Supplementary Material

Dual-template assembled hierarchical Cu-SSZ-13: morphology evolution, crystal growth and stable high-temperature selective catalytic reduction performance

Li Liu, Zhiqiang Chen, Hongxia Qu*, Jiaxi Yuan, Mahong Yu, Huifang Xie, Qin Zhong

School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094,

China.

*Corresponding author. E-mail: qhx@mail.njust.edu.cn (H. Qu)

S1. Experimental Section

Reagents

1-bromohexadecane (97%, Aladdin), N-methylpiperidine (98%, Aldrich), ethanol (99.9%, Aladdin). N, N, N-trimethyl-1-adamantammonium hydroxide (TMAdaOH, 25wt%, Aladdin), aluminum sulfate 18-hydrate (99wt%, Adamas), sodium hydroxide (99.5%, Honeywell), colloidal silica (30.5wt%, Shanghai yuanye Bio-Technology).

Synthesis of C₁₆MP

100 ml of ethanol and 2.3 g of N-methylpiperidine were added to a 500 ml triple flask. Heated to 60 °C, 6.1 g of $C_{16}H_{33}Br$ was dropped into the mixture, further heating to 80 °C and magnetic stirring for 24 h. After the reaction, the mixture was dried overnight in a 60 °C oven, then washed 3-4 times with ether and finally dried for 12 h at 25 °C to obtain $C_{16}MP$.

Fig. S1. The liquid ¹H NMR profile of $C_{16}MP$.

¹H NMR:

δ 3.75(m, 2H), 3.59(m, 4H), 3.30(S, 3H), 1.76(m, 8H), 1.26(m+br s, 26H)

S2. Catalyst Characterization

Sample	$\mathbf{S}_{\mathrm{BET}}$	S _{micro}	S _{exter}	V _{meso}	V_{total}
	$(m^2 \cdot g^{-1})^a$	$(m^2 \cdot g^{-1})^b$	$(m^{2} \cdot g^{-1})$	$(cm^{3} \cdot g^{-1})$	(cm ³ · g ⁻¹) ^c
6 h	195.4	47.0	148.4	0.23	0.24
12 h	253.7	99.6	154.1	0.20	0.21
24 h	314.0	149.0	165.0	0.21	0.25
36 h	527.2	387.8	139.4	0.13	0.31
48 h	583.0	469.1	113.9	0.07	0.32
72 h	585.8	504.6	81.2	0.06	0.32
120 h	575.7	489.0	86.7	0.05	0.28
144 h	576.6	482.0	94.6	0.11	0.34

Table S1 Textural properties of the SSZ-13(19:1) samples with varied crystallization time.

^a Deduced by the BET method.

^b Calculated by the t-plot method.

 $^{\rm c}$ Volume absorbed at p/p_0 = 0.99.

Fig. S2. N_2 adsorption-desorption isotherms of SSZ-13 with different TMAdaOH/C $_{16}\mbox{MP}$ ratio.

Fig. S3. Particle size distribution of SSZ-13(19:1) with the crystallization from 36 h to 144 h.

Fig. S4. N₂ adsorption-desorption isotherms of SSZ-13(19:1) with different crystallization time.

Fig. S5. HK pore size distributions of SSZ-13(19:1) at different crystallization time.

Fig. S6. BJH pore size distributions of SSZ-13(19:1) at different crystallization time.

Fig. S7. S_{BET}/S_{micro} cures of SSZ-13(19:1) sample relative crystallization time.

Fig. S8. ^{29}Si NMR spectra of SSZ-13 samples with different TMAdaOH/C_{16}MP molar ratio.

Fig. S9. Dependences of the NH_3 conversion on temperature over SSZ-13 samples with different TMAdaOH/C₁₆MP molar ratio.