Supplementary Information
for

Optimize the overall water splitting performance of N, S co-doped carbon-supported NiCoMnSx at high current density by the effect of sulfur defects and oxygen vacancies

Runzhi Zhanga, Zebin Yua,b,\ast, Ronghua Jiangc, Jun Huangd,e, Yanping Houa, Qiuyue Zhoua, Shiyu Zhua, Xiaocan Huanga, Feng Zhena, Zhao Luoa

a School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China.

b Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China.

c School of Chemical and Environmental Engineering, Shaoguan University, Shaoguan 512005, P. R. China.

d College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, P. R. China.

e Hualan Design & Consulting Group, Nanning 530004, P. R. China

* Corresponding author. Tel./fax.: + 8613877108420

E-mail: xxzx7514@hotmail.com, yuzebin@gxu.edu.cn (Z. Yu)
Calculation methods of electrochemical related parameters:

Electrochemically active surface area (ECSAs): The electrochemically active surface area (ECSA) of the catalysts was determined by the double-layer capacitance measurements in 1 M KOH electrolyte. The doublelayer capacitance \(C_{dl} \) was determined by measuring the non-Faradaic capacitive current charging from the scan-rate dependence of CVs. The potential window of CVs was 0.324 V to 0.524 vs RHE. The \(C_{dl} \) was given by the following equation:

\[
C_{dl} = \frac{d(\Delta j)}{2d\nu_b}
\]

where \(\nu \) is the scan rate, \(j \) is the current density.

The ECSA is calculated from the double layer capacitance according to:

\[
ECSA = \frac{C_{dl}}{C_s}
\]

where \(C_s \) is the specific capacitance of the sample. We use general specific capacitances of \(C_s = 0.04 \text{ mF cm}^{-2} \) based on typical reported values.

Mass activity: The Mass activity \((j_m, \text{ A g}^{-1}) \) is evaluated at the overpotential of \(\eta=400 \text{ mV} \) and the catalyst loading \(m (0.8 \text{ mg cm}_{\text{geo}}^{-2}) \). The current density \(j_{\text{geo}} \) (mA cm\(_{\text{geo}}^{-2}\)) was given by the following equation:

\[
j_m = \frac{j_{\text{geo}}}{m}
\]

Turnover frequency (TOF): Assuming that all Co and Mn ions in the catalysts were active and contributed to the catalytic reaction, we obtained molar number of metal atom (\(n \)) by ICP to calculate the lowest TOF. The specific calculation formula was as follows:

\[
\text{TOF} = \frac{jS}{4Fn}
\]

Where \(j \) (A cm\(^{-2}\)) is the current density corresponding to 400 mV; \(S \) is the surface area of electrode, the number 4 is the assumption that all reactions in the paper are four-electron processes; \(F \) is Faraday constant \((96485.3 \text{ C/mol})\), and \(n \) is the metal ions molar number.
Figure S1 (a,f) FESEM images of NCM(OH)x; (b,g) FESEM images of NCM(BDC)x-5; (c,h) FESEM images of NCM(BDC)x-10; (d,i) FESEM images of NCM(BDC)x-15; (e,j) FESEM images of NCM(BDC)x-20; (k) EDS element distribution map of NCMx-10.
Figure S2 (a) XRD patterns of NCM(BDC)x; (b) XPS survey spectra of NCMOx-10 ;(c) XPS survey spectra of NCMSx-10; (d) S 2p spectra of NCMSx-10.
Figure S3 (a,e) Water contact angle of NCMSx-5; (b,f) Water contact angle of NCMSx-10; (c,g) Water contact angle of NCMSx-15; (d,h) Water contact angle of NCMSx-20.
Figure S4 (a) CV curves of NCMOx-5; (b) CV curves of NCMOx-10; (c) CV curves of NCMOx-15; (d) CV curves of NCMOx-20; (e) CV curves of NCMSx-5; (f) CV curves of NCMSx-10; (g) CV curves of NCMSx-15; (h) CV curves of NCMSx-20.
Figure S5 (a) C_{dl} of NCMOx; (b) C_{dl} of NCMSx; (c) ECSA of NCMOx; (d) ECSA of NCMSx.
Figure S6 (a) XRD patterns of NCMSx-10 before and after the reaction; (b) When the excitation wavelength is 530nm, the comparison of the PL curve of NCMSx-10 before and after reaction; (c) When the excitation wavelength is 285nm, the comparison of the PL curve of NCMSx-10 before and after reaction.
Figure S7 (a) Ni 2p patterns of NCMSx before and after the reaction; (b) Co 2p patterns of NCMSx before and after the reaction; (c) Mn 2p patterns of NCMSx before and after the reaction; (d) S 2p patterns of NCMSx before and after the reaction.
Figure S8 (a) SEM image after HER ;(b) SEM image after OER.
Table S1 Ratios of Co to Mn elements in NCM(BDC)x determined by ICP-OES analysis.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>NCM(BDC)x-5</th>
<th>NCM(BDC)x-10</th>
<th>NCM(BDC)x-15</th>
<th>NCM(BDC)x-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co:Mn</td>
<td>1:0.88</td>
<td>1:0.99</td>
<td>1:1.01</td>
<td>1:0.82</td>
</tr>
</tbody>
</table>

Table S2 EIS data fitting results of NCMOx and NCMSx electrodes for HER, respectively.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Rs (Ω)</th>
<th>Rct (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCMOx-5</td>
<td>1.20</td>
<td>168.10</td>
</tr>
<tr>
<td>NCMOx-10</td>
<td>1.10</td>
<td>129.80</td>
</tr>
<tr>
<td>NCMOx-15</td>
<td>1.19</td>
<td>195.80</td>
</tr>
<tr>
<td>NCMOx-20</td>
<td>1.27</td>
<td>222.10</td>
</tr>
<tr>
<td>NCMSx-5</td>
<td>0.98</td>
<td>38.07</td>
</tr>
<tr>
<td>NCMSx-10</td>
<td>1.17</td>
<td>37.37</td>
</tr>
<tr>
<td>NCMSx-15</td>
<td>1.25</td>
<td>99.24</td>
</tr>
<tr>
<td>NCMSx-20</td>
<td>1.29</td>
<td>129.20</td>
</tr>
</tbody>
</table>

Table S3 EIS data fitting results of NCMOx and NCMSx electrodes for OER, respectively.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Rs (Ω)</th>
<th>Rct (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCMOx-5</td>
<td>0.76</td>
<td>179.11</td>
</tr>
<tr>
<td>NCMOx-10</td>
<td>0.87</td>
<td>142.70</td>
</tr>
<tr>
<td>NCMOx-15</td>
<td>0.87</td>
<td>199.92</td>
</tr>
<tr>
<td>NCMOx-20</td>
<td>0.76</td>
<td>243.84</td>
</tr>
<tr>
<td>NCMSx-5</td>
<td>0.95</td>
<td>123.21</td>
</tr>
<tr>
<td>NCMSx-10</td>
<td>0.94</td>
<td>74.73</td>
</tr>
<tr>
<td>NCMSx-15</td>
<td>0.98</td>
<td>124.22</td>
</tr>
<tr>
<td>NCMSx-20</td>
<td>0.77</td>
<td>127.80</td>
</tr>
</tbody>
</table>
Table S4 The corresponding voltages of NCMOx and NCMSx electrodes at a current density of 10 mA cm$^{-2}$.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>$\eta(\text{j}=10 \text{mA cm}^{-2})$/mV (HER)</th>
<th>$\eta(\text{j}=10 \text{mA cm}^{-2})$/mV (OER)</th>
<th>$\eta(\text{j}=10 \text{mA cm}^{-2})$/V (Overall water splitting)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCMOx-5</td>
<td>-160</td>
<td>321</td>
<td>1.796</td>
</tr>
<tr>
<td>NCMOx-10</td>
<td>-152</td>
<td>334</td>
<td>1.788</td>
</tr>
<tr>
<td>NCMOx-15</td>
<td>-161</td>
<td>356</td>
<td>1.847</td>
</tr>
<tr>
<td>NCMOx-20</td>
<td>-164</td>
<td>375</td>
<td>1.878</td>
</tr>
<tr>
<td>NCMSx-5</td>
<td>-123</td>
<td>234</td>
<td>1.642</td>
</tr>
<tr>
<td>NCMSx-10</td>
<td>-105</td>
<td>226</td>
<td>1.506</td>
</tr>
<tr>
<td>NCMSx-15</td>
<td>-136</td>
<td>228</td>
<td>1.535</td>
</tr>
<tr>
<td>NCMSx-15</td>
<td>-158</td>
<td>245</td>
<td>1.660</td>
</tr>
</tbody>
</table>

Table S5 When the current density is 10 mA cm$^{-2}$, the HER and overall water splitting performance of NCMSx-10 are compared with other non-precious electrocatalysts in alkaline electrolytes.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>HER/mV</th>
<th>Overall water splitting /V</th>
<th>Electrolyte</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCMSx-10</td>
<td>105</td>
<td>1.506</td>
<td>1 M KOH</td>
<td>This work</td>
</tr>
<tr>
<td>NiCo$_2$O$_4$</td>
<td>110</td>
<td>1.65</td>
<td>1 M KOH</td>
<td>1</td>
</tr>
<tr>
<td>MoS$_2$-NiS$_2$/N-doped graphene</td>
<td>172</td>
<td>1.64</td>
<td>1 M KOH</td>
<td>2</td>
</tr>
<tr>
<td>NiFeOH/CoS$_x$</td>
<td>146</td>
<td>1.563</td>
<td>1 M KOH</td>
<td>3</td>
</tr>
<tr>
<td>NiCoSe/C</td>
<td>143</td>
<td>1.68</td>
<td>1 M KOH</td>
<td>4</td>
</tr>
<tr>
<td>CVN/CC</td>
<td>118</td>
<td>1.64</td>
<td>1 M KOH</td>
<td>5</td>
</tr>
<tr>
<td>Co${0.9}$S${0.58}$P$_{0.42}$</td>
<td>139</td>
<td>1.59</td>
<td>1 M KOH</td>
<td>6</td>
</tr>
<tr>
<td>Co${0.25}$Fe${0.75}$S$_2$</td>
<td>267</td>
<td>1.60</td>
<td>1 M KOH</td>
<td>7</td>
</tr>
</tbody>
</table>
References

