Ratiometric sensing of fluoride ions using Raman spectroscopy

Electronic Supplementary Information

William J. Tipping, a Liam T. Wilson, b Sonja K. Blaseio, c Nicholas C. O. Tomkinson, *b Karen Faulds *a and Duncan Graham *a

Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK.

WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.

†Present address: Technische Universität Braunschweig, Institut für Technische Chemie, Franz-Liszt Str. 35a, 38106 Braunschweig, Germany.

*Email: nicholas.tomkinson@strath.ac.uk; karen.faulds@strath.ac.uk; duncan.graham@strath.ac.uk

Contents

Materials and Methods ... 2
Synthesis of Sensor 1 ... 3
NMR Data .. 4
Figure S1-S10 .. 5
References ..11
Materials and Methods

Raman spectroscopy

Raman spectra were acquired on a Renishaw InVia Raman microscope equipped a 785 nm diode laser providing a maximum power of 300 mW using a 1200 l/mm grating.

Neat samples: A small amount of sample compounds 1 or 2 was transferred onto a CaF$_2$ window and Raman spectra were acquired using λ_{ex} = 785 nm and a 20× NA 0.4 NPlanEPI objective (~95 mW, Leica) for 10 s.

Reaction monitoring: The reaction mixture was prepared in a quartz cuvette (500 μL) and Raman spectra were acquired using a 5× NA 0.12 NPlanEPI objective (Leica) or a 20× NA 0.4 NPlanEPI objective (Leica). Spectra were acquired continuously using either a 0.5 s or 1 s acquisition time.

Paper test strips: Whatman™ Qualitative Filter Paper: Grade 1 Circles were cut into 1 cm × 1 cm squares and treated with sensor 1 (100 mM in THF; 10 μL). The strips were air-dried (~5 min at r.t.) and subsequently treated with TBAF (0 – 5 mM in THF up to 300 μL). The test strips were air-dried (~5 min at r.t.) and analysed as per Figure legend.

Handheld detection: Raman spectra were acquired using a handheld CBEx spectrometer with 785 nm laser excitation wavelength, from Snowy Range Instruments (now Metrohm). Measurements were acquired using a 10 s integration time. A point and shoot adaptor with a single element lens (N.A. 0.5) was fitted for detection of the filter paper samples which gave an average laser power of ~55 mW at the focus. Individual spectra were acquired from randomly selected points on the test paper sample.

UV-visible spectrometry

UV-visible spectra were acquired using a Cary 60 (Agilent Technologies) UV-Vis spectrometer. The reaction mixture was prepared in a plastic cuvette (1.5 mL) and sequential UV-Vis spectra across the range 200 – 800 nm were acquired.

Data processing

Raman spectra of reaction mixtures. All spectra were processed in WiRE 4.4™ software enabling cosmic ray removal and baseline subtraction. Peak normalisation (1450 cm$^{-1}$) was performed in OriginPro2018 software and the peak areas determined using the Integrate tool (Sensor 1 2140–2185 cm$^{-1}$; desilylated product 2 2085 –2130 cm$^{-1}$ and nitrile peak 2205 –2255 cm$^{-1}$).

Raman maps on paper test strips: All Raman maps were processed in WiRE 4.4™ software enabling cosmic ray removal, noise filtering and baseline subtraction. A custom MATLAB® script was then used to perform ratiometric analysis on the Raman spectral map (20 μm × 20 μm; 400 spectra). False-colour images for the test paper strips were created based on the peak intensity ratio: 2105 cm$^{-1}$/2160 cm$^{-1}$ and 2231 cm$^{-1}$/2237 cm$^{-1}$. The images were scaled between 0–0.2 (alkyne) or 0–1.0 (nitrile) and are presented in the Parula LUT available in MATLAB®.

Chemical Synthesis

General Procedures

All reagents were obtained from commercial sources, including Sigma-Aldrich, Alfa Aesar and Fluorochem and used without purification unless otherwise stated. The abbreviations Et$_2$O and NEt$_3$ refer to diethyl ether and triethylamine, respectively. The term “in vacuo” refers to evaporation under reduced pressure using a rotary evaporator connected to a diaphragm pump, followed by the removal of trace volatiles using a high vacuum (oil) pump. The term “purged” refers to atmospheric exchange via 3 evacuation/refill cycles using a Schenck line fitted to a cylinder of inert gas and a high vacuum (oil) pump. Flash chromatography was carried out using Fischer Scientific chromatography grade silica 60 Å particle size 35–70 micron. Analytical thin layer chromatography was carried out using aluminium-backed plates coated with Machery-Nagel pre-coated TLC sheets, coated in 0.20 mm silica gel 60 with UV254 fluorescent indicator. Sheets were visualized under UV light (at 254 nm) or stained using p-anisaldehyde. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance
500 spectrometer, operating at 500 MHz (1H) and 125 MHz (13C). Chemical shifts were reported in parts per million (ppm) in the scale relative to CDCl₃, 7.26 ppm for 1H NMR and 77.16 for 13C NMR. Multiplicities are abbreviated as: s, singlet; d, doublet. Coupling constants are measured in Hertz (Hz). Melting points were obtained on a Stuart SMP11 device. Infrared spectra were recorded in the range 4000–600 cm⁻¹ on a Shimadzu IRAffinity-1 equipped with an ATR accessory.

Synthesis of Sensor 1, 4-((trimethylsilyl)ethynyl)benzonitrile

![Structure of Sensor 1](image)

A flame dried 20 mL reaction vial was charged with 4-bromobenzonitrile (273 mg, 1.50 mmol, 1.0 eq), bis(triphenylphosphine)palladium (II) dichloride (10.5 mg, 0.015 mmol, 1 mol%) and copper (I) iodide (3.0 mg, 0.015 mmol, 1 mol%), then sealed purged with nitrogen. NEt₃ (degassed by 3 freeze-pump-thaw cycles, 6 mL) was added to the reaction vial via syringe, followed by (trimethylsilyl)acetylene (230 μL, 1.65 mmol, 1.1 eq) and the reaction was heated to 80 °C with stirring for 4 h. After cooling to ambient temperature, the reaction mixture was diluted with Et₂O (20 mL), filtered through a pad of celite® and evaporated in vacuo. Purified by silica flash chromatography (3% Et₂O/petroleum ether 40–60) to yield the title compound 1 as a white solid (285 mg, 1.43 mmol, 95%).

M.P: 100–102 °C [Lit:¹ 102–103 °C]; FTIR (ATR, cm⁻¹): 3063.0, 2955.0, 2897.1, 2233.6, 2156.4, 1602.9, 1498.7, 1408.0, 2146.0, 1176.6; ¹H NMR (500 MHz, CDCl₃): δ 7.59 (d, J = 8.6 Hz, 2H), 7.53 (d, J = 8.6 Hz, 2H), 0.26 (s, 9H); 13C NMR (126 MHz, CDCl₃): δ 132.6, 132.1, 128.2, 118.6, 111.9, 103.1, 99.7, -0.13.
1H NMR Spectrum of Sensor 1 (500 MHz, CDCl$_3$)

13C NMR Spectrum of Sensor 1 (126 MHz, CDCl$_3$)
Previously reported fluorescent fluoride sensors. The sensors are grouped by function: a metal chelation sensor, boronic acid fluoride sensors, fluoride sensors based on Si-O bond cleavage and fluoride sensors based on Si-C bond cleavage.

Metal-chelation sensor

![Metal-chelation sensor](image)

MW: 476.43 g/mol
Chem. Commun. 2011, 47, 4391

Boronic acid sensors

![Boronic acid sensors](image)

MW: 249.08 g/mol

MW: 317.17 g/mol

Fluorescent sensors based on Si-O bond cleavage

![Fluorescent sensors based on Si-O bond cleavage](image)

MW: 472.61 g/mol
Chem. Commun. 2009, 4735

MW: 496.52 g/mol
Org. Lett. 2010, 12, 1400

MW: 813.94 g/mol

MW: 520.79 g/mol
Chem. Commun. 2011, 47, 7098

MW: 386.49 g/mol
J. Org. Chem. 2011, 76, 3820

Fluorescent sensors based on Si-C bond cleavage

![Fluorescent sensors based on Si-C bond cleavage](image)

MW: 446.45 g/mol
Tetrahedron 2010, 66, 1728

MW: 979.46 g/mol
Chem. Commun. 2011, 47, 5503

MW: 683.05 g/mol

MW: 587.07 g/mol
Org. Biomol. Chem. 2011, 9, 4558

MW: 675.04 g/mol
Org. Lett. 2013, 15, 3518

Figure S1: Previously reported fluorescent fluoride sensors. The sensors are grouped by function: a metal chelation sensor, boronic acid fluoride sensors, fluoride sensors based on Si-O bond cleavage and fluoride sensors based on Si-C bond cleavage.
Figure S2 Analysis of sensor 1 and desilylated product 2 in solid form. Raman spectra were acquired from solid samples of sensor 1 (top, blue trace) and desilylated alkyne 2 (bottom, red trace) using $\lambda_{ex} = 785$ nm for 10 s with a 20× objective lens (~95 mW). Peak assignments are in cm$^{-1}$.

Figure S3 Analysis of the desilylation of sensor 1 using different fluoride sources. Sensor 1 (5 mM) was treated with NaCl, NaF or CsF at a concentration of 50 mM (10 equiv.) in THF:Water (1:1 v/v). Raman spectra were acquired after 30 min at 20 °C using 785 nm for 10 s with a 20× objective lens (~180 mW). **A** Average Raman spectra acquired from 6 replicates normalised to the THF peak at 1450 cm$^{-1}$. **B** Ratio analysis of the 2109 / 2162 cm$^{-1}$ peaks from the 6 replicates in **A**. Error bars: ±S.D.
Figure S4 Control reactions for the desilylation reaction of sensor 1. A A mixture of sensor 1 (5 mM in THF:water 1:1 v/v) was analysed using Raman spectroscopy at t = 0 min and t = 30 min. The acquisitions show no peak at 2109 cm\(^{-1}\) (i.e. no desilylated product 2 was observed). Raman spectra were acquired using 785 nm excitation and a 20× objective lens (~180 mW) for 10 s. B Analysis of sensor 1 with different counter anions. Sensor 1 (5 mM in THF) was treated with either THF (Blank) or TBAX (X= F, Cl, Br; 50 mM prepared from a 100 mM stock in water). Raman spectra were acquired after 30 min at 20 °C using 785 nm for 10 s using a 20× objective lens (~180 mW). Data represents the mean peak area ratio at 2109/2162 cm\(^{-1}\) from three replicates with error bars ± S.D. C and D Analysis of sensor 1 with different counter anions. Sensor 1 (5 mM in THF) was treated with NaX (X= fluoride, acetate, ascorbate, hydrogen carbonate, citrate, nitrate and phosphate; 50 mM prepared from a 100 mM stock in water). Raman spectra were acquired after 30 min at 20 °C using 785 nm for 10 s using a 20× objective lens (~180 mW). Data represents the mean peak area ratio at 2109/2162 cm\(^{-1}\) from three replicates with error bars ± S.D. E As per C and D, but using NaI and at high pH using NaX (X = carbonate and hydroxide) showing decomposition of the sensor occurs.
Figure S5 Solution phase analysis of sensor 1. **A** Calibration curve of sensor 1 in THF. Solutions of sensor 1 were analysed by Raman spectroscopy using $\lambda_{ex} = 785$ nm using a 5× lens (~180 mW) for 30 s (3 accumulations). A linear fitting is applied. **B** Analysis of the reaction of sensor 1 with 1 equiv. TBAF at (i) Sensor 1 (250 μM) + TBAF (250 μM) and (ii) Sensor 1 (500 μM) + TBAF (500 μM). In the samples labelled ‘Blank’, TBAF was replaced with an equal volume of THF. Raman spectra were acquired as per A. Data represent the mean peak area (A_p) ratio at 2109/2162 cm$^{-1}$ from three repeats with error bars ± S.D. **C** Analysis of sensor 1 in THF:PBS (1:1 v/v). A 5 mM solution of sensor 1 was treated with (i) THF:PBS (1:1 v/v) (blank) or (ii) TBAF (50 mM in THF:PBS (1:1 v/v)). Raman spectra were acquired after 15 min at RT using $\lambda_{ex} = 785$ nm using a 5× lens (~180 mW) for 10 s. Spectra representative of 3 repeats.

Figure S6 Analysis of the desilylation of sensor 1 using UV-Vis spectrometry. **A** Sensor 1 (50 μM) was mixed with TBAF (50 μM) in THF and sequentially analysed by UV-Vis spectrometry for 10 min. **B** A plot of absorbance at 275 nm as a function of time for the reaction in A. This reaction shows a decrease in absorbance at ~280 nm which is in good agreement with a similar TMS-protected alkyne – see Supplementary Information File Ref. [2].
Figure S7 Analysing the effect of water upon the desilylation reaction of sensor 1. A Reaction profiles for the desilylation reaction of 1 (50 mM) with TBAF (75 mM) in (i) THF, (ii) THF:water (90:10 v/v) and (iii) THF-water (80:20 v/v). The peak areas (A_p) at 2162 cm$^{-1}$ (C≡C-TMS, 1), 2109 cm$^{-1}$ (desilylated alkyne, 2) and 2230 cm$^{-1}$ (C≡N) are plotted as a function of time. B Control reaction of sensor 1 (50 mM) in the absence of TBAF in THF solution. C Reaction profiles for the decrease in the 2162 cm$^{-1}$ signal (sensor 1) when the %water is varied in the reaction mixture. A_p = peak area at 2162 cm$^{-1}$. Raman spectra were acquired using 785 nm
for 0.5 s using a 5× objective lens (~180 mW) and normalised to the intensity of the THF solvent peak at 1450 cm⁻¹ (CH₂ def). The reaction monitoring started ~5 s after the addition of TBAF.

D Reaction profiles for the desilylation reaction of 1 (5 mM) with TBAF (7.5 mM) in (i) THF, (ii) THF:water (90:10 v/v), (iii) THF:water (80:20 v/v), (iv) THF:water (75:25 v/v) and (v) is a control reaction where [TBAF] = 0 mM. The peak areas (A₀) at 2162 cm⁻¹ (C≡C-TMS, 1) and 2109 cm⁻¹ (desilylated alkyne, 2) are plotted as a function of time. Raman spectra were acquired using 785 nm for 1 s using a 5× objective lens (~180 mW) and normalised to the intensity of the THF solvent peak at 1450 cm⁻¹ (CH₂ def).

Figure S8 Paper-based detection of fluoride using Raman sensor 1 using the ratio of the nitrile band. A These maps accompany those acquired in Figure 4. Filter paper was pre-treated with sensor 1 (100 mM in THF, 10 µL) before air-drying and subsequent treatment with TBAF in THF at the indicated concentrations. Raman maps were acquired across 20 µm × 20 µm (1 µm pixel size; 400 spectra) using 785 nm laser excitation with a 20× objective lens (~180 mW) for 0.5 s. The maps represent the ratio of the nitrile band at 2231 cm⁻¹/2237 cm⁻¹ (for desilylated product/sensor 1). B Expanded view of the Raman spectra presented in Figure 4B, indicating signal at 2109 cm⁻¹ when 125 µM TBAF is added.
Figure S9 Repeat analysis of the paper-based detection of fluoride using Raman sensor 1. Filter paper was pre-treated with sensor 1 (100 mM in THF, 10 µL) before air-drying and subsequent treatment with TBAF in THF at the indicated concentrations. Raman maps were acquired across 20 µm × 20 µm (1 µm pixel size; 400 spectra) using 785 nm laser excitation with a 20× objective lens (~180 mW) for 0.5s. The maps represent the following ratios: A 2105 cm⁻¹/2160 cm⁻¹; B 2231 cm⁻¹/2237 cm⁻¹ (for desilylated product/sensor 1) and C the average Raman spectra from the maps presented in A and B.

Figure S10 Paper-based detection of fluoride using a Raman microscope and a handheld spectrometer. Filter paper was pre-treated with sensor 1 (100 mM in THF, 10 µL) before air-drying and subsequent treatment with TBAF in THF (either 125 µM or 0 µM). Point spectra were acquired using either (A) – (B) a Raman microscope (785 nm laser excitation with a 20× objective lens (~180 mW) for 10s) or (C) a handheld spectrometer (785 nm laser excitation for 10s (~55 mW). Three repeat spectra from the same paper test strip are provided in each case.

References