Supporting Information

for

Impact of Electronic Polarizability on Protein-Functional Group Interactions

Himanshu Goela, Wenbo Yua, Vincent D. Ustacha, Asaminew H. Aytenfisu,a Delin Suna and Alexander D. MacKerell Jr.a*

a Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St. Baltimore, Maryland 21201, United States
Table S1: Overlap coefficients for the different fragments in consideration to the 1-5 and 6-10 independent runs with Drude and additive model for each protein target.

<table>
<thead>
<tr>
<th>FragMap</th>
<th>P38 kinase</th>
<th>FactorXa</th>
<th>HDM2</th>
<th>TRMD</th>
<th>TYK2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drude</td>
<td>Additive</td>
<td>Drude</td>
<td>Additive</td>
<td>Drude</td>
</tr>
<tr>
<td>meoo</td>
<td>0.82</td>
<td>0.84</td>
<td>0.83</td>
<td>0.84</td>
<td>0.83</td>
</tr>
<tr>
<td>imin</td>
<td>0.80</td>
<td>0.84</td>
<td>0.80</td>
<td>0.84</td>
<td>0.82</td>
</tr>
<tr>
<td>iminh</td>
<td>0.81</td>
<td>0.84</td>
<td>0.81</td>
<td>0.84</td>
<td>0.83</td>
</tr>
<tr>
<td>foro</td>
<td>0.82</td>
<td>0.84</td>
<td>0.82</td>
<td>0.83</td>
<td>0.83</td>
</tr>
<tr>
<td>forn</td>
<td>0.82</td>
<td>0.84</td>
<td>0.82</td>
<td>0.83</td>
<td>0.83</td>
</tr>
<tr>
<td>mamn</td>
<td>0.82</td>
<td>0.84</td>
<td>0.81</td>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td>aceo</td>
<td>0.84</td>
<td>0.85</td>
<td>0.85</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>benc</td>
<td>0.85</td>
<td>0.89</td>
<td>0.86</td>
<td>0.90</td>
<td>0.85</td>
</tr>
<tr>
<td>prpc</td>
<td>0.83</td>
<td>0.87</td>
<td>0.85</td>
<td>0.87</td>
<td>0.84</td>
</tr>
<tr>
<td>aalo</td>
<td>0.81</td>
<td>0.84</td>
<td>0.81</td>
<td>0.84</td>
<td>0.83</td>
</tr>
<tr>
<td>tipo</td>
<td>0.97</td>
<td>0.98</td>
<td>0.97</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>aalc</td>
<td>0.81</td>
<td>0.85</td>
<td>0.81</td>
<td>0.84</td>
<td>0.83</td>
</tr>
<tr>
<td>gehc</td>
<td>0.86</td>
<td>0.89</td>
<td>0.86</td>
<td>0.90</td>
<td>0.87</td>
</tr>
<tr>
<td>acec</td>
<td>0.80</td>
<td>0.81</td>
<td>0.80</td>
<td>0.82</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Table S2: Overlap coefficient for the different FragMaps for the entire simulation box between the Drude and additive simulations for each protein target.

<table>
<thead>
<tr>
<th>FragMap</th>
<th>P38</th>
<th>FactorXa</th>
<th>HDM2</th>
<th>TRMD</th>
<th>TYK2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol oxygen (meoo)</td>
<td>0.84</td>
<td>0.85</td>
<td>0.86</td>
<td>0.86</td>
<td>0.89</td>
</tr>
<tr>
<td>Imidazole acceptor nitrogen (imin)</td>
<td>0.82</td>
<td>0.83</td>
<td>0.84</td>
<td>0.83</td>
<td>0.88</td>
</tr>
<tr>
<td>Imidazole hydrogen on nitrogen (iminh)</td>
<td>0.83</td>
<td>0.83</td>
<td>0.84</td>
<td>0.83</td>
<td>0.88</td>
</tr>
<tr>
<td>Formamide oxygen (foro)</td>
<td>0.83</td>
<td>0.83</td>
<td>0.85</td>
<td>0.85</td>
<td>0.89</td>
</tr>
<tr>
<td>Formamide nitrogen (forn)</td>
<td>0.84</td>
<td>0.83</td>
<td>0.85</td>
<td>0.85</td>
<td>0.89</td>
</tr>
<tr>
<td>Methylammonium nitrogen (mamn)</td>
<td>0.75</td>
<td>0.74</td>
<td>0.79</td>
<td>0.77</td>
<td>0.81</td>
</tr>
<tr>
<td>Acetate oxygen (aceo)</td>
<td>0.78</td>
<td>0.75</td>
<td>0.79</td>
<td>0.80</td>
<td>0.78</td>
</tr>
<tr>
<td>Benzene carbon (benc)</td>
<td>0.79</td>
<td>0.82</td>
<td>0.80</td>
<td>0.83</td>
<td>0.82</td>
</tr>
<tr>
<td>Propane carbon (prpc)</td>
<td>0.76</td>
<td>0.80</td>
<td>0.77</td>
<td>0.79</td>
<td>0.82</td>
</tr>
<tr>
<td>Acetaldehyde oxygen (aalo)</td>
<td>0.80</td>
<td>0.82</td>
<td>0.81</td>
<td>0.82</td>
<td>0.86</td>
</tr>
<tr>
<td>Water (tipo)</td>
<td>0.95</td>
<td>0.95</td>
<td>0.96</td>
<td>0.96</td>
<td>0.97</td>
</tr>
<tr>
<td>Acetaldehyde carbon (aalc)</td>
<td>0.80</td>
<td>0.82</td>
<td>0.82</td>
<td>0.81</td>
<td>0.86</td>
</tr>
<tr>
<td>Imidazole carbon (gehc)</td>
<td>0.86</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
<td>0.92</td>
</tr>
<tr>
<td>Acetate carbon (acec)</td>
<td>0.75</td>
<td>0.71</td>
<td>0.75</td>
<td>0.77</td>
<td>0.76</td>
</tr>
</tbody>
</table>
Figure S1: 2D structures for all the ligands present in the crystal structures used in the present study.
HDM2 and TRMD FragMap Analysis

HDM2: The HDM2 FragMaps along with its crystallographic structure are shown in Figure S1A and S1B for additive and Drude simulations, respectively. With the apolar FragMaps, the Drude and additive simulations depict four regions for apolar groups and they match satisfactorily to each other. The ligand structure contains three apolar aromatic rings as shown by arrows 1, 2, and 3 in Figure S1B and both set of FragMaps capture this feature of the crystallographic ligand. There are no FragMaps for the positive or negative charged groups in both sets of figures at the presented contour levels. Hydrogen bond acceptor or donor (GENA/GEND) FragMaps, as shown by arrows 4 and 5, are adjacent to the bromine atoms of the ligand. The Drude simulations show the presence of hydrogen bond donor maps adjacent to one of the bromine atoms as indicated by arrow 4. The presence of the donor FragMap may indicate the potential of this class of functional groups to participate in a favorable interaction with the bromine perpendicular to the C-Br bond as recently reported based on quantum mechanical calculations and a survey of the protein database.1

TRMD: The TRMD FragMaps are shown in Figure S1C and S1D for the additive and Drude simulations, respectively, along with the crystallographic structure of the protein and ligand. The apolar groups perfectly capture both the aromatic rings of the ligand as shown by the arrows 1 and 2 in Figure S1D. In addition, hydrogen bond acceptor (red) and donor (blue) FragMaps are observed on both the plots as shown by arrows 3 and 4 in Figure S1D. These recapitulate the positions of the corresponding functional groups on the ligand. Moreover, on the left side of the figure (arrow 5 in Figure S1C) donor and acceptor FragMaps are present which do not correlate with functional groups on the ligand. However, TRMD ligands are known that have polar groups, including hydroxyls and amines, in this region corresponding to the polar FragMaps.2
Figure S2: FragMaps overlaid on the proteins HDM2 and TRMD. Cartoon representation are shown based on the crystal conformations (PDB 4JV7 and PDB 4YPW) with portions of the protein occluding the binding pocket view omitted. The ligands from the respective crystal structures are shown in CPK representation with atom type color. Figures A and C show the FragMaps for HDM2 and TRMD obtained from the additive simulations while figures B and D show the FragMaps for HDM2 and TRMD, respectively obtained from the Drude simulations. The FragMaps color are GENN (green), GENA (red), GEND (blue), MAMN (cyan), and ACEO (orange). All FragMaps isocontour surfaces are displayed at a cutoff of -1.2 kcal/mol. 2D images of the ligands are shown in Figure S1.
Figure S3: Ligand minimum LGFE conformations from the Exhaustive SILCS-MC protocol for HDM2 (A/B) and TRMD (C/D). The left (A and C) and right (B and D) panels shows the ligand conformations obtained from the SILCS-MC additive and Drude, respectively. The crystallographic position of the ligand from the crystal structures used to initiate the SILCS simulations are displayed in CPK model to show the binding pocket.
Figure S4: The x, y and z dipole moment vectors drawn on the eight solutes to show their orientations on the molecules.
Figure S5: Total dipole moment distribution for all the eight solutes from the P38, Factor Xa, and TYK2 protein simulations. Solid and dotted/dashed lines represent the dipole distribution from Drude and additive simulations, respectively. The red color shows the dipole moment for the solutes present in the bulk phase and the blue, green, and black color represent dipole moments in the ligand binding pockets of P38, Factor Xa, and TYK2, respectively.

Figure S6: Dipole moment distributions in the x direction for all the eight solutes from the P38, Factor Xa, and TYK2 protein simulations. Solid and dotted/dashed lines represent the dipole distribution from Drude and additive simulations, respectively. The red color shows the dipole moment for the solutes present in the bulk phase and the blue, green, and black color represents dipole moments in the ligand binding pockets of P38, Factor Xa, and TYK2, respectively.
Figure S7: Dipole moment distributions in the y direction for all the eight solutes from the P38, Factor Xa, and TYK2 protein simulations. Solid and dotted/dashed lines represent the dipole distribution from Drude and additive simulations, respectively. The red color shows the dipole moment for the solutes present in the bulk phase and the blue, green, and black color represents dipole moments in the ligand binding pockets of P38, Factor Xa, and TYK2, respectively.

Figure S8: Dipole moment distributions in the z direction for all the eight solutes from the P38, Factor Xa, and TYK2 protein simulations. Solid and dotted/dashed lines represent the dipole distribution from Drude and additive simulations, respectively. The red color shows the dipole moments for the solutes present in the bulk phase and the blue, green, and black color represents dipole moments in the ligand binding pockets of P38, Factor Xa, and TYK2, respectively.
Table S3: Topology and parameter information for the SILCS polarizable Drude force field solutes.

* DRUDE SILCS solute topology file *

read rtf card append
* Topology for drude model compounds *

DEFA FIRS NONE LAST NONE
AUTOGENERATE ANGLES DIHEDRALS DRUDE !note use of DRUDE

RESI BENX 0.00 ! benzene
!
 HD1 HE1
 | |
 CD1--CE1
 / \ \
 HG--CG CZ--HZ
 \ / \
 CD2--CE2
 | |
 HD2 HE2
!
GROUP
ATOM CG CD2R6A -0.1106 ALPHA -1.615 THOLE 1.195
ATOM HG HDR6A 0.1106
ATOM CD1 CD2R6A -0.1106 ALPHA -1.615 THOLE 1.195
ATOM HD1 HDR6A 0.1106
ATOM CD2 CD2R6A -0.1106 ALPHA -1.615 THOLE 1.195
ATOM HD2 HDR6A 0.1106
ATOM CE1 CD2R6A -0.1106 ALPHA -1.615 THOLE 1.195
ATOM HE1 HDR6A 0.1106
ATOM CE2 CD2R6A -0.1106 ALPHA -1.615 THOLE 1.195
ATOM HE2 HDR6A 0.1106
ATOM CZ CD2R6A -0.1106 ALPHA -1.615 THOLE 1.195
ATOM HZ HDR6A 0.1106
ATOM LPA LS 0.00

BOND CD1 CG CD2 CG CE1 CD1
BOND CE2 CD2 CZ CE1 CZ CE2
BOND CG HG CD1 HD1 CD2 HD2 CE1 HE1
BOND CE2 HE2 CZ HZ CG LPA

LONEPAIR bisector LPA CG CD1 CD2 distance 1.375 angle 0.0 dihe 0.0

IC CG CD1 CE1 CZ 0.0000 0.0000 0.0000 0.0000 0.0000
IC CD1 CE1 CZ CE2 0.0000 0.0000 0.0000 0.0000 0.0000
IC CE1 CZ CE2 CD2 0.0000 0.0000 0.0000 0.0000 0.0000
PATCHING FIRST NONE LAST NONE

RESI PRPX 0.000 ! propane
!
! H11 H21 H31
! \ | /
! H12-C1--C2--C3-H32
! / | \
! H13 H22 H33
!
GROUP
ATOM H11 HDA3A 0.059
ATOM H12 HDA3A 0.059
ATOM H13 HDA3A 0.059
ATOM C1 CD33A -0.177 ALPHA -2.051 THOLE 1.3
GROUP
ATOM C2 CD32A -0.156 ALPHA -1.660 THOLE 1.3
ATOM H21 HDA2A 0.078
ATOM H22 HDA2A 0.078
GROUP
ATOM H31 HDA3A 0.059
ATOM H32 HDA3A 0.059
ATOM H33 HDA3A 0.059
ATOM C3 CD33A -0.177 ALPHA -2.051 THOLE 1.3
ATOM LPA LS 0.00
BOND c1 h11 c1 h12 c1 h13
BOND c1 c2 c2 h21 c2 h22
BOND c2 c3 c3 h31 c3 h32 c3 h33 C2 LPA
LONEPAIR bisector LPA C2 C1 C3 distance 0.1 angle 0.0 dihe 0.0

! IC for PROP staggered conformer MP2/6-31G* optimized
IC C1 C2 C3 H31 1.5260 112.39 59.77 110.82 1.0946
IC C1 C2 C3 H32 1.5260 112.39 59.77 110.82 1.0946
IC C1 C2 C3 H33 1.5260 112.39 59.77 110.82 1.0946
IC H11 C1 C2 C3 1.0946 110.82 59.77 112.39 1.5260
IC H11 C1 C2 H21 1.0946 110.82 62.14 109.48 1.0960
IC H11 C1 C2 H22 1.0946 110.82 178.32 109.48 1.0960
IC C3 C2 C1 H12 1.5260 112.39 59.77 110.82 1.0946
IC C3 C2 C1 H13 1.5260 112.39 59.77 110.82 1.0946
PATCH FIRST NONE LAST NONE
RESI MAMY 1.00 ! from MAMM

! HZ2
! |
! HZ1-----NZ------HZ3 (+)
! |
! |
! HE1-CE-HE3
! |
! HE2

GROUP
ATOM CE CD33A -0.100 ALPHA -1.656 THOLE 0.895
ATOM NZ ND3P3A -0.349 ALPHA -1.298 THOLE 0.895
ATOM HE1 HDA3C 0.143
ATOM HE2 HDA3C 0.143
ATOM HE3 HDA3C 0.143
ATOM HZ1 HDP1B 0.340
ATOM HZ2 HDP1B 0.340
ATOM HZ3 HDP1B 0.340
ATOM LPA LT 0.00
BOND CE HE1 CE HE2 CE HE3
BOND CE NZ NZ HZ1 NZ HZ2 NZ HZ3 NZ LPA
LONEPAIR bisector LPA NZ HZ1 HZ3 distance 0.1 angle 0.0 dihe 0.0
IC NZ HE3 *CE HE1 0.0000 0.00 120.00 0.00 0.0000
IC NZ HE3 *CE HE2 0.0000 0.00 -120.00 0.00 0.0000
IC HE3 CE NZ HZ3 0.0000 0.00 180.00 0.00 0.0000
IC CE HZ3 *NZ HZ1 0.0000 0.00 120.00 0.00 0.0000
IC CE HZ3 *NZ HZ2 0.0000 0.00 -120.00 0.00 0.0000

RESI FORM 0.000
!
! O HC
! || /
! HA---C---N
! \
! HT
!

GROUP
ATOM C CD201C 0.302 ALPHA -1.757 THOLE 1.482
ATOM O OD2C1C 0.000 ALPHA -0.901 THOLE 1.311
ATOM LPA LPD -0.233
ATOM LPB LPD -0.226
ATOM HA HDP1C 0.060
ATOM N ND2A1 -0.545 ALPHA -1.314 THOLE 1.187
ATOM HC HDP1A 0.346
ATOM HT HDP1A 0.296
BOND C O
BOND C HA
BOND C N
BOND N HC
BOND N HT
BOND O LPA O LPB
LONEPAIR relative LPA O C HA distance 0.30 angle 91.00
dihe 0.00
LONEPAIR relative LPB O C HA distance 0.30 angle 91.00
dihe 180.00
ANISOTROPY O C LPA LPB A11 0.583 A22 0.711
ANISOTROPY N C HC HT A11 0.970 A22 1.347
IMPR C N O HA
IMPR N HC HT C
IC O C N HT 1.2250 125.00 180.00 123.50 1.0250
IC O N *C HA 1.2250 125.00 180.00 114.00 0.0000
IC C HT *N HC 1.3500 123.50 180.00 113.00 1.0250
IC HA C N HC 1.3500 123.50 0.00 113.00 1.0250

RESI ACEY -1.00 ! from ACET

GROUP
!
! H1 O1
! \ //
! H2--C1--C2 (-1)
! / \
! H3 O2
!

GROUP
ATOM C1 CD33A -0.194 ALPHA -2.528 THOLE 1.414
ATOM H1 HDA3A 0.004
ATOM H2 HDA3A 0.004
ATOM H3 HDA3A 0.004
ATOM C2 CD2O2A 0.708 ALPHA -1.016 THOLE 0.899
ATOM O1 OD2C2A 0.003 ALPHA -0.699 THOLE 2.399
ATOM O2 OD2C2A 0.003 ALPHA -0.699 THOLE 2.399
ATOM LP1A LP -0.383
ATOM LP1B LP -0.383
ATOM LP2A LP -0.383
ATOM LP2B LP -0.383
ATOM LPA LT 0.00

BOND C1 C2 C2 O1 C2 O2
BOND C1 H1 C1 H2 C1 H3
BOND O1 LP1A O1 LP1B
BOND O2 LP2A O2 LP2B C2 LPA
IMPH O1 C1 O2 C2

LONEPAIR relative LP1A O1 C2 C1 distance 0.35 angle 110.0 dihe 0.0
LONEPAIR relative LP1B O1 C2 C1 distance 0.35 angle 110.0 dihe 180.0
ANISOTROPY O1 C2 LP1A LP1B A11 0.7229 A22 1.265
LONEPAIR relative LP2A O2 C2 C1 distance 0.35 angle 110.0 dihe 0.0
LONEPAIR relative LP2B O2 C2 C1 distance 0.35 angle 110.0 dihe 180.0
ANISOTROPY O2 C2 LP2A LP2B A11 0.7229 A22 1.265
LONEPAIR bisector LPA C2 O1 O2 distance 0.1 angle 0.0 dihe 0.0
IC O1 C2 C1 H1 1.2543 118.04 180.00 111.57 1.1108
IC O1 O2 *C2 C1 1.2543 122.88 180.00 119.08 1.5229
IC H1 C2 *C1 H2 1.1108 111.57 120.15 110.12 1.1112
IC H1 C2 *C1 H3 1.1108 111.57 -120.15 110.12 1.1112
IC H1 C1 C2 O2 1.1108 111.57 120.15 110.12 1.1112

PATCHING FIRST NONE LAST NONE

END

read para card append

* SILCS LP VdW and NBFIX

BONDS

! acey
OD2C2A LP 0.00 0.000 !
CD2R6A LS 0.00 0.000 ! BENZENE LONEPAIR
CD2O2A LT 0.00 0.000
CD32A LS 0.00 0.000
ND3P3A LT 0.00 0.000

! meox
OD31A LP 0.00 0.000 !

! aald and meagan's
CD2O1C LPDO1 0.00 0.000 !

ANGLES

! aald and meagan's
OD2C1D CD2O1C CD33C 63.60 123.81 ! acetone 63.6 121.78; 2-butane 63.6 121.78; 2-pentane 63.6 121.88;

! form
ND2A1 CD2O1C OD2C1C 67.000 127.00 50.000 2.37000 75
ND2A1 CD2O1C HDP1C 30.000 115.00 50.000 1.98000
CD2O1C ND2A1 HDP1A 52.000 117.00

DIHEDRALS

! aald and meagan's
OD2C1D CD2O1C CD33C HDA3A 0.015 3 0.00 !

! form
HDP1C CD2O1C ND2A1 HDP1A 1.400 2 180.0
OD2C1C CD2O1C ND2A1 HDP1A 3.000 2 180.0

IMPROPERS
! form
CD2O1C ND2A1 OD2C1C HDP1C 61.00 0 0.0
ND2A1 HDP1A HDP1A CD2O1C 3.00 0 0.0

NONBONDED nbxmod 5 atom cdiel fshift vatom vdistance vswitch -
cutnb 14.0 ctofnb 12.0 ctonnb 10.0 eps 1.0 e14fac 1.0 wmin 1.5

NBFIX
ODW CD2O1C -0.16560 3.31690 ! original 3.3669, eps -0.16560
ODW OD2C1D -0.20540 3.50690 ! NMA, PEML 3.60690, normally 3.5869, eps
-0.20540

END

References