Supporting Information

First-Principles Simulation of Monolayer Hydrogen Passivated Bi$_2$O$_2$S$_2$-Metal Interfaces

Linqiang Xu,¹ † Shiqi Liu,¹ † Han Zhang,¹ Xiuying Zhang,¹ Jingzhen Li,¹ Jiahuan Yan,¹ Bowen Shi,¹ Jie Yang,¹ Chen Yang,¹,² Lianqiang Xu,⁴ Xiaotian Sun,⁵ Jing Lu¹,³,⁶*

¹State Key Laboratory of Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China
²Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
³Collaborative Innovation Center of Quantum Matter, Beijing 100871, P. R. China
⁴School of Physics and Electronic Information Engineering, Engineering Research Center of Nanostructure and Functional Materials, Ningxia Normal University, Guyuan, Ningxia 756000, P. R. China
⁵College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
⁶Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MEMD), Beijing 100871, P. R. China

† These authors contributed equally to this work.

Email: jinglu@pku.edu.cn
Figure S1. Band structure of ML Bi$_2$O$_2$S$_2$ without hydrogen passivation.

Figure S2. Three kinds of interfacial stacking configurations for Ti electrode. The first line displays the three initial configurations. The second line displays the three configurations after optimization. The corresponding atoms are shown on the right.
Figure S3. Three kinds of interfacial stacking configurations for Sc electrode. The first line displays the three initial configurations. The second line displays the three configurations after optimization. The corresponding atoms are shown on the bottom.

Figure S4. Three kinds of interfacial stacking configurations for Pd electrode. The first line displays the three initial configurations. The second line displays the three configurations after optimization. The corresponding atoms are shown on the bottom.
Figure S5. Three kinds of interfacial stacking configurations for Pt electrode. The first line displays the three initial configurations. The second line displays the three configurations after optimization. The corresponding atoms are shown on the bottom.