(000)	936	
Crystal size	0.200 x 0.150 x 0.130 mm ³	
Theta range for data collection	2.575 to 25.498°.	
Index ranges	-12<=h<=12, -14<=k<=14, -18<=l<=18	
Reflections collected	28477	
Independent reflections	3625 [R(int) = 0.0385]	
Completeness to theta = 25.242°	99.2 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.6586	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3625 / 1 / 345	
Goodness-of-fit on F ²	1.056	
Final R indices [I>2sigma(I)]	R1 = 0.0427, wR2 = 0.1047	
R indices (all data)	R1 = 0.0549, wR2 = 0.1158	
Extinction coefficient	0.037(4)	
Largest diff. peak and hole	0.289 and -0.169 e.Å ⁻³	

8. References

(1) S. Liu, Y. Huang, F.-L. Qing and X.-H. Xu, Org. Lett., 2018, 20, 5497.

(2) J. Xu, H. Yang, H. Cai, H. Bao, W. Li and P. Zhan, Org. Lett., 2019, 21, 4698.

(3) J. Wang, B. Sun, L. Zhang, T. Xu, Y. Xie and C. Jin, *Org. Chem. Front.*, 2020, 7, 113.

(4) S. Jin, H. Yao, S. Lin, X. You, Y. Yang and Z. Yan, *Org. Biomol. Chem.*, 2020, **18**, 205.

9. Copies of ¹H, ¹⁹F, and ¹³C NMR Spectra for the Products

¹H NMR (400 MHz, CDCl₃)

8. 20 7. 21 7. 21 7. 22 7. 22 7. 25 7.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹³C NMR (101 MHz, CDCl₃)

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

S55

<-72.71 <-72.73

¹H NMR (400 MHz, CDCl₃)

 $\begin{array}{c} 7.60\\ 7.61\\ 7.62\\ 7.62\\ 7.64\\ 7.62\\ 7.64\\ 7.64\\ 7.64\\ 7.64\\ 7.64\\ 7.64\\ 7.23\\ 7.24\\ 7.25\\$

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

¹H NMR (400 MHz, DMSO-d₆)

4u

