Nitrogen concentration and anisotropic effects on the EPR spectra of natural diamonds

Ira Litvak1, Haim Cohen1, Yaakov Anker2,\,*, Sharon Ruthstein3,\,*

1Department of Chemical Sciences, Faculty of Exact Science, Ariel University, Ariel, Israel
2Department of Chemical Engineering and the Eastern R&D Center, Ariel, Israel
3Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat Gan, Israel.
* corresponding authors

Supporting Information
Figure S1A: FTIR spectra of the five diamonds investigated for nitrogen concentration calculations A) pre-yellow; B) pre-blue; C) pre-pink; D) pre-green and E) pre-orange.

Figure S1B: FTIR spectra of the one-phonon (nitrogen absorption range in diamonds) five diamonds: A) pre-yellow; B) pre-blue; C) pre-pink; D) pre-green and E) pre-orange.
Figure S2: EPR spectra of A) pre-green diamond; B) pre-blue diamond; and C) pre-pink diamond at 0° acquired at microwave power range of 0.2μW to 20 μW.
Figure S3: EPR spectra (20 mW) (solid lines) and simulated spectra (dashed line) for A) pre-green diamond; B) pre-pink diamond; C) pre-orange diamond; D) pre-yellow diamond; and E) pre-blue diamond.