Electronic Supplementary Information

Polar soft-SAFT: Theory and Comparison with Molecular Simulations and Experimental Data of Pure Polar Fluids.

Ismail I.I. Alkhatib 1,2, Luís M.C. Pereira1, Jordi Torne 3 and Lourdes F. Vega1,2,4*

1 Chemical Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
2 Research and Innovation Center on CO2 and H2 (RICH), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
3 Alya Technology & Innovation SL, C/ Republica 42, 08202 Sabadell, Barcelona, Spain
4 Center for Catalysis and Separation (CeCaS), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.

* Corresponding author. E-mail address: lourdes.vega@ku.ac.ae

Fig. S1. Coexisting curves for the monomeric density vs. reduced temperature from soft-SAFT (solid lines) compared to molecular simulations1 (symbols) for LJ fluids with different chain lengths, m = 1, m = 2, and m = 4.
Fig. S2. VLE coexistence curves for tangent-sphere LJ dimer fluid ($m = 2$) from soft-SAFT (solid lines) compared to molecular simulations for non-polar LJ dimer fluid (\circ), and for non-polar 2CLJ fluid with $L^* = 1.0$ (\bigodot), 1.2 (\boxdot), 1.4 (\bigoplus) and (Δ).

Fig. S3. Surface tension vs. temperature for non-polar LJ spheres, $m = 1$ (black) and LJ dimer, $m = 2$ (red) fluids from soft-SAFT + DGT model (solid lines) compared to results from molecular simulations for tangent-sphere LJs (\circ), and 2CLJ fluids (Δ) (converted to the tangent-sphere model). See text for details.
References

